Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, et al.: Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 1986, 83: 4913–4917. 10.1073/pnas.83.13.4913
Article
CAS
PubMed
PubMed Central
Google Scholar
Kosik KS, Joachim CL, Selkoe DJ: Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc Natl Acad Sci USA 1986, 83: 4044–4048. 10.1073/pnas.83.11.4044
Article
CAS
PubMed
PubMed Central
Google Scholar
Wood JG, Mirra SS, Pollock NJ, Binder LI: Neurofibrillary tangles of Alzheimer disease share antigenic determinants with the axonal microtubule-associated protein tau (tau). Proc Natl Acad Sci USA 1986, 83: 4040–4043. 10.1073/pnas.83.11.4040
Article
CAS
PubMed
PubMed Central
Google Scholar
Hanger DP, Byers HL, Wray S, Leung KY, Saxton MJ, et al.: Novel phosphorylation sites in tau from Alzheimer brain support a role for casein kinase 1 in disease pathogenesis. J Biol Chem 2007, 282: 23645–23654. 10.1074/jbc.M703269200
Article
CAS
PubMed
Google Scholar
Mandelkow EM, Mandelkow E: Biochemistry and cell biology of tau protein in neurofibrillary degeneration. Cold Spring Harb Perspect Med 2012, 2: a006247. doi:10.1101/cshperspect.a006247
Article
PubMed
PubMed Central
Google Scholar
Sergeant N, Bretteville A, Hamdane M, Caillet-Boudin ML, Grognet P, et al.: Biochemistry of Tau in Alzheimer’s disease and related neurological disorders. Expet Rev Proteonomics 2008, 5: 207–224. 10.1586/14789450.5.2.207
Article
CAS
Google Scholar
Alonso AD, Di Clerico J, Li B, Corbo CP, Alaniz ME, et al.: Phosphorylation of tau at Thr212, Thr231, and Ser262 combined causes neurodegeneration. J Biol Chem 2010, 285: 30851–30860. 10.1074/jbc.M110.110957
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang JZ, Grundke-Iqbal I, Iqbal K: Kinases and phosphatases and tau sites involved in Alzheimer neurofibrillary degeneration. Eur J Neurosci 2007, 25: 59–68. 10.1111/j.1460-9568.2006.05226.x
Article
PubMed
PubMed Central
Google Scholar
Augustinack JC, Schneider A, Mandelkow EM, Hyman BT: Specific tau phosphorylation sites correlate with severity of neuronal cytopathology in Alzheimer’s disease. Acta Neuropathol 2002, 103: 26–35. 10.1007/s004010100423
Article
CAS
PubMed
Google Scholar
Drewes G, Ebneth A, Preuss U, Mandelkow EM, Mandelkow E: MARK, a novel family of protein kinases that phosphorylate microtubule-associated proteins and trigger microtubule disruption. Cell 1997, 89: 297–308. 10.1016/S0092-8674(00)80208-1
Article
CAS
PubMed
Google Scholar
Kosuga S, Tashiro E, Kajioka T, Ueki M, Shimizu Y, et al.: GSK-3beta directly phosphorylates and activates MARK2/PAR-1. J Biol Chem 2005, 280: 42715–42722. 10.1074/jbc.M507941200
Article
CAS
PubMed
Google Scholar
Trinczek B, Brajenovic M, Ebneth A, Drewes G: MARK4 is a novel microtubule-associated proteins/microtubule affinity-regulating kinase that binds to the cellular microtubule network and to centrosomes. J Biol Chem 2004, 279: 5915–5923.
Article
CAS
PubMed
Google Scholar
Gu GJ, Lund H, Wu D, Blokzijl A, Classon C, et al.: Role of individual MARK isoforms in phosphorylation of tau at Ser(2)(6)(2) in Alzheimer’s disease. Neuromolecular Med 2013, 15: 458–469. 10.1007/s12017-013-8232-3
Article
CAS
PubMed
Google Scholar
Ono T, Kawabe T, Sonta S, Okamoto T: Assignment of MARK3 alias KP78 to human chromosome band 14q32.3 by in situ hybridization. Cytogenet Cell Genet 1997, 79: 101–102. 10.1159/000134692
Article
CAS
PubMed
Google Scholar
Mandelkow EM, Thies E, Trinczek B, Biernat J, Mandelkow E: MARK/PAR1 kinase is a regulator of microtubule-dependent transport in axons. J Cell Biol 2004, 167: 99–110. 10.1083/jcb.200401085
Article
CAS
PubMed
PubMed Central
Google Scholar
Li X, Kumar Y, Zempel H, Mandelkow EM, Biernat J, et al.: Novel diffusion barrier for axonal retention of Tau in neurons and its failure in neurodegeneration. EMBO J 2011, 30: 4825–4837. 10.1038/emboj.2011.376
Article
CAS
PubMed
PubMed Central
Google Scholar
Eckermann K, Mocanu MM, Khlistunova I, Biernat J, Nissen A, et al.: The beta-propensity of Tau determines aggregation and synaptic loss in inducible mouse models of tauopathy. J Biol Chem 2007, 282: 31755–31765. 10.1074/jbc.M705282200
Article
CAS
PubMed
Google Scholar
Chatterjee S, Sang TK, Lawless GM, Jackson GR: Dissociation of tau toxicity and phosphorylation: role of GSK-3beta, MARK and Cdk5 in a Drosophila model. Hum Mol Genet 2009, 18: 164–177.
Article
CAS
PubMed
Google Scholar
Nishimura I, Yang Y, Lu B: PAR-1 kinase plays an initiator role in a temporally ordered phosphorylation process that confers tau toxicity in Drosophila. Cell 2004, 116: 671–682. 10.1016/S0092-8674(04)00170-9
Article
CAS
PubMed
Google Scholar
Chin JY, Knowles RB, Schneider A, Drewes G, Mandelkow EM, et al.: Microtubule-affinity regulating kinase (MARK) is tightly associated with neurofibrillary tangles in Alzheimer brain: a fluorescence resonance energy transfer study. J Neuropathol Exp Neurol 2000, 59: 966–971.
Article
CAS
PubMed
Google Scholar
Gu GJ, Wu D, Lund H, Sunnemark D, Kvist AJ, et al.: Elevated MARK2-dependent phosphorylation of Tau in Alzheimer’s disease. J Alzheim Dis 2013, 33: 699–713.
CAS
Google Scholar
Funk KE, Mrak RE, Kuret J: Granulovacuolar degeneration (GVD) bodies of Alzheimer’s disease (AD) resemble late-stage autophagic organelles. Neuropathol Appl Neurobiol 2010, 37: 295–306.
Article
Google Scholar
Kahn J, Anderton BH, Probst A, Ulrich J, Esiri MM: Immunohistological study of granulovacuolar degeneration using monoclonal antibodies to neurofilaments. J Neurol Neurosurg Psychiatry 1985, 48: 924–926. 10.1136/jnnp.48.9.924
Article
CAS
PubMed
PubMed Central
Google Scholar
Price DL, Altschuler RJ, Struble RG, Casanova MF, Cork LC, et al.: Sequestration of tubulin in neurons in Alzheimer’s disease. Brain Res 1986, 385: 305–310. 10.1016/0006-8993(86)91077-2
Article
CAS
PubMed
Google Scholar
Dickson DW, Ksiezak-Reding H, Davies P, Yen SH: A monoclonal antibody that recognizes a phosphorylated epitope in Alzheimer neurofibrillary tangles, neurofilaments and tau proteins immunostains granulovacuolar degeneration. Acta Neuropathol 1987, 73: 254–258. 10.1007/BF00686619
Article
CAS
PubMed
Google Scholar
Ghoshal N, Smiley JF, DeMaggio AJ, Hoekstra MF, Cochran EJ, et al.: A new molecular link between the fibrillar and granulovacuolar lesions of Alzheimer’s disease. Am J Pathol 1999, 155: 1163–1172. 10.1016/S0002-9440(10)65219-4
Article
CAS
PubMed
PubMed Central
Google Scholar
Leroy K, Boutajangout A, Authelet M, Woodgett JR, Anderton BH, et al.: The active form of glycogen synthase kinase-3beta is associated with granulovacuolar degeneration in neurons in Alzheimer’s disease. Acta Neuropathol 2002, 103: 91–99. 10.1007/s004010100435
Article
CAS
PubMed
Google Scholar
Kannanayakal TJ, Tao H, Vandre DD, Kuret J: Casein kinase-1 isoforms differentially associate with neurofibrillary and granulovacuolar degeneration lesions. Acta Neuropathol 2006, 111: 413–421. 10.1007/s00401-006-0049-9
Article
CAS
PubMed
Google Scholar
Ball MJ: Topographic distribution of neurofibrillary tangles and granulovacuolar degeneration in hippocampal cortex of aging and demented patients. A quantitative study. Acta Neuropathol 1978, 42: 73–80. 10.1007/BF00690970
Article
CAS
PubMed
Google Scholar
Thal DR, Del Tredici K, Ludolph AC, Hoozemans JJ, Rozemuller AJ, et al.: Stages of granulovacuolar degeneration: their relation to Alzheimer’s disease and chronic stress response. Acta Neuropathol 2011, 122: 577–589. 10.1007/s00401-011-0871-6
Article
CAS
PubMed
Google Scholar
Lund H, Cowburn RF, Gustafsson E, Stromberg K, Svensson A, et al.: Tau-tubulin kinase 1 expression, phosphorylation and co-localization with phospho-ser422 tau in the Alzheimer’s disease brain. Brain Pathol 2013, 23: 378–389. 10.1111/bpa.12001
Article
CAS
PubMed
Google Scholar
Okamoto K, Hirai S, Iizuka T, Yanagisawa T, Watanabe M: Reexamination of granulovacuolar degeneration. Acta Neuropathol 1991, 82: 340–345. 10.1007/BF00296544
Article
CAS
PubMed
Google Scholar
Lizcano JM, Goransson O, Toth R, Deak M, Morrice NA, et al.: LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO J 2004, 23: 833–843. 10.1038/sj.emboj.7600110
Article
CAS
PubMed
PubMed Central
Google Scholar
Seshadri S, Fitzpatrick AL, Ikram MA, DeStefano AL, Gudnason V, et al.: Genome-wide analysis of genetic loci associated with Alzheimer disease. JAMA 2010, 303: 1832–1840. 10.1001/jama.2010.574
Article
CAS
PubMed
PubMed Central
Google Scholar
Yamazaki Y, Matsubara T, Takahashi T, Kurashige T, Dohi E, et al.: Granulovacuolar degenerations appear in relation to hippocampal phosphorylated tau accumulation in various neurodegenerative disorders. PloS One 2011, 6: e26996. 10.1371/journal.pone.0026996
Article
CAS
PubMed
PubMed Central
Google Scholar
Braak H, Braak E: Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 1991, 82: 239–259. 10.1007/BF00308809
Article
CAS
PubMed
Google Scholar
Braak H, Del Tredici K: Where, when, and in what form does sporadic Alzheimer’s disease begin? Curr Opin Neurol 2012, 25: 708–714. 10.1097/WCO.0b013e32835a3432
Article
CAS
PubMed
Google Scholar
Kruger U, Wang Y, Kumar S, Mandelkow EM: Autophagic degradation of tau in primary neurons and its enhancement by trehalose. Neurobiol Aging 2012, 33: 2291–2305. 10.1016/j.neurobiolaging.2011.11.009
Article
PubMed
Google Scholar
Timm T, Li XY, Biernat J, Jiao J, Mandelkow E, et al.: MARKK, a Ste20-like kinase, activates the polarity-inducing kinase MARK/PAR-1. EMBO J 2003, 22: 5090–5101. 10.1093/emboj/cdg447
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu PR, Tsai PI, Chen GC, Chou HJ, Huang YP, et al.: DAPK activates MARK1/2 to regulate microtubule assembly, neuronal differentiation, and tau toxicity. Cell Death Differ 2011, 18: 1507–1520. 10.1038/cdd.2011.2
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu W, Polepalli J, Wagh D, Rajadas J, Malenka R, et al.: A critical role for the PAR-1/MARK-tau axis in mediating the toxic effects of Abeta on synapses and dendritic spines. Hum Mol Genet 2012, 21: 1384–1390. 10.1093/hmg/ddr576
Article
CAS
PubMed
Google Scholar
Nakamori M, Takahashi T, Yamazaki Y, Kurashige T, Yamawaki T, et al.: Cyclin-dependent kinase 5 immunoreactivity for granulovacuolar degeneration. Neuroreport 2012, 23: 867–872. 10.1097/WNR.0b013e328358720b
Article
CAS
PubMed
Google Scholar
Liu WK, Moore WT, Williams RT, Hall FL, Yen SH: Application of synthetic phospho- and unphospho- peptides to identify phosphorylation sites in a subregion of the tau molecule, which is modified in Alzheimer’s disease. J Neurosci Res 1993, 34: 371–376. 10.1002/jnr.490340315
Article
CAS
PubMed
Google Scholar
Ikegami K, Kimura T, Katsuragi S, Ono T, Yamamoto H, et al.: Immunohistochemical examination of phosphorylated tau in granulovacuolar degeneration granules. Psychiatry Clin Neurosci 1996, 50: 137–140. 10.1111/j.1440-1819.1996.tb01678.x
Article
CAS
PubMed
Google Scholar
Sironi JJ, Yen SH, Gondal JA, Wu Q, Grundke-Iqbal I, et al.: Ser-262 in human recombinant tau protein is a markedly more favorable site for phosphorylation by CaMKII than PKA or PhK. FEBS Lett 1998, 436: 471–475. 10.1016/S0014-5793(98)01185-5
Article
CAS
PubMed
Google Scholar
McKee AC, Kosik KS, Kennedy MB, Kowall NW: Hippocampal neurons predisposed to neurofibrillary tangle formation are enriched in type II calcium/calmodulin-dependent protein kinase. J Neuropathol Exp Neurol 1990, 49: 49–63. 10.1097/00005072-199001000-00006
Article
CAS
PubMed
Google Scholar
Simonian NA, Elvhage T, Czernik AJ, Greengard P, Hyman BT: Calcium/calmodulin-dependent protein kinase II immunostaining is preserved in Alzheimer’s disease hippocampal neurons. Brain Res 1994, 657: 294–299. 10.1016/0006-8993(94)90979-2
Article
CAS
PubMed
Google Scholar
Wang YJ, Chen GH, Hu XY, Lu YP, Zhou JN, et al.: The expression of calcium/calmodulin-dependent protein kinase II-alpha in the hippocampus of patients with Alzheimer’s disease and its links with AD-related pathology. Brain Res 2005, 1031: 101–108. 10.1016/j.brainres.2004.10.061
Article
CAS
PubMed
Google Scholar
Matenia D, Mandelkow EM: The tau of MARK: a polarized view of the cytoskeleton. Trends Biochem Sci 2009, 34: 332–342. 10.1016/j.tibs.2009.03.008
Article
CAS
PubMed
Google Scholar