Alzheimer's disease facts and figures. Alzheimers Dement (2020). https://doi.org/10.1002/alz.12068
Balusu S, Van Wonterghem E, De Rycke R, Raemdonck K, Stremersch S, Gevaert K, Brkic M, Demeestere D, Vanhooren V, Hendrix A et al (2016) Identification of a novel mechanism of blood-brain communication during peripheral inflammation via choroid plexus-derived extracellular vesicles. EMBO Mol Med 8:1162–1183. https://doi.org/10.15252/emmm.201606271
Article
CAS
PubMed
PubMed Central
Google Scholar
Bard F, Cannon C, Barbour R, Burke RL, Games D, Grajeda H, Guido T, Hu K, Huang J, Johnson-Wood K et al (2000) Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med 6:916–919. https://doi.org/10.1038/78682
Article
CAS
PubMed
Google Scholar
Bartels T, De Schepper S, Hong S (2020) Microglia modulate neurodegeneration in Alzheimer’s and Parkinson’s diseases. Science 370:66–69. https://doi.org/10.1126/science.abb8587
Article
CAS
PubMed
Google Scholar
Baruch K, Kertser A, Porat Z, Schwartz M (2015) Cerebral nitric oxide represses choroid plexus NFkappaB-dependent gateway activity for leukocyte trafficking. EMBO J 34:1816–1828. https://doi.org/10.15252/embj.201591468
Article
CAS
PubMed
PubMed Central
Google Scholar
Brait VH, Miro-Mur F, Perez-de-Puig I, Notario L, Hurtado B, Pedragosa J, Gallizioli M, Jimenez-Altayo F, Arbaizar-Rovirosa M, Otxoa-de-Amezaga A et al (2019) CD69 plays a beneficial role in ischemic stroke by dampening endothelial activation. Circ Res 124:279–291. https://doi.org/10.1161/CIRCRESAHA.118.313818
Article
CAS
PubMed
Google Scholar
Brkic M, Balusu S, Van Wonterghem E, Gorle N, Benilova I, Kremer A, Van Hove I, Moons L, De Strooper B, Kanazir S et al (2015) Amyloid beta oligomers disrupt blood-CSF barrier integrity by activating matrix metalloproteinases. J Neurosci 35:12766–12778. https://doi.org/10.1523/JNEUROSCI.0006-15.2015
Article
CAS
PubMed
PubMed Central
Google Scholar
Carro E, Spuch C, Trejo JL, Antequera D, Torres-Aleman I (2005) Choroid plexus megalin is involved in neuroprotection by serum insulin-like growth factor I. J Neurosci 25:10884–10893. https://doi.org/10.1523/JNEUROSCI.2909-05.2005
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen YR, Glabe CG (2006) Distinct early folding and aggregation properties of Alzheimer amyloid-beta peptides Abeta40 and Abeta42: stable trimer or tetramer formation by Abeta42. J Biol Chem 281:24414–24422. https://doi.org/10.1074/jbc.M602363200
Article
CAS
PubMed
Google Scholar
Cummings J, Lee G, Ritter A, Sabbagh M, Zhong K (2020) Alzheimer’s disease drug development pipeline: 2020. Alzheimers Dement (N Y) 6:e12050. https://doi.org/10.1002/trc2.12050
Article
Google Scholar
Dani M, Wood M, Mizoguchi R, Fan Z, Walker Z, Morgan R, Hinz R, Biju M, Kuruvilla T, Brooks DJ et al (2018) Microglial activation correlates in vivo with both tau and amyloid in Alzheimer’s disease. Brain 141:2740–2754. https://doi.org/10.1093/brain/awy188
Article
PubMed
Google Scholar
DeTure MA, Dickson DW (2019) The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener 14:32. https://doi.org/10.1186/s13024-019-0333-5
Article
PubMed
PubMed Central
Google Scholar
Esbjorner EK, Chan F, Rees E, Erdelyi M, Luheshi LM, Bertoncini CW, Kaminski CF, Dobson CM, Kaminski Schierle GS (2014) Direct observations of amyloid beta self-assembly in live cells provide insights into differences in the kinetics of Abeta(1–40) and Abeta(1–42) aggregation. Chem Biol 21:732–742. https://doi.org/10.1016/j.chembiol.2014.03.014
Article
CAS
PubMed
PubMed Central
Google Scholar
Frost GR, Jonas LA, Li YM (2019) Friend, foe or both? Immune activity in Alzheimer’s disease. Front Aging Neurosci 11:337. https://doi.org/10.3389/fnagi.2019.00337
Article
CAS
PubMed
PubMed Central
Google Scholar
Fujiyoshi M, Tachikawa M, Ohtsuki S, Ito S, Uchida Y, Akanuma S, Kamiie J, Hashimoto T, Hosoya K, Iwatsubo T et al (2011) Amyloid-beta peptide(1–40) elimination from cerebrospinal fluid involves low-density lipoprotein receptor-related protein 1 at the blood-cerebrospinal fluid barrier. J Neurochem 118:407–415. https://doi.org/10.1111/j.1471-4159.2011.07311.x
Article
CAS
PubMed
Google Scholar
Furube E, Kawai S, Inagaki H, Takagi S, Miyata S (2018) Brain Region-dependent Heterogeneity and Dose-dependent Difference in Transient Microglia Population Increase during Lipopolysaccharide-induced Inflammation. Sci Rep 8:2203. https://doi.org/10.1038/s41598-018-20643-3
Article
CAS
PubMed
PubMed Central
Google Scholar
Gandy S (2012) Lifelong management of amyloid-beta metabolism to prevent Alzheimer’s disease. N Engl J Med 367:864–866. https://doi.org/10.1056/NEJMe1207995
Article
CAS
PubMed
PubMed Central
Google Scholar
Glenner GG, Wong CW (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120:885–890. https://doi.org/10.1016/S0006-291X(84)80190-4
Article
CAS
PubMed
Google Scholar
Goate A, Chartier-Harlin MC, Mullan M, Brown J, Crawford F, Fidani L, Giuffra L, Haynes A, Irving N, James L et al (1991) Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 349:704–706. https://doi.org/10.1038/349704a0
Article
CAS
PubMed
Google Scholar
Gomez-Nicola D, Schetters ST, Perry VH (2014) Differential role of CCR2 in the dynamics of microglia and perivascular macrophages during prion disease. Glia 62:1041–1052. https://doi.org/10.1002/glia.22660
Article
PubMed
PubMed Central
Google Scholar
Gu H, Zhong Z, Jiang W, Du E, Dodel R, Liu J, Farlow MR, Zheng W, Du Y (2014) The role of choroid plexus in IVIG-induced beta-amyloid clearance. Neuroscience 270:168–176. https://doi.org/10.1016/j.neuroscience.2014.04.011
Article
CAS
PubMed
Google Scholar
Haruwaka K, Ikegami A, Tachibana Y, Ohno N, Konishi H, Hashimoto A, Matsumoto M, Kato D, Ono R, Kiyama H et al (2019) Dual microglia effects on blood brain barrier permeability induced by systemic inflammation. Nat Commun 10:5816. https://doi.org/10.1038/s41467-019-13812-z
Article
CAS
PubMed
PubMed Central
Google Scholar
Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, Jacobs AH, Wyss-Coray T, Vitorica J, Ransohoff RM et al (2015) Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14:388–405. https://doi.org/10.1016/S1474-4422(15)70016-5
Article
CAS
PubMed
PubMed Central
Google Scholar
Heneka MT, Golenbock DT, Latz E (2015) Innate immunity in Alzheimer’s disease. Nat Immunol 16:229–236. https://doi.org/10.1038/ni.3102
Article
CAS
PubMed
Google Scholar
Heneka MT, Kummer MP, Latz E (2014) Innate immune activation in neurodegenerative disease. Nat Rev Immunol 14:463–477. https://doi.org/10.1038/nri3705
Article
CAS
Google Scholar
Heppner FL, Ransohoff RM, Becher B (2015) Immune attack: the role of inflammation in Alzheimer disease. Nat Rev Neurosci 16:358–372. https://doi.org/10.1038/nrn3880
Article
CAS
PubMed
Google Scholar
Hickman SE, Allison EK, El Khoury J (2008) Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer’s disease mice. J Neurosci 28:8354–8360. https://doi.org/10.1523/JNEUROSCI.0616-08.2008
Article
CAS
PubMed
PubMed Central
Google Scholar
Holmes C (2013) Review: systemic inflammation and Alzheimer’s disease. Neuropathol Appl Neurobiol 39:51–68. https://doi.org/10.1111/j.1365-2990.2012.01307.x
Article
CAS
PubMed
Google Scholar
Holmes C, Cunningham C, Zotova E, Woolford J, Dean C, Kerr S, Culliford D, Perry VH (2009) Systemic inflammation and disease progression in Alzheimer disease. Neurology 73:768–774. https://doi.org/10.1212/WNL.0b013e3181b6bb95
Article
CAS
PubMed
PubMed Central
Google Scholar
Hoogland IC, Houbolt C, van Westerloo DJ, van Gool WA, van de Beek D (2015) Systemic inflammation and microglial activation: systematic review of animal experiments. J Neuroinflammation 12:114. https://doi.org/10.1186/s12974-015-0332-6
Article
CAS
PubMed
PubMed Central
Google Scholar
Jendresen C, Digre A, Cui H, Zhang X, Vlodavsky I, Li JP, Nilsson LNG (2019) Systemic LPS-induced Abeta-solubilization and clearance in AbetaPP-transgenic mice is diminished by heparanase overexpression. Sci Rep 9:4600. https://doi.org/10.1038/s41598-019-40999-4
Article
CAS
PubMed
PubMed Central
Google Scholar
Ji K, Akgul G, Wollmuth LP, Tsirka SE (2013) Microglia actively regulate the number of functional synapses. PLoS ONE 8:e56293. https://doi.org/10.1371/journal.pone.0056293
Article
CAS
PubMed
PubMed Central
Google Scholar
Kadowaki H, Nishitoh H, Urano F, Sadamitsu C, Matsuzawa A, Takeda K, Masutani H, Yodoi J, Urano Y, Nagano T et al (2005) Amyloid beta induces neuronal cell death through ROS-mediated ASK1 activation. Cell Death Differ 12:19–24. https://doi.org/10.1038/sj.cdd.4401528
Article
CAS
PubMed
Google Scholar
Keaney J, Walsh DM, O’Malley T, Hudson N, Crosbie DE, Loftus T, Sheehan F, McDaid J, Humphries MM, Callanan JJ et al (2015) Autoregulated paracellular clearance of amyloid-beta across the blood-brain barrier. Sci Adv 1:e1500472. https://doi.org/10.1126/sciadv.1500472
Article
PubMed
PubMed Central
Google Scholar
Labzin LI, Heneka MT, Latz E (2018) Innate Immunity and Neurodegeneration. Annu Rev Med 69:437–449. https://doi.org/10.1146/annurev-med-050715-104343
Article
CAS
PubMed
Google Scholar
Leng F, Edison P (2020) Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol. https://doi.org/10.1038/s41582-020-00435-y
Lopez-Rodriguez AB, Hennessy E, Murray CL, Nazmi A, Delaney HJ, Healy D, Fagan SG, Rooney M, Stewart E, Lewis A et al (2021) Acute systemic inflammation exacerbates neuroinflammation in Alzheimer’s disease: IL-1beta drives amplified responses in primed astrocytes and neuronal network dysfunction. Alzheimers Dement. https://doi.org/10.1002/alz.12341
Article
PubMed
Google Scholar
Marques F, Sousa JC (2015) The choroid plexus is modulated by various peripheral stimuli: implications to diseases of the central nervous system. Front Cell Neurosci 9:136. https://doi.org/10.3389/fncel.2015.00136
Article
CAS
PubMed
PubMed Central
Google Scholar
Marques F, Sousa JC, Coppola G, Geschwind DH, Sousa N, Palha JA, Correia-Neves M (2009) The choroid plexus response to a repeated peripheral inflammatory stimulus. BMC Neurosci 10:135. https://doi.org/10.1186/1471-2202-10-135
Article
CAS
PubMed
PubMed Central
Google Scholar
Michaud JP, Halle M, Lampron A, Theriault P, Prefontaine P, Filali M, Tribout-Jover P, Lanteigne AM, Jodoin R, Cluff C et al (2013) Toll-like receptor 4 stimulation with the detoxified ligand monophosphoryl lipid A improves Alzheimer’s disease-related pathology. Proc Natl Acad Sci USA 110:1941–1946. https://doi.org/10.1073/pnas.1215165110
Article
PubMed
PubMed Central
Google Scholar
Neher JJ, Neniskyte U, Hornik T, Brown GC (2014) Inhibition of UDP/P2Y6 purinergic signaling prevents phagocytosis of viable neurons by activated microglia in vitro and in vivo. Glia 62:1463–1475. https://doi.org/10.1002/glia.22693
Article
PubMed
PubMed Central
Google Scholar
Nishihara H, Soldati S, Mossu A, Rosito M, Rudolph H, Muller WA, Latorre D, Sallusto F, Sospedra M, Martin R et al (2020) Human CD4(+) T cell subsets differ in their abilities to cross endothelial and epithelial brain barriers in vitro. Fluids Barriers CNS 17:3. https://doi.org/10.1186/s12987-019-0165-2
Article
CAS
PubMed
PubMed Central
Google Scholar
Orellana JA, Shoji KF, Abudara V, Ezan P, Amigou E, Saez PJ, Jiang JX, Naus CC, Saez JC, Giaume C (2011) Amyloid beta-induced death in neurons involves glial and neuronal hemichannels. J Neurosci 31:4962–4977. https://doi.org/10.1523/JNEUROSCI.6417-10.2011
Article
CAS
PubMed
PubMed Central
Google Scholar
Ott BR, Jones RN, Daiello LA, de la Monte SM, Stopa EG, Johanson CE, Denby C, Grammas P (2018) Blood-cerebrospinal fluid barrier gradients in mild cognitive impairment and Alzheimer’s Disease: relationship to inflammatory cytokines and chemokines. Front Aging Neurosci 10:245. https://doi.org/10.3389/fnagi.2018.00245
Article
CAS
PubMed
PubMed Central
Google Scholar
Palop JJ, Mucke L (2010) Amyloid-beta-induced neuronal dysfunction in Alzheimer’s disease: from synapses toward neural networks. Nat Neurosci 13:812–818. https://doi.org/10.1038/nn.2583
Article
CAS
PubMed
PubMed Central
Google Scholar
Park JC, Han SH, Mook-Jung I (2020) Peripheral inflammatory biomarkers in Alzheimer's disease: a brief review. BMB Rep 53: 10–19. https://doi.org/10.5483/BMBRep.2020.53.1.309
Pascale CL, Miller MC, Chiu C, Boylan M, Caralopoulos IN, Gonzalez L, Johanson CE, Silverberg GD (2011) Amyloid-beta transporter expression at the blood-CSF barrier is age-dependent. Fluids Barriers CNS 8:21. https://doi.org/10.1186/2045-8118-8-21
Article
CAS
PubMed
PubMed Central
Google Scholar
Qin L, Wu X, Block ML, Liu Y, Breese GR, Hong JS, Knapp DJ, Crews FT (2007) Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55:453–462. https://doi.org/10.1002/glia.20467
Article
PubMed
PubMed Central
Google Scholar
Reed-Geaghan EG, Croxford AL, Becher B, Landreth GE (2020) Plaque-associated myeloid cells derive from resident microglia in an Alzheimer’s disease model. J Exp Med. https://doi.org/10.1084/jem.20191374
Article
PubMed
PubMed Central
Google Scholar
Ries M, Sastre M (2016) Mechanisms of Abeta clearance and degradation by glial cells. Front Aging Neurosci 8:160. https://doi.org/10.3389/fnagi.2016.00160
Article
CAS
PubMed
PubMed Central
Google Scholar
Riester K, Brawek B, Savitska D, Frohlich N, Zirdum E, Mojtahedi N, Heneka MT, Garaschuk O (2020) In vivo characterization of functional states of cortical microglia during peripheral inflammation. Brain Behav Immun 87:243–255. https://doi.org/10.1016/j.bbi.2019.12.007
Article
CAS
PubMed
Google Scholar
Saito T, Matsuba Y, Mihira N, Takano J, Nilsson P, Itohara S, Iwata N, Saido TC (2014) Single App knock-in mouse models of Alzheimer’s disease. Nat Neurosci 17:661–663. https://doi.org/10.1038/nn.3697
Article
CAS
PubMed
Google Scholar
Sasaguri H, Nilsson P, Hashimoto S, Nagata K, Saito T, De Strooper B, Hardy J, Vassar R, Winblad B, Saido TC (2017) APP mouse models for Alzheimer’s disease preclinical studies. EMBO J 36:2473–2487. https://doi.org/10.15252/embj.201797397
Article
CAS
PubMed
PubMed Central
Google Scholar
Semmler A, Frisch C, Debeir T, Ramanathan M, Okulla T, Klockgether T, Heneka MT (2007) Long-term cognitive impairment, neuronal loss and reduced cortical cholinergic innervation after recovery from sepsis in a rodent model. Exp Neurol 204:733–740. https://doi.org/10.1016/j.expneurol.2007.01.003
Article
PubMed
Google Scholar
Semmler A, Okulla T, Sastre M, Dumitrescu-Ozimek L, Heneka MT (2005) Systemic inflammation induces apoptosis with variable vulnerability of different brain regions. J Chem Neuroanat 30:144–157. https://doi.org/10.1016/j.jchemneu.2005.07.003
Article
CAS
PubMed
Google Scholar
Sharma K, Wu LJ, Eyo UB (2020) Calming neurons with a microglial touch. Trends Neurosci 43:197–199. https://doi.org/10.1016/j.tins.2020.01.008
Article
CAS
PubMed
Google Scholar
Sheng JG, Bora SH, Xu G, Borchelt DR, Price DL, Koliatsos VE (2003) Lipopolysaccharide-induced-neuroinflammation increases intracellular accumulation of amyloid precursor protein and amyloid beta peptide in APPswe transgenic mice. Neurobiol Dis 14:133–145. https://doi.org/10.1016/s0969-9961(03)00069-x
Article
CAS
PubMed
Google Scholar
Sheppard O, Coleman MP, Durrant CS (2019) Lipopolysaccharide-induced neuroinflammation induces presynaptic disruption through a direct action on brain tissue involving microglia-derived interleukin 1 beta. J Neuroinflamm 16:106. https://doi.org/10.1186/s12974-019-1490-8
Article
CAS
Google Scholar
Sierksma A, Lu A, Mancuso R, Fattorelli N, Thrupp N, Salta E, Zoco J, Blum D, Buee L, De Strooper B et al (2020) Novel Alzheimer risk genes determine the microglia response to amyloid-beta but not to TAU pathology. EMBO Mol Med 12:e10606. https://doi.org/10.15252/emmm.201910606
Article
CAS
PubMed
PubMed Central
Google Scholar
Sochocka M, Diniz BS, Leszek J (2017) Inflammatory response in the CNS: friend or foe? Mol Neurobiol 54:8071–8089. https://doi.org/10.1007/s12035-016-0297-1
Article
CAS
PubMed
Google Scholar
Steeland S, Gorle N, Vandendriessche C, Balusu S, Brkic M, Van Cauwenberghe C, Van Imschoot G, Van Wonterghem E, De Rycke R, Kremer A et al (2018) Counteracting the effects of TNF receptor-1 has therapeutic potential in Alzheimer’s disease. EMBO Mol Med 10:e8300. https://doi.org/10.15252/emmm.201708300
Article
CAS
PubMed
PubMed Central
Google Scholar
Storck SE, Meister S, Nahrath J, Meissner JN, Schubert N, Di Spiezio A, Baches S, Vandenbroucke RE, Bouter Y, Prikulis I et al (2016) Endothelial LRP1 transports amyloid-beta(1–42) across the blood-brain barrier. J Clin Invest 126:123–136. https://doi.org/10.1172/JCI81108
Article
PubMed
Google Scholar
Swartzlander DB, Propson NE, Roy ER, Saito T, Saido T, Wang B, Zheng H (2018) Concurrent cell type-specific isolation and profiling of mouse brains in inflammation and Alzheimer’s disease. JCI Insight 3:e121109. https://doi.org/10.1172/jci.insight.121109
Article
PubMed Central
Google Scholar
Tejera D, Mercan D, Sanchez-Caro JM, Hanan M, Greenberg D, Soreq H, Latz E, Golenbock D, Heneka MT (2019) Systemic inflammation impairs microglial Abeta clearance through NLRP3 inflammasome. EMBO J 38:e101064. https://doi.org/10.15252/embj.2018101064
Article
CAS
PubMed
PubMed Central
Google Scholar
Thomson CA, McColl A, Graham GJ, Cavanagh J (2020) Sustained exposure to systemic endotoxin triggers chemokine induction in the brain followed by a rapid influx of leukocytes. J Neuroinflamm 17:94. https://doi.org/10.1186/s12974-020-01759-8
Article
CAS
Google Scholar
Vandenbroucke RE, Dejonckheere E, Van Lint P, Demeestere D, Van Wonterghem E, Vanlaere I, Puimege L, Van Hauwermeiren F, De Rycke R, Mc Guire C et al (2012) Matrix metalloprotease 8-dependent extracellular matrix cleavage at the blood-CSF barrier contributes to lethality during systemic inflammatory diseases. J Neurosci 32:9805–9816. https://doi.org/10.1523/JNEUROSCI.0967-12.2012
Article
CAS
PubMed
PubMed Central
Google Scholar
Walker KA, Ficek BN, Westbrook R (2019) Understanding the Role of Systemic Inflammation in Alzheimer’s Disease. ACS Chem Neurosci 10:3340–3342. https://doi.org/10.1021/acschemneuro.9b00333
Article
CAS
PubMed
Google Scholar
Walker KA, Gottesman RF, Wu A, Knopman DS, Gross AL, Mosley TH Jr, Selvin E, Windham BG (2019) Systemic inflammation during midlife and cognitive change over 20 years: The ARIC Study. Neurology 92:e1256–e1267. https://doi.org/10.1212/WNL.0000000000007094
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Jin S, Sonobe Y, Cheng Y, Horiuchi H, Parajuli B, Kawanokuchi J, Mizuno T, Takeuchi H, Suzumura A (2014) Interleukin-1beta induces blood-brain barrier disruption by downregulating Sonic hedgehog in astrocytes. PLoS ONE 9:e110024. https://doi.org/10.1371/journal.pone.0110024
Article
CAS
PubMed
PubMed Central
Google Scholar
Whiten DR, Brownjohn PW, Moore S, De S, Strano A, Zuo Y, Haneklaus M, Klenerman D, Livesey FJ (2020) Tumour necrosis factor induces increased production of extracellular amyloid-β- and α-synuclein-containing aggregates by human Alzheimer’s disease neurons. Brain Communications 2: fcaa146. https://doi.org/10.1093/braincomms/fcaa146
You LH, Yan CZ, Zheng BJ, Ci YZ, Chang SY, Yu P, Gao GF, Li HY, Dong TY, Chang YZ (2017) Astrocyte hepcidin is a key factor in LPS-induced neuronal apoptosis. Cell Death Dis 8:e2676. https://doi.org/10.1038/cddis.2017.93
Article
CAS
PubMed
PubMed Central
Google Scholar
Yuan P, Condello C, Keene CD, Wang Y, Bird TD, Paul SM, Luo W, Colonna M, Baddeley D, Grutzendler J (2016) TREM2 haplodeficiency in mice and humans impairs the microglia barrier function leading to decreased amyloid compaction and severe axonal dystrophy. Neuron 92:252–264. https://doi.org/10.1016/j.neuron.2016.09.016
Article
CAS
PubMed
Google Scholar