Ikonomovic MD, Abrahamson EE, Uz T, Manev H, Dekosky ST (2008) Increased 5-lipoxygenase immunoreactivity in the hippocampus of patients with Alzheimer's disease. J Histochem Cytochem 56(12):1065–1073
CAS
PubMed
PubMed Central
Google Scholar
Firuzi O, Zhuo J, Chinnici CM, Wisniewski T, Pratico D (2008) 5-Lipoxygenase gene disruption reduces amyloid-beta pathology in a mouse model of Alzheimer's disease. FASEB J 22(4):1169–1178
CAS
PubMed
Google Scholar
Farias SE, Zarini S, Precht T, Murphy RC, Heidenreich KA (2007) Transcellular biosynthesis of cysteinyl leukotrienes in rat neuronal and glial cells. J Neurochem 103(4):1310–1318
CAS
PubMed
Google Scholar
Farias S, Frey LC, Murphy RC, Heidenreich KA (2009) Injury-related production of cysteinyl leukotrienes contributes to brain damage following experimental traumatic brain injury. J Neurotrauma 26(11):1977–1986
PubMed
PubMed Central
Google Scholar
Marschallinger J, Schaffner I, Klein B, Gelfert R, Rivera FJ, Illes S et al (2015) Structural and functional rejuvenation of the aged brain by an approved anti-asthmatic drug. Nat Commun 6:8466
CAS
PubMed
Google Scholar
Yu SY, Zhang XY, Wang XR, Xu DM, Chen L, Zhang LH et al (2014) Cysteinyl leukotriene receptor 1 mediates LTD4-induced activation of mouse microglial cells in vitro. Acta Pharmacol Sin 35(1):33–40
PubMed
Google Scholar
Ciccarelli R, D'Alimonte I, Santavenere C, D'Auro M, Ballerini P, Nargi E et al (2004) Cysteinyl-leukotrienes are released from astrocytes and increase astrocyte proliferation and glial fibrillary acidic protein via cys-LT1 receptors and mitogen-activated protein kinase pathway. Eur J Neurosci 20(6):1514–1524
PubMed
Google Scholar
Fang SH, Wei EQ, Zhou Y, Wang ML, Zhang WP, Yu GL et al (2006) Increased expression of cysteinyl leukotriene receptor-1 in the brain mediates neuronal damage and astrogliosis after focal cerebral ischemia in rats. Neuroscience 140(3):969–979
CAS
PubMed
Google Scholar
Tang SS, Hong H, Chen L, Mei ZL, Ji MJ, Xiang GQ et al (2014) Involvement of cysteinyl leukotriene receptor 1 in Abeta1-42-induced neurotoxicity in vitro and in vivo. Neurobiol Aging 35(3):590–599
CAS
PubMed
Google Scholar
Biber N, Toklu HZ, Solakoglu S, Gultomruk M, Hakan T, Berkman Z et al (2009) Cysteinyl-leukotriene receptor antagonist montelukast decreases blood-brain barrier permeability but does not prevent oedema formation in traumatic brain injury. Brain Inj 23(6):577–584
PubMed
Google Scholar
Lenz QF, Arroyo DS, Temp FR, Poersch AB, Masson CJ, Jesse AC et al (2014) Cysteinyl leukotriene receptor (CysLT) antagonists decrease pentylenetetrazol-induced seizures and blood-brain barrier dysfunction. Neuroscience 277:859–871
CAS
PubMed
Google Scholar
Zhao R, Shi WZ, Zhang YM, Fang SH, Wei EQ (2011) Montelukast, a cysteinyl leukotriene receptor-1 antagonist, attenuates chronic brain injury after focal cerebral ischaemia in mice and rats. J Pharm Pharmacol 63(4):550–557
CAS
PubMed
Google Scholar
Michael J, Marschallinger J, Aigner L (2019) The leukotriene signaling pathway: a druggable target in Alzheimer's disease. Drug Discov Today 24(2):505–516
CAS
PubMed
Google Scholar
Gelosa P, Colazzo F, Tremoli E, Sironi L, Castiglioni L (2017) Cysteinyl Leukotrienes as potential pharmacological targets for cerebral diseases. Mediat Inflamm 2017:3454212
Google Scholar
Giannopoulos PF, Chu J, Joshi YB, Sperow M, Li JG, Kirby LG et al (2013) 5-lipoxygenase activating protein reduction ameliorates cognitive deficit, synaptic dysfunction, and neuropathology in a mouse model of Alzheimer's disease. Biol Psychiatry 74(5):348–356
CAS
PubMed
PubMed Central
Google Scholar
Giannopoulos PF, Chu J, Joshi YB, Sperow M, Li JG, Kirby LG et al (2014) Gene knockout of 5-lipoxygenase rescues synaptic dysfunction and improves memory in the triple-transgenic model of Alzheimer's disease. Mol Psychiatry 19(4):511–518
CAS
PubMed
Google Scholar
Lai J, Hu M, Wang H, Hu M, Long Y, Miao MX et al (2014) Montelukast targeting the cysteinyl leukotriene receptor 1 ameliorates Abeta1-42-induced memory impairment and neuroinflammatory and apoptotic responses in mice. Neuropharmacology 79:707–714
CAS
PubMed
Google Scholar
Chu J, Li JG, Pratico D (2013) Zileuton improves memory deficits, amyloid and tau pathology in a mouse model of Alzheimer's disease with plaques and tangles. PLoS One 8(8):e70991
CAS
PubMed
PubMed Central
Google Scholar
Sery O, Hlinecka L, Povova J, Bonczek O, Zeman T, Janout V et al (2016) Arachidonate 5-lipoxygenase (ALOX5) gene polymorphism is associated with Alzheimer’s disease and body mass index. J Neurol Sci 362:27–32
CAS
PubMed
Google Scholar
Grinde B, Engdahl B (2017) Prescription database analyses indicates that the asthma medicine montelukast might protect against dementia: a hypothesis to be verified. Immun Ageing 14:20
PubMed
PubMed Central
Google Scholar
Rozin SI (2017) Case series using Montelukast in patients with memory loss and dementia. Open Neurol J 11:7–10
PubMed
PubMed Central
Google Scholar
Radmark O, Werz O, Steinhilber D, Samuelsson B (2015) 5-Lipoxygenase, a key enzyme for leukotriene biosynthesis in health and disease. Biochim Biophys Acta 1851(4):331–339
PubMed
Google Scholar
Samuelsson B (1983) Leukotrienes: mediators of immediate hypersensitivity reactions and inflammation. Science 220(4597):568–575
CAS
PubMed
Google Scholar
Lynch KR, O'Neill GP, Liu Q, Im DS, Sawyer N, Metters KM et al (1999) Characterization of the human cysteinyl leukotriene CysLT1 receptor. Nature 399(6738):789–793
CAS
PubMed
Google Scholar
Heise CE, O'Dowd BF, Figueroa DJ, Sawyer N, Nguyen T, Im DS et al (2000) Characterization of the human cysteinyl leukotriene 2 receptor. J Biol Chem 275(39):30531–30536
CAS
PubMed
Google Scholar
Ciana P, Fumagalli M, Trincavelli ML, Verderio C, Rosa P, Lecca D et al (2006) The orphan receptor GPR17 identified as a new dual uracil nucleotides/cysteinyl-leukotrienes receptor. EMBO J 25(19):4615–4627
CAS
PubMed
PubMed Central
Google Scholar
Singh RK, Gupta S, Dastidar S, Ray A (2010) Cysteinyl leukotrienes and their receptors: molecular and functional characteristics. Pharmacology 85(6):336–349
CAS
PubMed
Google Scholar
Funk CD (2001) Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294(5548):1871–1875
CAS
PubMed
Google Scholar
Peters-Golden M, Henderson WR Jr (2007) Leukotrienes. N Engl J Med 357(18):1841–1854
CAS
PubMed
Google Scholar
Lammers CH, Schweitzer P, Facchinetti P, Arrang JM, Madamba SG, Siggins GR et al (1996) Arachidonate 5-lipoxygenase and its activating protein: prominent hippocampal expression and role in somatostatin signaling. J Neurochem 66(1):147–152
CAS
PubMed
Google Scholar
Dagher NN, Najafi AR, Kayala KM, Elmore MR, White TE, Medeiros R et al (2015) Colony-stimulating factor 1 receptor inhibition prevents microglial plaque association and improves cognition in 3xTg-AD mice. J Neuroinflammation 12:139
PubMed
PubMed Central
Google Scholar
Spangenberg EE, Lee RJ, Najafi AR, Rice RA, Elmore MR, Blurton-Jones M et al (2016) Eliminating microglia in Alzheimer's mice prevents neuronal loss without modulating amyloid-beta pathology. Brain 139(Pt 4):1265–1281
PubMed
PubMed Central
Google Scholar
Jankowsky JL, Slunt HH, Ratovitski T, Jenkins NA, Copeland NG, Borchelt DR (2001) Co-expression of multiple transgenes in mouse CNS: a comparison of strategies. Biomol Eng 17(6):157–165
CAS
PubMed
Google Scholar
Jankowsky JL, Fadale DJ, Anderson J, Xu GM, Gonzales V, Jenkins NA et al (2004) Mutant presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo: evidence for augmentation of a 42-specific gamma secretase. Hum Mol Genet 13(2):159–170
CAS
PubMed
Google Scholar
Unger MS, Schernthaner P, Marschallinger J, Mrowetz H, Aigner L (2018) Microglia prevent peripheral immune cell invasion and promote an anti-inflammatory environment in the brain of APP-PS1 transgenic mice. J Neuroinflammation 15(1):274
CAS
PubMed
PubMed Central
Google Scholar
Unger MS, Marschallinger J, Kaindl J, Hofling C, Rossner S, Heneka MT et al (2016) Early changes in hippocampal neurogenesis in transgenic mouse models for Alzheimer’s disease. Mol Neurobiol 53(8):5796–5806
CAS
PubMed
PubMed Central
Google Scholar
Marschallinger J, Sah A, Schmuckermair C, Unger M, Rotheneichner P, Kharitonova M et al (2015) The L-type calcium channel Cav1.3 is required for proper hippocampal neurogenesis and cognitive functions. Cell Calcium 58(6):606–616
CAS
PubMed
Google Scholar
Schnell SA, Staines WA, Wessendorf MW (1999) Reduction of lipofuscin-like autofluorescence in fluorescently labeled tissue. J Histochem Cytochem 47(6):719–730
CAS
PubMed
Google Scholar
Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K (2006) Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol 112(4):389–404
PubMed
PubMed Central
Google Scholar
Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82(4):239–259
CAS
PubMed
Google Scholar
Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM et al (1991) The consortium to establish a registry for Alzheimer’s disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 41(4):479–486
CAS
PubMed
Google Scholar
McKeith IG, Dickson DW, Lowe J, Emre M, O'Brien JT, Feldman H et al (2005) Diagnosis and management of dementia with Lewy bodies: third report of the DLB consortium. Neurology 65(12):1863–1872
CAS
PubMed
Google Scholar
Montine TJ, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Dickson DW et al (2012) National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease: a practical approach. Acta Neuropathol 123(1):1–11
CAS
PubMed
Google Scholar
Thal DR, Rub U, Orantes M, Braak H (2002) Phases of a beta-deposition in the human brain and its relevance for the development of AD. Neurology 58(12):1791–1800
PubMed
Google Scholar
Andrews S (2010) FastQC: a quality control tool for high throughput sequence data [online]
Google Scholar
Langmead B, Salzberg SL (2012) Fast gapped-read alignment with bowtie 2. Nat Methods 9(4):357–359
CAS
PubMed
PubMed Central
Google Scholar
Anders S, Pyl PT, Huber W (2015) HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics 31(2):166–169
CAS
PubMed
Google Scholar
Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550
PubMed
PubMed Central
Google Scholar
Durinck S, Spellman PT, Birney E, Huber W (2009) Mapping identifiers for the integration of genomic datasets with the R/bioconductor package biomaRt. Nat Protoc 4(8):1184–1191
CAS
PubMed
PubMed Central
Google Scholar
Spangenberg E, Severson PL, Hohsfield LA, Crapser J, Zhang J, Burton EA et al (2019) Sustained microglial depletion with CSF1R inhibitor impairs parenchymal plaque development in an Alzheimer's disease model. Nat Commun 10(1):3758
PubMed
PubMed Central
Google Scholar
Henry RJ, Ritzel RM, Barrett JP, Doran SJ, Jiao Y, Leach JB et al (2020) Microglial depletion with CSF1R inhibitor during chronic phase of experimental traumatic brain injury reduces neurodegeneration and neurological deficits. J Neurosci 40(14):2960–2974
CAS
PubMed
PubMed Central
Google Scholar
Seitz S, Clarke P, Tyler KL (2018) Pharmacologic depletion of microglia increases viral load in the brain and enhances mortality in murine models of flavivirus-induced encephalitis. J Virol 92(16):e00525–18. https://doi.org/10.1128/JVI.00525-18
Nissen JC, Thompson KK, West BL, Tsirka SE (2018) Csf1R inhibition attenuates experimental autoimmune encephalomyelitis and promotes recovery. Exp Neurol 307:24–36
CAS
PubMed
PubMed Central
Google Scholar
Spangenberg EE, Green KN (2017) Inflammation in Alzheimer's disease: lessons learned from microglia-depletion models. Brain Behav Immun 61:1–11
CAS
PubMed
Google Scholar
Bennett ML, Bennett FC, Liddelow SA, Ajami B, Zamanian JL, Fernhoff NB et al (2016) New tools for studying microglia in the mouse and human CNS. Proc Natl Acad Sci U S A 113(12):E1738–E1746
CAS
PubMed
PubMed Central
Google Scholar
Peters-Golden M, Brock TG (2001) Intracellular compartmentalization of leukotriene synthesis: unexpected nuclear secrets. FEBS Lett 487(3):323–326
CAS
PubMed
Google Scholar
Kulkarni S, Das S, Funk CD, Murray D, Cho W (2002) Molecular basis of the specific subcellular localization of the C2-like domain of 5-lipoxygenase. J Biol Chem 277(15):13167–13174
CAS
PubMed
Google Scholar
Uz T, Pesold C, Longone P, Manev H (1998) Aging-associated up-regulation of neuronal 5-lipoxygenase expression: putative role in neuronal vulnerability. FASEB J 12(6):439–449
CAS
PubMed
Google Scholar
Rius B, Lopez-Vicario C, Gonzalez-Periz A, Moran-Salvador E, Garcia-Alonso V, Claria J et al (2012) Resolution of inflammation in obesity-induced liver disease. Front Immunol 3:257
PubMed
PubMed Central
Google Scholar
Bannenberg G, Serhan CN (2010) Specialized pro-resolving lipid mediators in the inflammatory response: an update. Biochim Biophys Acta 1801(12):1260–1273
CAS
PubMed
PubMed Central
Google Scholar
Wang X, Zhu M, Hjorth E, Cortes-Toro V, Eyjolfsdottir H, Graff C et al (2015) Resolution of inflammation is altered in Alzheimer’s disease. Alzheimers Dement 11(1):40–50.e1–2
PubMed
Google Scholar
Nunns GR, Stringham JR, Gamboni F, Moore EE, Fragoso M, Stettler GR et al (2018) Trauma and hemorrhagic shock activate molecular association of 5-lipoxygenase and 5-lipoxygenase-activating protein in lung tissue. J Surg Res 229:262–270
CAS
PubMed
PubMed Central
Google Scholar
Loell I, Alemo Munters L, Pandya J, Zong M, Alexanderson H, Fasth AE et al (2013) Activated LTB4 pathway in muscle tissue of patients with polymyositis or dermatomyositis. Ann Rheum Dis 72(2):293–299
CAS
PubMed
Google Scholar
Bonham LW, Sirkis DW, Yokoyama JS (2019) The transcriptional landscape of microglial genes in aging and neurodegenerative disease. Front Immunol 10:1170
CAS
PubMed
PubMed Central
Google Scholar
Masuda T, Sankowski R, Staszewski O, Bottcher C, Amann L, Sagar et al (2019) Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. Nature 566(7744):388–392
CAS
PubMed
Google Scholar
Stratoulias V, Venero JL, Tremblay ME, Joseph B (2019) Microglial subtypes: diversity within the microglial community. EMBO J 38(17):e101997
PubMed
PubMed Central
Google Scholar
Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK et al (2017) A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169(7):1276–1290 e17
CAS
PubMed
Google Scholar
Marschallinger J, Iram T, Zardeneta M, Lee SE, Lehallier B, Haney MS et al (2020) Lipid-droplet-accumulating microglia represent a dysfunctional and proinflammatory state in the aging brain. Nat Neurosci 23(2):194–208
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Cella M, Mallinson K, Ulrich JD, Young KL, Robinette ML et al (2015) TREM2 lipid sensing sustains the microglial response in an Alzheimer’s disease model. Cell 160(6):1061–1071
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O'Keefe S, Phatnani HP, Guarnieri P, Caneda C, Ruderisch N, Deng S, Liddelow SA, Zhang C, Daneman R, Maniatis T, Barres BA, Wu JQ (2014) An RNA-Seq transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci 34(36):11929–11947
Zhang Y, Sloan SA, Clarke LE, Caneda C, Hayden-Gephart M, Grant GA, Cheshier SH, Edwards MS, Chang EF, Li G, Steinberg GK, Vogel H, Blumenthal PD, Barres BA (2016) Purification and Functional Characterization of Human Astrocytes. Neuron. 89(1):37–53
Reid GK, Kargman S, Vickers PJ, Mancini JA, Leveille C, Ethier D et al (1990) Correlation between expression of 5-lipoxygenase-activating protein, 5-lipoxygenase, and cellular leukotriene synthesis. J Biol Chem 265(32):19818–19823
CAS
PubMed
Google Scholar
Radmark O, Werz O, Steinhilber D, Samuelsson B (2007) 5-Lipoxygenase: regulation of expression and enzyme activity. Trends Biochem Sci 32(7):332–341
CAS
PubMed
Google Scholar
Schmider AB, Vaught M, Bauer NC, Elliott HL, Godin MD, Ellis GE et al (2019) The organization of leukotriene biosynthesis on the nuclear envelope revealed by single molecule localization microscopy and computational analyses. PLoS One 14(2):e0211943
CAS
PubMed
PubMed Central
Google Scholar
Chu LS, Fang SH, Zhou Y, Yu GL, Wang ML, Zhang WP et al (2007) Minocycline inhibits 5-lipoxygenase activation and brain inflammation after focal cerebral ischemia in rats. Acta Pharmacol Sin 28(6):763–772
CAS
PubMed
Google Scholar
Maas SLN, Breakefield XO, Weaver AM (2017) Extracellular vesicles: unique intercellular delivery vehicles. Trends Cell Biol 27(3):172–188
CAS
PubMed
Google Scholar
Boilard E (2018) Extracellular vesicles and their content in bioactive lipid mediators: more than a sack of microRNA. J Lipid Res 59(11):2037–2046
CAS
PubMed
PubMed Central
Google Scholar
Esser J, Gehrmann U, D'Alexandri FL, Hidalgo-Estevez AM, Wheelock CE, Scheynius A et al (2010) Exosomes from human macrophages and dendritic cells contain enzymes for leukotriene biosynthesis and promote granulocyte migration. J Allergy Clin Immunol 126(5):1032–1040 1040 e1–4
CAS
PubMed
Google Scholar
Fumagalli M, Lecca D, Coppolino GT, Parravicini C, Abbracchio MP (2017) Pharmacological properties and biological functions of the GPR17 receptor, a potential target for neuro-regenerative medicine. Adv Exp Med Biol 1051:169–192
PubMed
Google Scholar