Ambrosini E, Remoli ME, Giacomini E, Rosicarelli B, Serafini B, Lande R et al (2005) Astrocytes produce dendritic cell-attracting chemokines in vitro and in multiple sclerosis lesions. J Neuropathol Exp Neurol 64:706–715
Article
CAS
PubMed
Google Scholar
Bennett JL, O’Connor KC, Bar-Or A, Zamvil SS, Hemmer B, Tedder TF et al (2015) B lymphocytes in neuromyelitis optica. Neurol. Neuroimmunol. Neuroinflammation e104:2
Google Scholar
Benson MJ, Dillon SR, Castigli E, Geha RS, Xu S, Lam K-P et al (2008) Cutting edge: the dependence of plasma cells and independence of memory B cells on BAFF and APRIL. J Immunol 180:3655–3659
Article
CAS
PubMed
Google Scholar
Calderon TM, Eugenin EA, Lopez L, Kumar SS, Hesselgesser J, Raine CS et al (2006) A role for CXCL12 (SDF-1α) in the pathogenesis of multiple sclerosis: regulation of CXCL12 expression in astrocytes by soluble myelin basic protein. J Neuroimmunol 177:27–39
Article
CAS
PubMed
Google Scholar
Cassese G, Arce S, Hauser AE, Lehnert K, Moewes B, Mostarac M et al (2003) Plasma cell survival is mediated by synergistic effects of cytokines and adhesion-dependent signals. J Immunol 171:1684–1690
Article
CAS
PubMed
Google Scholar
Cassese G, Lindenau S, De BB, Arce S, Hauser A, Riemekasten G et al (2001) Inflamed kidneys of NZB / W mice are a major site for the homeostasis of plasma cells. Eur J Immunol 31:2726–2732
Article
CAS
PubMed
Google Scholar
Challa DK, Bussmeyer U, Khan T, Montoyo HP, Bansal P, Ober RJ et al (2013) Autoantibody depletion ameliorates disease in murine experimental autoimmune encephalomyelitis. MAbs 5:655–659
Article
PubMed
PubMed Central
Google Scholar
Chen D, Ireland SJ, Davis LS, Kong X, Stowe AM, Wang Y et al (2016) Autoreactive CD19+CD20- plasma cells contribute to disease severity of experimental autoimmune encephalomyelitis. J Immunol 196:1541–1549
Article
CAS
PubMed
Google Scholar
Chu VT, Enghard P, Riemekasten G, Berek C (2007) In vitro and in vivo activation induces BAFF and APRIL expression in B cells. J. Immunol. Baltimore, Md 1950 179:5947–5957
CAS
Google Scholar
Chu VT, Fröhlich A, Steinhauser G, Scheel T, Roch T, Fillatreau S et al (2011) Eosinophils are required for the maintenance of plasma cells in the bone marrow. Nat. Immunol. Nat Publ Group 12:151–159
CAS
Google Scholar
Corcione A, Casazza S, Ferretti E, Giunti D, Zappia E, Pistorio A et al (2004) Recapitulation of B cell differentiation in the central nervous system of patients with multiple sclerosis. Proc Natl Acad Sci U S A 101:11064–11069
Article
CAS
PubMed
PubMed Central
Google Scholar
Cortese A, Devaux JJ, Zardini E, Manso C, Taieb G, Carra Dallière C et al (2016) Neurofascin-155 as a putative antigen in combined central and peripheral demyelination. Neurol. Neuroimmunol neuroinflammation e238:3
Google Scholar
Cupovic J, Onder L, Gil-Cruz C, Weiler E, Caviezel-Firner S, Perez-Shibayama C et al (2016) Central nervous system stromal cells control local CD8+ T cell responses during virus-induced Neuroinflammation. Immunity 44:622–633
Article
CAS
PubMed
Google Scholar
DiLillo DJ, Hamaguchi Y, Ueda Y, Yang K, Uchida J, Haas KM et al (2008) Maintenance of long-lived plasma cells and serological CD20 immunotherapy in mice. J Immunol 180:361–371
Article
CAS
PubMed
Google Scholar
Ehler J, Koball S, Sauer M, Hickstein H, Mitzner S, Benecke R et al (2014) Therapeutic plasma exchange in glucocorticosteroid-unresponsive patients with clinically isolated syndrome. Ther Apher Dial 18:3–10
Article
Google Scholar
Frischer JM, Bramow S, Dal-Bianco A, Lucchinetti CF, Rauschka H, Schmidbauer M et al (2009) The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain 132:1175–1189
Article
PubMed
PubMed Central
Google Scholar
Gimenez MAT, Sim JE, Russell JH (2004) TNFR1-dependent VCAM-1 expression by astrocytes exposes the CNS to destructive inflammation. J Neuroimmunol 151:116–125
Article
CAS
PubMed
Google Scholar
Hargreaves DC, Hyman PL, TT L, Ngo VN, Bidgol A, Suzuki G et al (2001) A coordinated change in chemokine responsiveness guides plasma cell movements. J Exp Med 194:45–56
Article
CAS
PubMed
PubMed Central
Google Scholar
Hartung H-P, Kieseier BC (2010) Atacicept: targeting B cells in multiple sclerosis. Ther Adv Neurol Disord 3:205–216
Article
CAS
PubMed
PubMed Central
Google Scholar
Hauser AE, Debes GF, Arce S, Cassese G, Hamann A, Radbruch A et al (2002) Chemotactic responsiveness toward ligands for CXCR3 and CXCR4 is regulated on plasma blasts during the time course of a memory immune response. J Immunol 169:1277–1282
Article
CAS
PubMed
Google Scholar
Hauser SL, Bar-Or A, Comi G, Giovannoni G, Hartung H-P, Hemmer B et al (2017) Ocrelizumab versus interferon Beta-1a in relapsing multiple sclerosis. N Engl J Med 376:221–234
Article
CAS
PubMed
Google Scholar
Hauser SL, Waubant E, Arnold DL, Vollmer T, Antel J, Fox RJ et al (2008) B-cell depletion with rituximab in relapsing–remitting multiple sclerosis. N Engl J Med 358:676–688
Article
CAS
PubMed
Google Scholar
Hiepe F, Dörner T, Hauser AE, Hoyer BF, Mei H, Radbruch A (2011) Long-lived autoreactive plasma cells drive persistent autoimmune inflammation. Nat Rev Rheumatol 7:170–178
Article
CAS
PubMed
Google Scholar
Hohlfeld R, Dornmair K, Meinl E, Wekerle H (2015) The search for the target antigens of multiple sclerosis, part 2: CD8+ T cells, B cells, and antibodies in the focus of reverse-translational research. Lancet Neurol Elsevier Ltd 15:317–331
Article
Google Scholar
Howell OW, Reeves C a, Nicholas R, Carassiti D, Radotra B, Gentleman SM et al (2011) Meningeal inflammation is widespread and linked to cortical pathology in multiple sclerosis. Brain 134:2755–2771
Article
PubMed
Google Scholar
Hoyer BF, Moser K, Hauser AE, Peddinghaus A, Voigt C, Eilat D et al (2004) Short-lived plasmablasts and long-lived plasma cells contribute to chronic humoral autoimmunity in NZB/W mice. J Exp Med 199:1577–1584
Article
CAS
PubMed
PubMed Central
Google Scholar
Hoyer BF, Mumtaz IM, Yoshida T, Hiepe F, Radbruch A (2008) How to cope with pathogenic long-lived plasma cells in autoimmune diseases. Ann. Rheum. Dis 67 Suppl 3:iii87–iii89
CAS
PubMed
Google Scholar
Jarius S, Eichhorn P, Jacobi C, Wildemann B, Wick M, Voltz R (2009) The intrathecal, polyspecific antiviral immune response: specific for MS or a general marker of CNS autoimmunity? J Neurol Sci 280:98–100
Article
CAS
PubMed
Google Scholar
Jarius S, Paul F, Franciotta D, Ruprecht K, Ringelstein M, Bergamaschi R et al (2011) Cerebrospinal fluid findings in aquaporin-4 antibody positive neuromyelitis optica: results from 211 lumbar punctures. J Neurol Sci:82–90
Kramann N, Neid K, Menken L, Schlumbohm C, Stadelmann C, Fuchs E et al (2015) Increased meningeal T and plasma cell infiltration is associated with early subpial cortical demyelination in common marmosets with experimental autoimmune encephalomyelitis. Brain Pathol 25:276–286
Article
CAS
PubMed
Google Scholar
Kreye J, Wenke NK, Chayka M, Leubner J, Murugan R, Maier N et al (2016) Human cerebrospinal fluid monoclonal N -methyl-D-aspartate receptor autoantibodies are sufficient for encephalitis pathogenesis. Brain 139:2641–2652
Article
PubMed
Google Scholar
Krumbholz M, Derfuss T, Hohlfeld R, Meinl EB (2012) Cells and antibodies in multiple sclerosis pathogenesis and therapy. Nat. Rev. Neurol. Nat Publ Group 8:613–623
CAS
Google Scholar
Krumbholz M, Theil D, Cepok S, Hemmer B, Kivisäkk P, Ransohoff RM et al (2006) Chemokines in multiple sclerosis: CXCL12 and CXCL13 up-regulation is differentially linked to CNS immune cell recruitment. Brain 129:200–211
Article
PubMed
Google Scholar
Krumbholz M, Theil D, Derfuss T, Rosenwald A, Schrader F, Monoranu C-M et al (2005) BAFF is produced by astrocytes and up-regulated in multiple sclerosis lesions and primary central nervous system lymphoma. J Exp Med 201:195–200
Article
CAS
PubMed
PubMed Central
Google Scholar
Lemke A, Kraft M, Roth K, Riedel R, Lammerding D, Hauser AE (2016) Long-lived plasma cells are generated in mucosal immune responses and contribute to the bone marrow plasma cell pool in mice. Mucosal Immunol. Nat Publ Group 9:83–97
CAS
Google Scholar
Lindner M, King J, Ng M, Hochmeister S, Meinl E, Linington C (2013) Neurofascin 186 specific autoantibodies induce axonal injury and exacerbate disease severity in experimental autoimmune encephalomyelitis. Exp. Neurol Elsevier BV 259266:247
Google Scholar
Litzenburger T, Fässler R, Bauer J, Lassmann H, Linington C, Wekerle H et al (1998) B lymphocytes producing demyelinating autoantibodies : development and function in gene-targeted transgenic mice. J Exp Med 188:169–180
Article
CAS
PubMed
PubMed Central
Google Scholar
Lucchinetti CF, Bruck W, Parisi JE, Scheithauter B, Rodriguez M, Lassmann H (2000) Heterogenity of multiple sclerosis lesions: implication for the pathogenesis of demyelination. Ann Neurol 47:707–717
Article
CAS
PubMed
Google Scholar
Lyons JA, Ramsbottom MJ, Cross AH (2002) Critical role of antigen-specific antibody in experimental autoimmune encephalomyelitis induced by recombinant myelin oligodendrocyte glycoprotein. Eur J Immunol 32:1905–1913
Article
CAS
PubMed
Google Scholar
Lyons JA, San M, Happ MP, Cross AHB (1999) Cells are critical to induction of experimental allergic encephalomyelitis by protein but not by a short encephalitogenic peptide. Eur J Immunol 29:3432–3439
Article
CAS
PubMed
Google Scholar
Manz RA, Löhning M, Cassese G, Thiel A, Radbruch A (1998) Survival of long-lived plasma cells is independent of antigen. Int Immunol 10:1703–1711
Article
CAS
PubMed
Google Scholar
Marta CB, Oliver AR, Sweet RA, Pfeiffer SE, Ruddle NH (2005) Pathogenic myelin oligodendrocyte glycoprotein antibodies recognize glycosylated epitopes and perturb oligodendrocyte physiology. Proc Natl Acad Sci U S A 102:13992–13997
Article
CAS
PubMed
PubMed Central
Google Scholar
Mathey EK, Derfuss T, Storch MK, Williams KR, Hales K, Woolley DR et al (2007) Neurofascin as a novel target for autoantibody-mediated axonal injury. J Exp Med 204:2363–2372
Article
CAS
PubMed
PubMed Central
Google Scholar
McCandless EE, Piccio L, Woerner BM, Schmidt RE, Rubin JB, Cross AH et al (2008) Pathological expression of CXCL12 at the blood-brain barrier correlates with severity of multiple sclerosis. Am J Pathol American Society for Investigative Pathology 172:799–808
Google Scholar
McCandless EE, Wang Q, Woerner BM, Harper JM, Klein RS (2006) CXCL12 Limits Inflammation by Localizing Mononuclear Infiltrates to the Perivascular Space during Experimental Autoimmune Encephalomyelitis. J Immunol 177:8053–8064
Article
CAS
PubMed
Google Scholar
Mei HE, Wirries I, Frölich D, Brisslert M, Giesecke C, Grün JR et al (2015) A unique population of IgG-expressing plasma cells lacking CD19 is enriched in human bone marrow. Blood 125:1739–1748
Article
CAS
PubMed
Google Scholar
O’Connor BP, Raman VS, Erickson LD, Cook WJ, Weaver LK, Ahonen C et al (2004) BCMA is essential for the survival of long-lived bone marrow plasma cells. J Exp Med 199:91–98
Article
PubMed
PubMed Central
Google Scholar
Obermeier B, Lovato L, Mentele R, Brück W, Forne I, Imhof A et al (2011) Related B cell clones that populate the CSF and CNS of patients with multiple sclerosis produce CSF immunoglobulin. J Neuroimmunol 233:245–248
Article
CAS
PubMed
PubMed Central
Google Scholar
Oliver AR, Lyon GM, Ruddle NH (2003) Rat and human myelin oligodendrocyte glycoproteins induce experimental autoimmune encephalomyelitis by different mechanisms in C57BL/6 mice. J Immunol 171:462–468
Article
CAS
PubMed
Google Scholar
Ozawa K, Suchanek G, Breitschopf H, Brück W, Budka H, Jellinger K et al (1994) Patterns of oligodendroglia pathology in multiple sclerosis. Brain 117:1311–1322
Article
PubMed
Google Scholar
Paroni M, Maltese V, De Simone M, Ranzani V, Larghi P, Fenoglio C et al (2017) Recognition of viral and self-antigens by TH1 and TH1/TH17 central memory cells in patients with multiple sclerosis reveals distinct roles in immune surveillance and relapses. J Allergy Clin Immunol Elsevier Inc:1–12
Peperzak V, Vikström I, Walker J, Glaser SP, Lepage M, Coquery CM et al (2013) Mcl-1 is essential for the survival of plasma cells. Nat Immunol 14:290–297
Article
CAS
PubMed
PubMed Central
Google Scholar
Pikor NB, Cupovic J, Onder L, Gommerman JL, Ludewig B (2017) Stromal cell niches in the inflamed central nervous system. J Immunol 198:1775–1781
Article
CAS
PubMed
Google Scholar
Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M et al (2011) Diagnostic criteria for multiple sclerosis : 2010 revisions to the McDonald criteria. Ann Neurol 69:292–302
Article
PubMed
PubMed Central
Google Scholar
Prineas JW (1979) Multiple sclerosis: presence of lymphatic capillaries and lymphoid tissue in the brain and. Spinal Cord 203:1123–1125
CAS
Google Scholar
Prineas JW, Wright RG (1978) Macrophages, lymphocytes, and plasma cells in the perivascular compartment in chronic multiple sclerosis. Lab Investig 38:409–421
CAS
PubMed
Google Scholar
Radbruch A, Muehlinghaus G, Luger EO, Inamine A, Smith KGC, Dörner T et al (2006) Competence and competition: the challenge of becoming a long-lived plasma cell. Nat. Rev. Immunol. 6:741–750
Article
CAS
PubMed
Google Scholar
Roth K, Oehme L, Zehentmeier S, Zhang Y, Niesner R, Hauser AE (2014) Tracking plasma cell differentiation and survival. Cytom A 85:15–24
Article
Google Scholar
Salic A, Mitchison TJA (2008) Chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc Natl Acad Sci 105:2415–2420
Article
CAS
PubMed
PubMed Central
Google Scholar
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682
Article
CAS
PubMed
Google Scholar
Schwab N, Schneider-Hohendorf T, Wiendl H (2015) Therapeutic uses of anti-α4-integrin (anti-VLA-4) antibodies in multiple sclerosis. Int Immunol 27:47–53
Article
CAS
PubMed
Google Scholar
Siffrin V, Brandt AU, Radbruch H, Herz J, Boldakowa N, Leuenberger T et al (2009) Differential immune cell dynamics in the CNS cause CD4+ T cell compartmentalization. Brain 132:1247–1258
Article
PubMed
Google Scholar
Smith KGC, Hewitson TD, Nossal GJV, Tarlinton DM (1996) The phenotype and fate of the antibody-forming cells of the splenic foci. Eur J Immunol 26:444–448
Article
CAS
PubMed
Google Scholar
Svenningsson A, Bergman J, Dring A, Vågberg M, Birgander R, Lindqvist T et al (2015) Rapid depletion of B lymphocytes by ultra-low-dose rituximab delivered intrathecally. Neurol. Neuroimmunol. neuroinflammation. e79:2
Google Scholar
Taddeo A, Khodadadi L, Voigt C, Mumtaz IM, Cheng Q, Moser K et al (2015) Long-lived plasma cells are early and constantly generated in New Zealand black/New Zealand white F1 mice and their therapeutic depletion requires a combined targeting of autoreactive plasma cells and their precursors. Arthritis Res Ther 17:39
Article
PubMed
PubMed Central
Google Scholar
Tokoyoda K, Egawa T, Sugiyama T, Choi B (2004) Il, Nagasawa T. Cellular niches controlling B lymphocyte behavior within bone marrow during development. Immunity 20:707–718
Article
CAS
PubMed
Google Scholar
Tokoyoda K, Hauser AE, Nakayama T, Radbruch A (2010) Organization of immunological memory by bone marrow stroma. Nat Rev Immunol 10:193–200
Article
CAS
PubMed
Google Scholar
Tokoyoda K, Zehentmeier S, Hegazy AN, Albrecht I, Grün JR, Löhning M et al (2009) Professional memory CD4+ T lymphocytes preferentially reside and rest in the bone marrow. Immunity 30:721–730
Article
CAS
PubMed
Google Scholar
von Büdingen HC, Harrer MD, Kuenzle S, Meier M, Goebels N (2008) Clonally expanded plasma cells in the cerebrospinal fluid of MS patients produce myelin-specific antibodies. Eur J Immunol 38:2014–2023
Article
PubMed
Google Scholar
Wang H, Wang K, Zhong X, Qiu W, Dai Y, Wu A et al (2012) Cerebrospinal fluid BAFF and APRIL levels in neuromyelitis optica and multiple sclerosis patients during relapse. J Clin Immunol 32:1007–1011
Article
CAS
PubMed
Google Scholar
Warnke C, Stettner M, Lehmensiek V, Dehmel T, Mausberg AK, von Geldern G et al (2015) Natalizumab exerts a suppressive effect on surrogates of B cell function in blood and CSF. Mult Scler 21:1036–1044
Article
CAS
PubMed
Google Scholar
Weinshenker BG, O’Brien PC, Petterson TM, Noseworthy JH, Lucchinetti CF, Dodick DW et al (1999) A randomized trial of plasma exchange in acute central nervous system inflammatory demyelinating disease. Ann Neurol 46:878–886
Article
CAS
PubMed
Google Scholar
Yoshida T, Mei H, Dörner T, Hiepe F, Radbruch A, Fillatreau S et al (2010) Memory B and memory plasma cells. Immunol Rev 237:117–139
Article
CAS
PubMed
Google Scholar
Yu X, Burgoon M, Green M, Barmina O, Dennison K, Pointon T et al (2011) Intrathecally synthesized IgG in multiple sclerosis cerebrospinal fluid recognizes identical epitopes over time. J Neuroimmunol Elsevier BV 240–241:129–136
Article
Google Scholar
Zehentmeier S, Roth K, Cseresnyes Z, Sercan Ö, Horn K, Niesner RA et al (2014) Static and dynamic components synergize to form a stable survival niche for bone marrow plasma cells. Eur J Immunol 44:2306–2317
Article
CAS
PubMed
Google Scholar