Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, Roses AD, Haines JL, Pericak-Vance MA (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261:921–923. https://doi.org/10.1126/science.8346443
Article
CAS
PubMed
Google Scholar
Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, Pahwa JS, Moskvina V, Dowzell K, Williams A et al (2009) Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet 41:1088–1093
Article
CAS
PubMed
PubMed Central
Google Scholar
Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, DeStafano AL, Bis JC, Beecham GW, Grenier-Boley B et al (2013) Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet 45:1452–1458. https://doi.org/10.1038/ng.2802
Article
CAS
PubMed
PubMed Central
Google Scholar
Goldstein JL, Brown MS (1990) Regulation of the mevalonate pathway. Nature 343:425–430
Article
CAS
PubMed
Google Scholar
Cole SL, Vassar R (2006) Isoprenoids and Alzheimer’s disease: a complex relationship. Neurobiol Dis 22:209–222
Article
CAS
PubMed
Google Scholar
Hooff GP, Wood WG, Muller WE, Eckert GP (2010) Isoprenoids, small GTPases and Alzheimer’s disease. Biochim Biophys Acta 1801:896–905
Article
CAS
PubMed
PubMed Central
Google Scholar
Li L, Zhang W, Cheng S, Cao D, Parent M (2012) Isoprenoids and related pharmacological interventions: potential application in Alzheimer’s disease. Mol Neurobiol 46:64–77. https://doi.org/10.1007/s12035-012-8253-1
Article
CAS
PubMed
PubMed Central
Google Scholar
Jeong A, Suazo KF, Wood WG, Distefano MD, Li L (2018) Isoprenoids and protein prenylation: implications in the pathogenesis and therapeutic intervention of Alzheimer’s disease. Crit Rev Biochem Mol Biol 53:279–310. https://doi.org/10.1080/10409238.2018.1458070
Article
PubMed
PubMed Central
Google Scholar
McTaggart SJ (2006) Isoprenylated proteins. Cell Mol Life Sci 63:255–267
Article
CAS
PubMed
Google Scholar
Wang M, Casey PJ (2016) Protein prenylation: unique fats make their mark on biology. Nat Rev Mol Cell Biol 17:110–122. https://doi.org/10.1038/nrm.2015.11
Article
CAS
PubMed
Google Scholar
Etienne-Manneville S, Hall A (2002) Rho GTPases in cell biology. Nature 420:629–635. https://doi.org/10.1038/nature01148
Article
CAS
PubMed
Google Scholar
Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D (2011) RAS oncogenes: weaving a tumorigenic web. Nat Rev Cancer 11:761–774. https://doi.org/10.1038/nrc3106
Article
CAS
PubMed
PubMed Central
Google Scholar
Langemeyer L, Frohlich F, Ungermann C (2018) Rab GTPase function in endosome and lysosome biogenesis. Trends Cell Biol 28:957–970. https://doi.org/10.1016/j.tcb.2018.06.007
Article
CAS
PubMed
Google Scholar
Hottman DA, Li L (2014) Protein prenylation and synaptic plasticity: implications for Alzheimer’s disease. Mol Neurobiol 50:177–185. https://doi.org/10.1007/s12035-013-8627-z
Article
CAS
PubMed
PubMed Central
Google Scholar
Fassbender K, Simons M, Bergmann C, Stroick M, Lutjohann D, Keller P, Runz H, Kuhl S, Bertsch T, von Bergmann K et al (2001) Simvastatin strongly reduces levels of Alzheimer’s disease beta-amyloid peptides Abeta 42 and Abeta 40 in vitro and in vivo. Proc Natl Acad Sci U S A 98:5856–5861
Article
CAS
PubMed
PubMed Central
Google Scholar
Li L, Cao D, Kim H, Lester R, Fukuchi K (2006) Simvastatin enhances learning and memory independent of amyloid load in mice. Ann Neurol 60:729–739
Article
CAS
PubMed
Google Scholar
Boimel M, Grigoriadis N, Lourbopoulos A, Touloumi O, Rosenmann D, Abramsky O, Rosenmann H (2009) Statins reduce the neurofibrillary tangle burden in a mouse model of tauopathy. J Neuropathol Exp Neurol 68:314–325. https://doi.org/10.1097/NEN.0b013e31819ac3cb
Article
CAS
PubMed
Google Scholar
Mans RA, McMahon LL, Li L (2012) Simvastatin-mediated enhancement of long-term potentiation is driven by farnesyl-pyrophosphate depletion and inhibition of farnesylation. Neuroscience 202:1–9
Article
CAS
PubMed
Google Scholar
Kirouac L, Rajic AJ, Cribbs DH, Padmanabhan J (2017) Activation of Ras-ERK signaling and GSK-3 by amyloid precursor protein and amyloid beta facilitates neurodegeneration in Alzheimer’s disease. eNeuro. https://doi.org/10.1523/ENEURO.0149-16.2017
Article
PubMed
PubMed Central
Google Scholar
Hernandez I, Luna G, Rauch JN, Reis SA, Giroux M, Karch CM, Boctor D, Sibih YE, Storm NJ, Diaz A et al (2019) A farnesyltransferase inhibitor activates lysosomes and reduces tau pathology in mice with tauopathy. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aat3005
Article
PubMed
PubMed Central
Google Scholar
Herskowitz JH, Feng Y, Mattheyses AL, Hales CM, Higginbotham LA, Duong DM, Montine TJ, Troncoso JC, Thambisetty M, Seyfried NT et al (2013) Pharmacologic inhibition of ROCK2 suppresses amyloid-beta production in an Alzheimer’s disease mouse model. J Neurosci 33:19086–19098. https://doi.org/10.1523/JNEUROSCI.2508-13.2013
Article
CAS
PubMed
PubMed Central
Google Scholar
Siano G, Caiazza MC, Olla I, Varisco M, Madaro G, Quercioli V, Calvello M, Cattaneo A, Di Primio C (2019) Identification of an ERK inhibitor as a therapeutic drug against tau aggregation in a new cell-based assay. Front Cell Neurosci 13:386. https://doi.org/10.3389/fncel.2019.00386
Article
CAS
PubMed
PubMed Central
Google Scholar
Eckert GP, Hooff GP, Strandjord DM, Igbavboa U, Volmer DA, Muller WE, Wood WG (2009) Regulation of the brain isoprenoids farnesyl- and geranylgeranylpyrophosphate is altered in male Alzheimer patients. Neurobiol Dis 35:251–257
Article
CAS
PubMed
PubMed Central
Google Scholar
Pelleieux S, Picard C, Lamarre-Theroux L, Dea D, Leduc V, Tsantrizos YS, Poirier J (2018) Isoprenoids and tau pathology in sporadic Alzheimer’s disease. Neurobiol Aging 65:132–139. https://doi.org/10.1016/j.neurobiolaging.2018.01.012
Article
CAS
PubMed
Google Scholar
Pei JJ, Braak H, An WL, Winblad B, Cowburn RF, Iqbal K, Grundke-Iqbal I (2002) Up-regulation of mitogen-activated protein kinases ERK1/2 and MEK1/2 is associated with the progression of neurofibrillary degeneration in Alzheimer’s disease. Brain Res Mol Brain Res 109:45–55
Article
CAS
PubMed
Google Scholar
Henderson BW, Gentry EG, Rush T, Troncoso JC, Thambisetty M, Montine TJ, Herskowitz JH (2016) Rho-associated protein kinase 1 (ROCK1) is increased in Alzheimer’s disease and ROCK1 depletion reduces amyloid-beta levels in brain. J Neurochem 138:525–531. https://doi.org/10.1111/jnc.13688
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheng S, Cao D, Hottman DA, Yuan L, Bergo MO, Li L (2013) Farnesyltransferase haplodeficiency reduces neuropathology and rescues cognitive function in a mouse model of Alzheimer disease. J Biol Chem 288:35952–35960. https://doi.org/10.1074/jbc.M113.503904
Article
CAS
PubMed
PubMed Central
Google Scholar
Hottman D, Cheng S, Gram A, LeBlanc K, Yuan LL, Li L (2018) Systemic or forebrain neuron-specific deficiency of geranylgeranyltransferase-1 impairs synaptic plasticity and reduces dendritic spine density. Neuroscience 373:207–217. https://doi.org/10.1016/j.neuroscience.2018.01.026
Article
CAS
PubMed
Google Scholar
Qu W, Suazo KF, Liu W, Cheng S, Jeong A, Hottman D, Yuan LL, Distefano MD, Li L (2021) Neuronal protein farnesylation regulates hippocampal synaptic plasticity and cognitive function. Mol Neurobiol 58:1128–1144. https://doi.org/10.1007/s12035-020-02169-w
Article
CAS
PubMed
Google Scholar
Bennett DA, Buchman AS, Boyle PA, Barnes LL, Wilson RS, Schneider JA (2018) Religious orders study and rush memory and aging project. J Alzheimers Dis 64:S161–S189. https://doi.org/10.3233/JAD-179939
Article
PubMed
PubMed Central
Google Scholar
Bennett DA, Schneider JA, Aggarwal NT, Arvanitakis Z, Shah RC, Kelly JF, Fox JH, Cochran EJ, Arends D, Treinkman AD et al (2006) Decision rules guiding the clinical diagnosis of Alzheimer’s disease in two community-based cohort studies compared to standard practice in a clinic-based cohort study. Neuroepidemiology 27:169–176. https://doi.org/10.1159/000096129
Article
PubMed
Google Scholar
Bennett DA, Wilson RS, Schneider JA, Evans DA, Beckett LA, Aggarwal NT, Barnes LL, Fox JH, Bach J (2002) Natural history of mild cognitive impairment in older persons. Neurology 59:198–205
Article
CAS
PubMed
Google Scholar
Liu M, Sjogren AK, Karlsson C, Ibrahim MX, Andersson KM, Olofsson FJ, Wahlstrom AM, Dalin M, Yu H, Chen Z et al (2010) Targeting the protein prenyltransferases efficiently reduces tumor development in mice with K-RAS-induced lung cancer. Proc Natl Acad Sci U S A 107:6471–6476
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsien JZ, Chen DF, Gerber D, Tom C, Mercer EH, Anderson DJ, Mayford M, Kandel ER, Tonegawa S (1996) Subregion- and cell type-restricted gene knockout in mouse brain. Cell 87:1317–1326
Article
CAS
PubMed
Google Scholar
Cheng S, LeBlanc KJ, Li L (2014) Triptolide preserves cognitive function and reduces neuropathology in a mouse model of Alzheimer’s disease. PLoS ONE 9:e108845. https://doi.org/10.1371/journal.pone.0108845
Article
CAS
PubMed
PubMed Central
Google Scholar
Qu W, Li L (2020) Loss of TREM2 confers resilience to synaptic and cognitive impairment in aged mice. J Neurosci 40:9552–9563. https://doi.org/10.1523/JNEUROSCI.2193-20.2020
Article
CAS
PubMed
PubMed Central
Google Scholar
Cao D, Lu H, Lewis TL, Li L (2007) Intake of sucrose-sweetened water induces insulin resistance and exacerbates memory deficits and amyloidosis in a transgenic mouse model of Alzheimer disease. J Biol Chem 282:36275–36282
Article
CAS
PubMed
Google Scholar
Lewis TL, Cao D, Lu H, Mans RA, Su YR, Jungbauer L, Linton MF, Fazio S, LaDu MJ, Li L (2010) Overexpression of human apolipoprotein A-I preserves cognitive function and attenuates neuroinflammation and cerebral amyloid angiopathy in a mouse model of Alzheimer disease. J Biol Chem 285:36958–36968
Article
CAS
PubMed
PubMed Central
Google Scholar
Hooff GP, Peters I, Wood WG, Muller WE, Eckert GP (2010) Modulation of cholesterol, farnesylpyrophosphate, and geranylgeranylpyrophosphate in neuroblastoma SH-SY5Y-APP695 cells: impact on amyloid beta-protein production. Mol Neurobiol 41:341–350
Article
CAS
PubMed
Google Scholar
Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. https://doi.org/10.1186/s13059-014-0550-8
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, Clark NR, Ma’ayan A (2013) Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinform 14:128. https://doi.org/10.1186/1471-2105-14-128
Article
Google Scholar
Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, Koplev S, Jenkins SL, Jagodnik KM, Lachmann A et al (2016) Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res 44:W90-97. https://doi.org/10.1093/nar/gkw377
Article
CAS
PubMed
PubMed Central
Google Scholar
Mohamed A, Saavedra L, Di Pardo A, Sipione S, Posse de Chaves E (2012) beta-amyloid inhibits protein prenylation and induces cholesterol sequestration by impairing SREBP-2 cleavage. J Neurosci 32:6490–6500. https://doi.org/10.1523/JNEUROSCI.0630-12.2012
Article
CAS
PubMed
PubMed Central
Google Scholar
Whyte DB, Kirschmeier P, Hockenberry TN, Nunez-Oliva I, James L, Catino JJ, Bishop WR, Pai JK (1997) K- and N-Ras are geranylgeranylated in cells treated with farnesyl protein transferase inhibitors. J Biol Chem 272:14459–14464
Article
CAS
PubMed
Google Scholar
Chang F, Steelman LS, Lee JT, Shelton JG, Navolanic PM, Blalock WL, Franklin RA, McCubrey JA (2003) Signal transduction mediated by the Ras/Raf/MEK/ERK pathway from cytokine receptors to transcription factors: potential targeting for therapeutic intervention. Leukemia 17:1263–1293. https://doi.org/10.1038/sj.leu.2402945
Article
CAS
PubMed
Google Scholar
Berndt N, Sebti SM (2011) Measurement of protein farnesylation and geranylgeranylation in vitro, in cultured cells and in biopsies, and the effects of prenyl transferase inhibitors. Nat Protoc 6:1775–1791
Article
CAS
PubMed
PubMed Central
Google Scholar
Holtzman DM, Herz J, Bu G (2012) Apolipoprotein E and apolipoprotein E receptors: normal biology and roles in Alzheimer disease. Cold Spring Harb Perspect Med 2:a006312. https://doi.org/10.1101/cshperspect.a006312
Article
CAS
PubMed
PubMed Central
Google Scholar
Selkoe DJ (2001) Clearing the brain’s amyloid cobwebs. Neuron 32:177–180
Article
CAS
PubMed
Google Scholar
Lewis CA, Griffiths B, Santos CR, Pende M, Schulze A (2011) Regulation of the SREBP transcription factors by mTORC1. Biochem Soc Trans 39:495–499. https://doi.org/10.1042/BST0390495
Article
CAS
PubMed
Google Scholar
Eid W, Dauner K, Courtney KC, Gagnon A, Parks RJ, Sorisky A, Zha X (2017) mTORC1 activates SREBP-2 by suppressing cholesterol trafficking to lysosomes in mammalian cells. Proc Natl Acad Sci U S A 114:7999–8004. https://doi.org/10.1073/pnas.1705304114
Article
CAS
PubMed
PubMed Central
Google Scholar
Gartner U, Holzer M, Arendt T (1999) Elevated expression of p21ras is an early event in Alzheimer’s disease and precedes neurofibrillary degeneration. Neuroscience 91:1–5
Article
CAS
PubMed
Google Scholar
Gartner U, Holzer M, Heumann R, Arendt T (1995) Induction of p21ras in Alzheimer pathology. NeuroReport 6:1441–1444
Article
CAS
PubMed
Google Scholar
Costa RM, Federov NB, Kogan JH, Murphy GG, Stern J, Ohno M, Kucherlapati R, Jacks T, Silva AJ (2002) Mechanism for the learning deficits in a mouse model of neurofibromatosis type 1. Nature 415:526–530
Article
CAS
PubMed
Google Scholar
Wang Q, Zengin A, Deng C, Li Y, Newell KA, Yang GY, Lu Y, Wilder-Smith EP, Zhao H, Huang XF (2009) High dose of simvastatin induces hyperlocomotive and anxiolytic-like activities: the association with the up-regulation of NMDA receptor binding in the rat brain. Exp Neurol 216:132–138
Article
CAS
PubMed
Google Scholar
Mijailovic N, Selakovic D, Joksimovic J, Mihailovic V, Katanic J, Jakovljevic V, Nikolic T, Bolevich S, Zivkovic V, Pantic M et al (2019) The anxiolytic effects of atorvastatin and simvastatin on dietary-induced increase in homocysteine levels in rats. Mol Cell Biochem 452:199–217. https://doi.org/10.1007/s11010-018-3425-6
Article
CAS
PubMed
Google Scholar
Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S, Phatnani HP, Guarnieri P, Caneda C, Ruderisch N et al (2014) An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci 34:11929–11947. https://doi.org/10.1523/JNEUROSCI.1860-14.2014
Article
CAS
PubMed
PubMed Central
Google Scholar
Tamboli IY, Barth E, Christian L, Siepmann M, Kumar S, Singh S, Tolksdorf K, Heneka MT, Lutjohann D, Wunderlich P et al (2010) Statins promote the degradation of extracellular amyloid {beta}-peptide by microglia via stimulation of exosome-associated insulin-degrading enzyme (IDE) secretion. J Biol Chem 285:37405–37414. https://doi.org/10.1074/jbc.M110.149468
Article
CAS
PubMed
PubMed Central
Google Scholar
Hay N, Sonenberg N (2004) Upstream and downstream of mTOR. Genes Dev 18:1926–1945. https://doi.org/10.1101/gad.1212704
Article
CAS
PubMed
Google Scholar
Wang X, Proud CG (2006) The mTOR pathway in the control of protein synthesis. Physiology 21:362–369. https://doi.org/10.1152/physiol.00024.2006
Article
CAS
PubMed
Google Scholar
Kim YC, Guan KL (2015) mTOR: a pharmacologic target for autophagy regulation. J Clin Invest 125:25–32. https://doi.org/10.1172/JCI73939
Article
PubMed
PubMed Central
Google Scholar
Perluigi M, Di Domenico F, Butterfield DA (2015) mTOR signaling in aging and neurodegeneration: at the crossroad between metabolism dysfunction and impairment of autophagy. Neurobiol Dis 84:39–49. https://doi.org/10.1016/j.nbd.2015.03.014
Article
CAS
PubMed
Google Scholar
Zhou XW, Tanila H, Pei JJ (2008) Parallel increase in p70 kinase activation and tau phosphorylation (S262) with Abeta overproduction. FEBS Lett 582:159–164. https://doi.org/10.1016/j.febslet.2007.11.078
Article
CAS
PubMed
Google Scholar
Ma T, Hoeffer CA, Capetillo-Zarate E, Yu F, Wong H, Lin MT, Tampellini D, Klann E, Blitzer RD, Gouras GK (2010) Dysregulation of the mTOR pathway mediates impairment of synaptic plasticity in a mouse model of Alzheimer’s disease. PLoS ONE. https://doi.org/10.1371/journal.pone.0012845
Article
PubMed
PubMed Central
Google Scholar
Caccamo A, Majumder S, Richardson A, Strong R, Oddo S (2010) Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-beta, and tau: effects on cognitive impairments. J Biol Chem 285:13107–13120. https://doi.org/10.1074/jbc.M110.100420
Article
CAS
PubMed
PubMed Central
Google Scholar
An WL, Cowburn RF, Li L, Braak H, Alafuzoff I, Iqbal K, Iqbal IG, Winblad B, Pei JJ (2003) Up-regulation of phosphorylated/activated p70 S6 kinase and its relationship to neurofibrillary pathology in Alzheimer’s disease. Am J Pathol 163:591–607. https://doi.org/10.1016/S0002-9440(10)63687-5
Article
CAS
PubMed
PubMed Central
Google Scholar
Tramutola A, Triplett JC, Di Domenico F, Niedowicz DM, Murphy MP, Coccia R, Perluigi M, Butterfield DA (2015) Alteration of mTOR signaling occurs early in the progression of Alzheimer disease (AD): analysis of brain from subjects with pre-clinical AD, amnestic mild cognitive impairment and late-stage AD. J Neurochem 133:739–749. https://doi.org/10.1111/jnc.13037
Article
CAS
PubMed
Google Scholar
Spilman P, Podlutskaya N, Hart MJ, Debnath J, Gorostiza O, Bredesen D, Richardson A, Strong R, Galvan V (2010) Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-beta levels in a mouse model of Alzheimer’s disease. PLoS ONE 5:e9979. https://doi.org/10.1371/journal.pone.0009979
Article
CAS
PubMed
PubMed Central
Google Scholar
Caccamo A, De Pinto V, Messina A, Branca C, Oddo S (2014) Genetic reduction of mammalian target of rapamycin ameliorates Alzheimer’s disease-like cognitive and pathological deficits by restoring hippocampal gene expression signature. J Neurosci 34:7988–7998. https://doi.org/10.1523/JNEUROSCI.0777-14.2014
Article
CAS
PubMed
PubMed Central
Google Scholar
Degirmenci U, Wang M, Hu J (2020) Targeting aberrant RAS/RAF/MEK/ERK signaling for cancer therapy. Cells. https://doi.org/10.3390/cells9010198
Article
PubMed
PubMed Central
Google Scholar
Bockaert J, Marin P (2015) mTOR in brain physiology and pathologies. Physiol Rev 95:1157–1187. https://doi.org/10.1152/physrev.00038.2014
Article
CAS
PubMed
Google Scholar
Parmar N, Tamanoi F (2010) Rheb G-proteins and the activation of mTORC1. Enzymes 27:39–56. https://doi.org/10.1016/S1874-6047(10)27003-8
Article
CAS
PubMed
PubMed Central
Google Scholar
Castro AF, Rebhun JF, Clark GJ, Quilliam LA (2003) Rheb binds tuberous sclerosis complex 2 (TSC2) and promotes S6 kinase activation in a rapamycin- and farnesylation-dependent manner. J Biol Chem 278:32493–32496. https://doi.org/10.1074/jbc.C300226200
Article
CAS
PubMed
Google Scholar
Basso AD, Mirza A, Liu G, Long BJ, Bishop WR, Kirschmeier P (2005) The farnesyl transferase inhibitor (FTI) SCH66336 (lonafarnib) inhibits Rheb farnesylation and mTOR signaling. Role in FTI enhancement of taxane and tamoxifen anti-tumor activity. J Biol Chem 280:31101–31108. https://doi.org/10.1074/jbc.M503763200
Article
CAS
PubMed
Google Scholar
Hanker AB, Mitin N, Wilder RS, Henske EP, Tamanoi F, Cox AD, Der CJ (2010) Differential requirement of CAAX-mediated posttranslational processing for Rheb localization and signaling. Oncogene 29:380–391. https://doi.org/10.1038/onc.2009.336
Article
CAS
PubMed
Google Scholar
Gentry EG, Henderson BW, Arrant AE, Gearing M, Feng Y, Riddle NC, Herskowitz JH (2016) Rho kinase inhibition as a therapeutic for progressive supranuclear palsy and corticobasal degeneration. J Neurosci 36:1316–1323. https://doi.org/10.1523/JNEUROSCI.2336-15.2016
Article
CAS
PubMed
PubMed Central
Google Scholar
Weber AJ, Herskowitz JH (2021) Perspectives on ROCK2 as a therapeutic target for Alzheimer’s disease. Front Cell Neurosci 15:636017. https://doi.org/10.3389/fncel.2021.636017
Article
CAS
PubMed
PubMed Central
Google Scholar
Barrett PJ, Song Y, Van Horn WD, Hustedt EJ, Schafer JM, Hadziselimovic A, Beel AJ, Sanders CR (2012) The amyloid precursor protein has a flexible transmembrane domain and binds cholesterol. Science 336:1168–1171. https://doi.org/10.1126/science.1219988
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang X, Sun GY, Eckert GP, Lee JC (2014) Cellular membrane fluidity in amyloid precursor protein processing. Mol Neurobiol 50:119–129. https://doi.org/10.1007/s12035-014-8652-6
Article
CAS
PubMed
PubMed Central
Google Scholar
Arbor SC, LaFontaine M, Cumbay M (2016) Amyloid-beta Alzheimer targets-protein processing, lipid rafts, and amyloid-beta pores. Yale J Biol Med 89:5–21
CAS
PubMed
PubMed Central
Google Scholar
Urano Y, Hayashi I, Isoo N, Reid PC, Shibasaki Y, Noguchi N, Tomita T, Iwatsubo T, Hamakubo T, Kodama T (2005) Association of active gamma-secretase complex with lipid rafts. J Lipid Res 46:904–912. https://doi.org/10.1194/jlr.M400333-JLR200
Article
CAS
PubMed
Google Scholar
Marquer C, Devauges V, Cossec JC, Liot G, Lecart S, Saudou F, Duyckaerts C, Leveque-Fort S, Potier MC (2011) Local cholesterol increase triggers amyloid precursor protein-Bace1 clustering in lipid rafts and rapid endocytosis. Faseb J 25:1295–1305. https://doi.org/10.1096/fj.10-168633
Article
CAS
PubMed
Google Scholar
Langness VF, van der Kant R, Das U, Wang L, Chaves RDS, Goldstein LSB (2021) Cholesterol-lowering drugs reduce APP processing to Abeta by inducing APP dimerization. Mol Biol Cell 32:247–259. https://doi.org/10.1091/mbc.E20-05-0345
Article
CAS
PubMed
PubMed Central
Google Scholar
Barbero-Camps E, Fernandez A, Martinez L, Fernandez-Checa JC, Colell A (2013) APP/PS1 mice overexpressing SREBP-2 exhibit combined Abeta accumulation and tau pathology underlying Alzheimer’s disease. Hum Mol Genet 22:3460–3476. https://doi.org/10.1093/hmg/ddt201
Article
CAS
PubMed
PubMed Central
Google Scholar
Mullard A (2021) The FDA approves a first farnesyltransferase inhibitor. Nat Rev Drug Discov 20:8. https://doi.org/10.1038/d41573-020-00213-x
Article
CAS
PubMed
Google Scholar