Bender CM, Paraska KK, Sereika SM, Ryan CM, Berga SL. Cognitive function and reproductive hormones in adjuvant therapy for breast cancer. J Pain Symptom Manage. 2001;21:407–24. doi:10.1016/S0885-3924(01)00268-8.
Article
CAS
PubMed
Google Scholar
Chen X, Li J, Chen J, Li D, Ye R, Zhang J, et al. Decision-making impairments in breast cancer patients treated with tamoxifen. Horm Behav. 2014;66:449–56. doi:10.1016/j.yhbeh.2014.07.005.
Article
CAS
PubMed
Google Scholar
Espeland MA, Shumaker SA, Limacher M, Rapp SR, Bevers TB, Barad DH, et al. Relative effects of tamoxifen, raloxifene, and conjugated equine estrogens on cognition. J Womens Health. 2010;19:371–9. doi:10.1089/jwh.2009.1605.
Article
Google Scholar
Palmer JL, Trotter T, Joy AA, Carlson LE. Cognitive effects of tamoxifen in pre-menopausal women with breast cancer compared to healthy controls. J Cancer Surviv. 2008;2:275–82. doi:10.1007/s11764-008-0070-1.
Article
PubMed
Google Scholar
Eberling JL, Wu C, Tong-Turnbeaugh R, Jagust WJ. Estrogen-and tamoxifen-associated effects on brain structure and function. Neuroimage. 2004;21:364–71.
Article
PubMed
Google Scholar
Buwalda B, Schagen SB. Is basic research providing answers if adjuvant anti-estrogen treatment of breast cancer can induce cognitive impairment? Life Sci. 2013;93:581–8. doi:10.1016/j.lfs.2012.12.012.
Article
CAS
PubMed
Google Scholar
Chen H-Y, Yang YM, Han R, Noble M. MEK1/2 inhibition suppresses tamoxifen toxicity on CNS glial progenitor cells. J Neurosci. 2013;33:15069–74. doi:10.1523/JNEUROSCI.2729-13.2013.
Article
PubMed Central
CAS
PubMed
Google Scholar
Imayoshi I, Sakamoto M, Ohtsuka T, Takao K, Miyakawa T, Yamaguchi M, et al. Roles of continuous neurogenesis in the structural and functional integrity of the adult forebrain. Nat Neurosci. 2008;11:1153–61. doi:10.1038/nn.2185.
Article
CAS
PubMed
Google Scholar
Guenthner C, Miyamichi K, Yang H, Heller H, Luo L. Permanent genetic access to transiently active neurons via TRAP: Targeted recombination in active populations. Neuron. 2013;78:773–84. doi:10.1016/j.neuron.2013.03.025.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kedjouar B, Daunes S, Vilner BJ, Bowen WD, Klaebe A, Faye JC, et al. Structural similitudes between cytotoxic antiestrogen-binding site (AEBS) ligands and cytotoxic sigma receptor ligands. Evidence for a relationship between cytotoxicity and affinity for AEBS or sigma-2 receptor but not for sigma-1 receptor. Biochem Pharmacol. 1999;58:1927–39.
Article
CAS
PubMed
Google Scholar
de Medina P, Paillasse MR, Segala G, Poirot M, Silvente-Poirot S. Identification and pharmacological characterization of cholesterol-5,6-epoxide hydrolase as a target for tamoxifen and AEBS ligands. Proc Natl Acad Sci U S A. 2010;107:13520–5. doi:10.1073/pnas.1002922107.
Article
PubMed Central
PubMed
Google Scholar
Hunt D, Raivich G, Anderson PN. Activating transcription factor 3 and the nervous system. Front Mol Neurosci. 2012;5:7. doi:10.3389/fnmol.2012.00007.
Article
PubMed Central
CAS
PubMed
Google Scholar
Madisen L, Zwingman TA, Sunkin SM, Oh SW, Zariwala HA, Gu H, et al. A robust and high-throughput cre reporting and characterization system for the whole mouse brain. Nat Neurosci. 2010;13:133–40. doi:10.1038/nn.2467.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lau J, Minett MS, Zhao J, Dennehy U, Wang F, Wood JN, et al. Temporal control of gene deletion in sensory ganglia using a tamoxifen-inducible advillin-cre-ert2 recombinase mouse. Mol Pain. 2011;7:100. doi:10.1186/1744-8069-7-100.
Article
PubMed Central
CAS
PubMed
Google Scholar
United States Department of Agriculture. Agricultural Research Service. National Nutrient Database for Standard Reference Release 27. http://ndb.nal.usda.gov/ndb/foods. Accessed 06 October 2015.
Yasunaga T, Kato H, Ohgaki K, Inamoto T, Hikasa Y. Effect of vitamin E as an immunopotentiation agent for mice at optimal dosage and its toxicity at high dosage. J Nutr. 1982;112:1075–84.
CAS
PubMed
Google Scholar
Dauvois S, White R, Parker MG. The antiestrogen ICI 182780 disrupts estrogen receptor nucleocytoplasmic shuttling. J Cell Sci. 1993;106(Pt 4):1377–88.
CAS
PubMed
Google Scholar
Harris HA, Katzenellenbogen JA, Katzenellenbogen BS. Characterization of the biological roles of the estrogen receptors, eralpha and erbeta, in estrogen target tissues in vivo through the use of an eralpha-selective ligand. Endocrinology. 2002;143:4172–7. doi:10.1210/en.2002-220403.
Article
CAS
PubMed
Google Scholar
Papaconstantinou AD, Umbreit TH, Fisher BR, Goering PL, Lappas NT, Brown KM. Bisphenol a-induced increase in uterine weight and alterations in uterine morphology in ovariectomized B6C3F1 mice: role of the estrogen receptor. Toxicol Sci. 2000;56:332–9. doi:10.1093/toxsci/56.2.332.
Article
CAS
PubMed
Google Scholar
Hiranita T, Soto PL, Tanda G, Katz JL. Lack of cocaine-like discriminative-stimulus effects of σ-receptor agonists in rats. Behav Pharmacol. 2011;22:525–30. doi:10.1097/FBP.0b013e328349ab22.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hiramatsu H, Kikuchi Y, Kudoh K, Kita T, Tode T, Nagata I. Growth-inhibitory effects of N, n-diethyl-2-[4-(phenylmethyl)phenoxy]-ethanamine-hcl combined with cisplatin on human ovarian cancer cells inoculated into nude mice. Jpn J Cancer Res. 1997;88:1003–8.
Article
CAS
PubMed
Google Scholar
Rose RD, Rohrlich D. Counting sectioned cells via mathematical reconstruction. J Comp Neurol. 1988;272:365–86.
CAS
PubMed
Google Scholar
Averill S, Davis DR, Shortland PJ, Priestley JV, Hunt SP. Dynamic pattern of reg-2 expression in rat sensory neurons after peripheral nerve injury. J Neurosci. 2002;22:7493–501.
CAS
PubMed
Google Scholar
Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature. 2007;445:168–76. doi:10.1038/nature05453.
Article
CAS
PubMed
Google Scholar
Usoskin D, Furlan A, Islam S, Abdo H, Lönnerberg P, Lou D, et al. Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nat Neurosci. 2015;18:145–53. doi:10.1038/nn.3881.
Article
CAS
PubMed
Google Scholar
Silvente-Poirot S, Poirot M. Cholesterol epoxide hydrolase and cancer. Curr Opin Pharmacol. 2012;12:696–703. doi:10.1016/j.coph.2012.07.007.
Article
CAS
PubMed
Google Scholar
Bangaru ML, Weihrauch D, Tang Q-B, Zoga V, Hogan Q, Wu H-E. Sigma-1 receptor expression in sensory neurons and the effect of painful peripheral nerve injury. Mol Pain. 2013;9:47. doi:10.1186/1744-8069-9-47.
Article
PubMed Central
PubMed
Google Scholar
Chaban VV, Micevych PE. Estrogen receptor-alpha mediates estradiol attenuation of atp-induced ca2+ signaling in mouse dorsal root ganglion neurons. J Neurosci Res. 2005;81:31–7. doi:10.1002/jnr.20524.
Article
CAS
PubMed
Google Scholar
de Medina P, Paillasse MR, Ségala G, Khallouki F, Brillouet S, Dalenc F, et al. Importance of cholesterol and oxysterols metabolism in the pharmacology of tamoxifen and other AEBS ligands. Chem Phys Lipids. 2011;164:432–7. doi:10.1016/j.chemphyslip.2011.05.005.
Article
PubMed
Google Scholar
Stanfield BB, Cowan WM. The development of the hippocampus and dentate gyrus in normal and reeler mice. J Comp Neurol. 1979;185:423–59. doi:10.1002/cne.901850303.
Article
CAS
PubMed
Google Scholar
Seretny M, Currie GL, Sena ES, Ramnarine S, Grant R, MacLeod MR, et al. Incidence, prevalence, and predictors of chemotherapy-induced peripheral neuropathy: a systematic review and meta-analysis. Pain. 2014. doi:10.1016/j.pain.2014.09.020.
Rennie IG. Clinically important ocular reactions to systemic drug therapy. Drug Saf. 1993;9:196–211.
Article
CAS
PubMed
Google Scholar
Zvorničanin J, Sinanović O, Zukić S, Jusufović V, Burina A. Tamoxifen associated bilateral optic neuropathy. Acta Neurol Belg. 2014. doi:10.1007/s13760-014-0327-6.
Tsujino H. Activating transcription factor 3 (ATF3) induction by axotomy in sensory and motoneurons: a novel neuronal marker of nerve injury. Mol Cell Neurosci. 2000;15:170–82. doi:10.1006/mcne.1999.0814.
Article
CAS
PubMed
Google Scholar
Reid AJ, Welin D, Wiberg M, Terenghi G, Novikov LN. Peripherin and ATF3 genes are differentially regulated in regenerating and non-regenerating primary sensory neurons. Brain Res. 2010;1310:1–7. doi:10.1016/j.brainres.2009.11.011.
Article
CAS
PubMed
Google Scholar
Lindå H, Sköld MK, Ochsmann T. Activating transcription factor 3, a useful marker for regenerative response after nerve root injury. Front Neurol. 2011;2. doi:10.3389/fneur.2011.00030.
Seijffers R, Allchorne AJ, Woolf CJ. The transcription factor ATF-3 promotes neurite outgrowth. Mol Cell Neurosci. 2006;32:143–54. doi:10.1016/j.mcn.2006.03.005.
Article
CAS
PubMed
Google Scholar
Seijffers R, Mills CD, Woolf CJ. ATF3 increases the intrinsic growth state of DRG neurons to enhance peripheral nerve regeneration. J Neurosci. 2007;27:7911–20. doi:10.1523/JNEUROSCI.5313-06.2007.
Article
CAS
PubMed
Google Scholar
Barnabé-Heider F, Göritz C, Sabelström H, Takebayashi H, Pfrieger FW, Meletis K, et al. Origin of new glial cells in intact and injured adult spinal cord. Cell Stem Cell. 2010;7:470–82. doi:10.1016/j.stem.2010.07.014.
Article
PubMed
Google Scholar
Ma H, Groth RD, Wheeler DG, Barrett CF, Tsien RW. Excitation-transcription coupling in sympathetic neurons and the molecular mechanism of its initiation. Neurosci Res. 2011;70:2–8. doi:10.1016/j.neures.2011.02.004.
Article
PubMed Central
CAS
PubMed
Google Scholar