Ross CA, Poirier MA: Protein aggregation and neurodegenerative disease. Nat Med 2004, 10(Suppl):S10-S17. 10.1038/nm1066
Article
PubMed
Google Scholar
Ratnavalli E, Brayne C, Dawson K, Hodges JR: The prevalence of frontotemporal dementia. Neurology 2002, 58: 1615–1621. 10.1212/WNL.58.11.1615
Article
CAS
PubMed
Google Scholar
As A, Thies W, Bleiler L: Alzheimer's disease facts and figures. Alzheimers Dement 2011, 7: 208–244. 10.1016/j.jalz.2011.02.004
Article
Google Scholar
Terry RD: The fine structure of neurofibrillary tangles in Alzheimer's disease. J Neuropathol Exp Neurol 1963, 22: 629–642. 10.1097/00005072-196310000-00005
Article
CAS
PubMed
Google Scholar
Lynch T, Sano M, Marder KS, Bell KL, Foster NL, Defendini RF, Sima AA, Keohane C, Nygaard TG, Fahn S, Mayeux R, Rowland LP, Wilhelmensen KC: Clinical characteristics of a family with chromosome 17-linked disinhibition-demenstia-parkinsonism-amyotrophy complex. Neurol 1994, 44: 1878–1884. 10.1212/WNL.44.10.1878
Article
CAS
Google Scholar
Gibson PH, Tomlinson BE: Numbers of Hirano bodies in the hippocampus of normal and demented people with Alzheimer's disease. J Neurol Sci 1977, 33(1–2):199–206. 10.1016/0022-510X(77)90193-9
Article
CAS
PubMed
Google Scholar
Hirano A, Dembitzer HM, Kurland LT, Zimmerman HM: The fine structure of some intraganlionic alterations. J Neuropathol Expt Neurol 1968, 27(2):167–182. 10.1097/00005072-196804000-00001
Article
CAS
Google Scholar
Schochet SS Jr, Lampert PW, Lindenberg R: Fine structure of the Pick and Hirano bodies in a case of Pick's disease. Acta Neuropathol (Berl) 1968, 11(4):330–337. 10.1007/BF00686729
Article
Google Scholar
Martinez-Saez E, Gelpi E, Rey M, Ferrer I, Ribalta T, Botta-Orfila T, Nos C, Yague J, Sanchez-Valle R: Hirano body - rich subtypes of Creutzfeldt-Jakob disease. Neuropathol Appl Neurobiol 2011, doi:10.1111/j.1365–2990.2011.01208.x
Google Scholar
Cartier L, Galvez S, Gajdusek DC: Familial clustering of the ataxic form of Creutzfeldt-Jakob disease with Hirano bodies. J Neurol Neurosurg Psychiatry 1985, 48(3):234–238. 10.1136/jnnp.48.3.234
Article
CAS
PubMed
PubMed Central
Google Scholar
Okamoto K, Hirai S, Hirano A: Hirano bodies in myelinated fibers of hepatic encephalopathy. Acta Neuropathol 1982, 58(4):307–310. 10.1007/BF00688615
Article
CAS
PubMed
Google Scholar
Gibson PH: Light and electron microscopic observations on the relationship between Hirano bodies, neuron and glial perikarya in the human hippocampus. Acta Neuropathol (Berl) 1978, 42(3):165–171. 10.1007/BF00690353
Article
CAS
Google Scholar
Galloway PG, Perry G, Gambetti P: Hirano body filaments contain actin and actin-associated proteins. J Neuropathol Exp Neurol 1987, 46(2):185–199. 10.1097/00005072-198703000-00006
Article
CAS
PubMed
Google Scholar
Hirano A: Hirano bodies and related neuronal inclusions. Neuropathol Appl Neurobiol 1994, 20(1):3–11. 10.1111/j.1365-2990.1994.tb00951.x
Article
CAS
PubMed
Google Scholar
Ogata J, Budzilovich GN, Cravioto H: A study of rod-like structures (Hirano bodies) in 240 normal and pathological brains. Acta Neuropathol 1972, 21(1):61–67. 10.1007/BF00688000
Article
CAS
PubMed
Google Scholar
Schochet SS Jr, McCormick WF: Ultrastructure of Hirano bodies. Acta Neuropathol (Berl) 1972, 21(1):50–60. 10.1007/BF00687999
Article
Google Scholar
Maciver SK, Harrington CR: Two actin binding proteins, actin depolymerizing factor and cofilin, are associated with Hirano bodies. Neuroreport 1995, 6(15):1985–1988. 10.1097/00001756-199510010-00008
Article
CAS
PubMed
Google Scholar
Galloway PG, Perry G, Kosik KS, Gambetti P: Hirano bodies contain tau protein. Brain Res 1987, 403(2):337–340. 10.1016/0006-8993(87)90071-0
Article
CAS
PubMed
Google Scholar
Munoz DG, Wang D, Greenberg BD: Hirano bodies accumulate C-terminal sequences of beta-amyloid precursor protein (beta-APP) epitopes. J Neuropathol Exp Neurol 1993, 52(1):14–21. 10.1097/00005072-199301000-00003
Article
CAS
PubMed
Google Scholar
Lim RWL, Furukawa R, Eagle S, Cartwright RC, Fechheimer M: Three distinct F-actin binding sites in the Dictyostelium discoideum 34,000 dalton actin bundling protein. Biochemistry 1999, 38: 800–812. 10.1021/bi981392d
Article
CAS
PubMed
Google Scholar
Maselli AG, Davis R, Furukawa R, Fechheimer M: Formation of Hirano bodies in Dictyostelium and mammalian cells induced by expression of a modified form of an actin cross-linking protein. J Cell Sci 2002, 115: 1939–1952.
CAS
PubMed
Google Scholar
Davis RC, Furukawa R, Fechheimer M: A cell culture model for investigation of Hirano bodies. Acta Neuropathol (Berl) 2008, 115(2):205–217. 10.1007/s00401-007-0275-9
Article
Google Scholar
Ha S, Furukawa R, Fechheimer M: Association of AICD and Fe65 with Hirano bodies reduces transcriptional activation and initiation of apoptosis. Neurobiol Aging 2011, 32(12):2287–2298. 10.1016/j.neurobiolaging.2010.01.003
Article
CAS
PubMed
Google Scholar
Furgerson M, Fechheimer M, Furukawa R: Model Hirano bodies protect against tau-independent and tau-dependent cell death initiated by the amyloid precursor protein intracellular domain. PLoS ONE 2012, 7: e44996. 10.1371/journal.pone.0044996
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim DH, Davis RC, Furukawa R, Fechheimer M: Autophagy contributes to degradation of Hirano bodies. Autophagy 2009, 5: 44–51. 10.4161/auto.5.1.7228
Article
CAS
PubMed
PubMed Central
Google Scholar
Cao X, Südhof TC: A transcriptionally active complex of APP with Fe65 and histone acetyltransferase Tip60. Science 2001, 293: 115–120. 10.1126/science.1058783
Article
CAS
PubMed
Google Scholar
Cao X, Südhof TC: Dissection of amyloid-beta precursor protein-dependent transcriptional transactivation. J Biol Chem 2004, 279: 24601–14611. 10.1074/jbc.M402248200
Article
CAS
PubMed
Google Scholar
Ha S, Furukawa R, Stramiello M, Wagner JJ, Fechheimer M: Transgenic mouse model for the formation of Hirano bodies. BMC Neurosci 2011, 12(1):97. doi:10.1186/1471–2202–12–97 10.1186/1471-2202-12-97
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsien JZ, Chen DF, Gerber D, Tom C, Mercer EH, Anderson DJ, Mayford M, Kandel ER, Tonegawa S: Subregion- and cell type-restricted gene knockout in mouse brain. Cell 1996, 87: 1317–1326. 10.1016/S0092-8674(00)81826-7
Article
CAS
PubMed
Google Scholar
Shimizu E, Tang YP, Rampon C, Tsien JZ: NMDA receptor-dependent synaptic reinforcement as a crucial process for memory consolidation. Science 2000, 290: 1170–1174. 10.1126/science.290.5494.1170
Article
CAS
PubMed
Google Scholar
Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC: Measurement of protein using bicinchoninic acid. Anal Biochem 1985, 150: 76–85. 10.1016/0003-2697(85)90442-7
Article
CAS
PubMed
Google Scholar
Babb SJ, Crystal JD: Episodic-like memory in the rat. Curr Biol 2006, 16: 1317–1321. 10.1016/j.cub.2006.05.025
Article
CAS
PubMed
Google Scholar
Kaushik DK, Basu A: A friend in need may not be a friend indeed: role of microglia in neurodegenerative diseases. CNS Neurol Disord Drug Targets 2013, 12: 726–740. 10.2174/18715273113126660170
Article
CAS
PubMed
Google Scholar
Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH: Mechanisms underlying inflammation in neurodegeneration. Cell 2010, 140: 918–934. 10.1016/j.cell.2010.02.016
Article
CAS
PubMed
PubMed Central
Google Scholar
Oakley H, Cole SL, Logan S, Maus E, Shao P, Craft J, Guillozet-Bongaarts A, Ohno M, Disterhoft J, Van Eldik L, Berry R, Vassar R: Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer's disease mutations: potential factors in amyloid plaque formation. J Neurosci 2006, 26: 10129–10140. 10.1523/JNEUROSCI.1202-06.2006
Article
CAS
PubMed
Google Scholar
Rosen HJ, Hartikainen KM, Jagust W, Kramer JH, Reed BR, Cummings JL, Boone K, Ellis W, Miller C, Miller BL: Utility of clinical criteria in differentiating frontotemporal lobar degeneration (FTLD) from AD. Neurology 2002, 58: 1608–1615. 10.1212/WNL.58.11.1608
Article
PubMed
Google Scholar
Koffie RM, Hyman BT, Spires-Jones TL: Alzheimer's disease: synapses gone cold. Mol Neurodeg 2011, 6: 63–72. 10.1186/1750-1326-6-63
Article
Google Scholar
Picconi B, Poccoli G, Calabresi P: Synaptic dysfunction in Parkinson's disease. Adv Exp Med Biol 2012, 970: 553–572. 10.1007/978-3-7091-0932-8_24
Article
CAS
PubMed
Google Scholar
Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA, Katzman R: Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 1991, 30: 572–580. 10.1002/ana.410300410
Article
CAS
PubMed
Google Scholar
Scheff SW, Price DA: Alzheimer's disease-related alterations in synaptic density: neocortex and hippocampus. J Alzheimers Dis 2006, 9: 101–115.
PubMed
Google Scholar
Rondi-Reig L, Libbey M, Eichenbaum H, Tonegawa S: CA1-specific N-methyl-D-aspartate receptor knockout mice are deficient in solving a nonspatial transverse patterning task. Proc Natl Acad Sci U S A 2001, 98: 3543–3548. 10.1073/pnas.041620798
Article
CAS
PubMed
PubMed Central
Google Scholar
Schmidt ML, Lee VM, Trojanowski JQ: Analysis of epitopes shared by Hirano bodies and neurofilament proteins in normal and Alzheimer's disease hippocampus. Lab Invest 1989, 60(4):513–522.
CAS
PubMed
Google Scholar
Laas R, Hagel C: Hirano bodies and chronic alcoholism. Neuropathol Appl Neurobiol 1994, 20(1):12–21. 10.1111/j.1365-2990.1994.tb00952.x
Article
CAS
PubMed
Google Scholar
Ono S, Abe H, Nagaoka R, Obinata T: Colocalization of ADF and cofilin in intranuclear rods of cultured muscle cells. J Mus ResCell Motil 1993, 14: 195–204. 10.1007/BF00115454
Article
CAS
Google Scholar
Goebel HH, Laing NG: Actinopathies and myosinopathies. Brain Pathol 2009, 19: 516–522. 10.1111/j.1750-3639.2009.00287.x
Article
CAS
PubMed
Google Scholar
Bamburg JR, Bloom GS: Cytoskeletal pathologies of Alzheimer's disease. Cell Motil Cytoskel 2009, 66: 635–649. 10.1002/cm.20388
Article
CAS
Google Scholar
Nishida E, Iida K, Yonezawa N: Cofilin is a component of intranuclear and cytoplasmic actin rods induced in cultured cells. Proc Natl Acad Sci U S A 1987, 84: 5262–5266. 10.1073/pnas.84.15.5262
Article
CAS
PubMed
PubMed Central
Google Scholar
Izumiyama N, Ohtsubo K, Tachikawa T, Nakamura H: Elucidation of three-dimensional ultrastructure of Hirano bodies by the quick-freeze, deep-etch and replica method. Acta Neuropathol 1991, 81(3):248–254. 10.1007/BF00305865
Article
CAS
PubMed
Google Scholar
Reyes JF, Stone K, Ramos J, Maselli A: Formation of Hirano bodies after inducible expression of a modified form of an actin-cross-linking protein. Eukaryot Cell 2009, 8: 852–857. 10.1128/EC.00379-08
Article
CAS
PubMed
PubMed Central
Google Scholar
Griffin P, Furukawa R, Piggott C, Maselli A, Fechheimer M: Requirements for Hirano body formation. Eukaryot Cell 2014, 13: 625–634. 10.1128/EC.00044-14
Article
PubMed
PubMed Central
Google Scholar
Zaheer S, Thangavel R, Wu YB, Khan MM, Kempuraj D, Zaheer A: Enhanced expression of glia maturation factor correlates with glial activation in the brain of triple transgenic Alzheimer's disease mice. Neurochem Res 2013, 38: 218–225. 10.1007/s11064-012-0913-z
Article
CAS
PubMed
Google Scholar
Duyckaerts C, Potier MC, Delatour B: Alzheimer disease models and human neuropathology: similarities and differences. Acta Neuropathol (Berl) 2008, 115: 5–38. 10.1007/s00401-007-0312-8
Article
Google Scholar
Mineur YS, McLoughlin D, Crusio WE, Sluyter F: Genetic mouse models of Alzheimer's disease. Neural Plast 2005, 12: 299–310. 10.1155/NP.2005.299
Article
CAS
PubMed
PubMed Central
Google Scholar
Sofroniew MV, Vinters HV: Astrocytes: biology and pathology. Acta Neuropathol (Berl) 2010, 119: 7–35. 10.1007/s00401-009-0619-8
Article
Google Scholar
Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, Cooper NR, Eikelenboom P, Emmerling M, Fiebich BL, Finch CE, Frautschy S, Griffin WS, Hampel H, Hull M, Landreth G, Lue L, Mrak R, Mackenzie IR, McGeer PL, O'Banion MK, Pachter J, Pasinetti G, Plajta-Salaman C, Rogers J, Rydel R, Shen Y, Striet W, Strohmeyer R, Tooyoma I, Van Muiswinkel FL, Veerhuis R, Walker D, Webster S, Wegryniak B, Wenk G, Wyss-Coray T: Inflammation and Alzheimer's disease. Neurobiol Aging 2000, 21: 383–421. 10.1016/S0197-4580(00)00124-X
Article
CAS
PubMed
PubMed Central
Google Scholar
Wyss-Coray T, Loike JD, Brionne TC, Lu E, Anankov R, Yan F, Silverstein SC, Husemann J: Adult mouse astrocytes degrade amyloid-beta in vitro and in situ. Nat Med 2003, 9: 452–457. 10.1038/nm838
Article
Google Scholar
Sheffield LG, Marquis JG, Berman NE: Regional distribution of cortical microglia parallels that of neurofibrillary tangles in Alzheimer's disease. Neurosci Lett 2000, 285: 165–168. 10.1016/S0304-3940(00)01037-5
Article
CAS
PubMed
Google Scholar
Sheng JG, Mrak R, Griffin WS: Glial-neuronal interactions in Alzheimer disease: progressive assocation of IL-1alpha + microglia and S100beta + astrocytes with neurofibrillary tangle stages. J Neuropathol Exp Neurol 1997, 56: 285–290. 10.1097/00005072-199703000-00007
Article
CAS
PubMed
Google Scholar
DiPatre PL, Gelman BB: Microglial cell activation in aging and Alzheimer disease: partial linkage with neurofibillary tangle burden in the hippocampus. J Neuropathol Exp Neurol 1997, 56: 143–149. 10.1097/00005072-199702000-00004
Article
CAS
PubMed
Google Scholar
Schwab C, Steele JC, McGeer PL: Pyramidal neuron loss is matched by ghost tangle increase in Guam parkinsonism-dementia hippocampus. Acta Neuropathol (Berl) 1998, 96: 409–416. 10.1007/s004010050912
Article
CAS
Google Scholar
Bancher C, Brunner C, Lassmann H, Budka H, Jellinger KA, Seitelberger F, Grundke-Iqbal I, Iqbal K, Wisniewski HW: Tau and ubiquitin immunoreactivity at different stages of formation of Alzheimer neurofibrillary tangles. Prog Clin Biol Res 1989, 317: 837–848.
CAS
PubMed
Google Scholar
Cras P, Kawai M, Siedlak S, Perry G: Microglia are associated with the extracellular neurofibrillary tangles of Alzheimer disease. Brain Res 1991, 558: 312–314. 10.1016/0006-8993(91)90783-R
Article
CAS
PubMed
Google Scholar
Probst A, Ulrich J, Heitz PU: Senile dementia of Alzheimer type: astroglial reaction to extracellular neurofibrillary tangles in the hippocampus. An immunocytochemical and eletron-microscopic study. Acta Neuropathol (Berl) 1982, 57: 75–79. 10.1007/BF00688880
Article
CAS
Google Scholar
Reynolds AD, Glanzer JG, Kadiu I, Ricardo-Dukelow M, Chaudhuri A, Ciboroski P, Cerny R, Gelman BB, Thomas MP, Mosley RL, Gendelman HE: Nitrated alpha-synuclein-activated microglial profiling for Parkinson's disease. J Neurochem 2008, 104: 1504–1525. 10.1111/j.1471-4159.2007.05087.x
Article
CAS
PubMed
Google Scholar
Reynolds AD, Kadiu I, Garg SK, Glanzer JG, Nordgren T, Ciboroski P, Banerjee R, Gendelman HE: Nitrated alpha-synuclein and microglial neuroregulatory activities. J Neuroimmune Pharmacol 2008, 3: 58–74. 10.1007/s11481-008-9100-z
Article
Google Scholar
Zhang W, Wang T, Pei Z, Miller DS, Wu X, Block ML, Wilson B, Zhang W, Zhou Y, Hong JS, Zhang J: Aggregated alpha-synuclein activates microglia: a process leading to disease pregression in Parkinson's disease. FASEB J 2005, 19: 533–542. 10.1096/fj.04-2751com
Article
CAS
PubMed
Google Scholar
Crawley JN: Exploratory behavior models of anxiety in mice. Neurosci Biobehav Rev 1985, 9: 37–44. 10.1016/0149-7634(85)90030-2
Article
CAS
PubMed
Google Scholar
Floresco SB, Seamans JK, Phillips AG: Selective roles for hippocampal, prefrontal cortical, and ventral striatal circuits in radial-arm maze tasks with or without a delay. J Neurosci 1997, 17: 1880–1890.
CAS
PubMed
Google Scholar
Jarrard LE: On the role of the hippocampus in learning and memory in the rat. Behav Neural Biol 1993, 60: 9–26. 10.1016/0163-1047(93)90664-4
Article
CAS
PubMed
Google Scholar
Olton DS, Papas BC: Spatial memory and hippocampal function. Neuropsychologia 1979, 17: 668–682. 10.1016/0028-3932(79)90042-3
Article
Google Scholar
Poppenk J, Evensmoen HR, Moscovitch M, Nadel L: Long-axis specialization of the human hippocampus. Trends Cogn Sci 2013, 17: 230–240. 10.1016/j.tics.2013.03.005
Article
PubMed
Google Scholar
Bannerman DM, Sprengel R, Sanderson DJ, McHugh SB, Rawlins JNP, Monyer H, Seeburg PH: Hippocampal synaptic plasticity, spatial memory and anxiety. Nat Rev Neurosci 2014, 15: 181–192. 10.1038/nrn3677
Article
CAS
PubMed
Google Scholar
Maselli AG, Furukawa R, Thomson SAM, Davis RC, Fechheimer M: Formation of Hirano bodies induced by expression of an actin cross-linking protein with a gain of function mutation. Eucaryot Cell 2003, 2: 778–787. 10.1128/EC.2.4.778-787.2003
Article
CAS
Google Scholar
Rizzoli SO, Betz WJ: Synaptic vesicle pools. Nat Rev Neurosci 2005, 6: 57–69. 10.1038/nrn1583
Article
CAS
PubMed
Google Scholar
Dillon C, Goda Y: The actin cytoskeleton: integrating form and function at the synpase. Annu Rev Neurosci 2005, 28: 25–55. 10.1146/annurev.neuro.28.061604.135757
Article
CAS
PubMed
Google Scholar
Davis S, Butcher SP, Morris RG: The NMDA receptor antagonist D-2-amino-5-phophonopentanoate (D-AP5) inmpairs spatial learning and LTP in vivo at intracerebral concentraitons comparable to those that block LTP in vitro. J Neurosci 1992, 12: 21–34.
CAS
PubMed
Google Scholar
Borroni AM, Fichtenholtz H, Woodside BL, Teyler TJ: Role of voltage-dependent calcium channel long-term potentiation (LTP) and NMDA LTP in spatial memory. J Neurosci 2000, 20: 9272–9276.
CAS
PubMed
Google Scholar
Murakoshi H, Yasuda R: Postsynaptic signaling during plasticity of dendritic spines. Trends Neurosci 2012, 35: 135–143. 10.1016/j.tins.2011.12.002
Article
CAS
PubMed
PubMed Central
Google Scholar
Fukazawa Y, Saitoh Y, Ozawa F, Ohta Y, Mizuno K, Inokuchi K: Hippocampal LTP is accompanied by enhanced F-actin content within the dendritic spine that is essential for late LTP maintenance in vivo. Neuron 2003, 38(3):447–460. 10.1016/S0896-6273(03)00206-X
Article
CAS
PubMed
Google Scholar
Lin B, Kramár EA, Bi X, Brucher FA, Gall CM, Lynch G: Theta stimulation polymerizes actin in dendritic spines of hippocampus. J Neurosci 2005, 25(8):2062–2069. 10.1523/JNEUROSCI.4283-04.2005
Article
CAS
PubMed
Google Scholar
Ramachandran B, Frey JU: Interfering with the actin network and its effect on long-term potentiation and synaptic tagging in hippocampal CA1 neurons in slices in vitro. J Neurosci 2009, 29(39):12167–12173. 10.1523/JNEUROSCI.2045-09.2009
Article
CAS
PubMed
Google Scholar
Geinisman Y, Ganeshina O, Yoshida R, Berry RW, Disterhoft J, Gallagher M: Aging, spatial learning, and total synapse number in the rat CA1 stratum radiatum. Neurobiol Aging 2004, 25: 407–416. 10.1016/j.neurobiolaging.2003.12.001
Article
CAS
PubMed
Google Scholar
Barnes CA, Rao G, Foster TC, McNaughton BL: Region-specific age effects on AMPA sensitivity: electrophysiological evidence for loss of synaptic contracts in hippocampal field CA1. Hippocampus 1992, 2: 457–468. 10.1002/hipo.450020413
Article
CAS
PubMed
Google Scholar
Kim CH, Lisman JE: A role of actin filament synaptic transmission and long-term potentiation. J Neurosci 1999, 19: 4314–4324.
CAS
PubMed
Google Scholar
Krucker T, Siggins GR, Halpain S: Dynamic actin filaments are required for stable long-term potentiation (LTP) in area CA1 of the hippocampus. Proc Natl Acad Sci U S A 2000, 97: 6856–6861. 10.1073/pnas.100139797
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen LY, Rex CS, Casale MS, Gall CM, Lynch GS: Changes in synaptic morphology accompany actin signalling during LTP. J Neurosci 2007, 27: 5363–5372. 10.1523/JNEUROSCI.0164-07.2007
Article
CAS
PubMed
Google Scholar
Star EN, Kwiatkowski DJ, Murthy VN: Rapid turnover of actin in dendritic spines and its regulation by activity. Nat Neurosci 2002, 5: 239–246. 10.1038/nn811
Article
CAS
PubMed
Google Scholar
Capani F, Martone ME, Deerinck TJ, Ellisman MH: Selective localization of high concentrations of F-actin in subpopulations of dendritic spines in rat central nervous system: a three-dimensional electron microscopic study. J Comp Neurol 2001, 435: 156–170. 10.1002/cne.1199
Article
CAS
PubMed
Google Scholar
Honkura N, Matsuzaki N, Noguchi J, Ellis-Davies GC, Kasai H: The subspine organization of actin fibres regulates the structure and plasticity of dendritic spines. Neuron 2008, 57(5):719–729. 10.1016/j.neuron.2008.01.013
Article
CAS
PubMed
Google Scholar
Baddeley A, Logie R, Bressi S, Della Sala S, Spinnler H: Dementia and working memory. Q J Exp Psychol A 1986, 38: 603–618. 10.1080/14640748608401616
Article
CAS
PubMed
Google Scholar
O'Neill PK, Gordon JA, Sigurdsson T: Theta oscillations in the medial prefrontal cortex are modulated by spatial working memory and synchronize with the hippocampus through its ventral subregion. J Neurosci 2013, 33: 1411–1424. 10.1523/JNEUROSCI.4386-13.2013
Article
Google Scholar
Rosenzweig ES, Rao G, McNaughton BL, Barnes CA: Role of temporal summation in age-related long-term potentiation-induction deficits. Hippocampus 1997, 7: 549–558. 10.1002/(SICI)1098-1063(1997)7:5<549::AID-HIPO10>3.0.CO;2-0
Article
CAS
PubMed
Google Scholar