Lord C, Cook EH, Leventhal BL, Amaral DG: Autism spectrum disorders. Neuron 2000, 28: 355–363. 10.1016/S0896-6273(00)00115-X
Article
CAS
PubMed
Google Scholar
Mann SM, Wang NJ, Liu DH, Wang L, Schultz RA: Supernumerary tricentric derivative chromosome 15 in two boys with intractable epilepsy: another mechanism for partial hexasomy. Hum Genet 2004, 115: 104–111.
Article
CAS
PubMed
Google Scholar
Wang NJ, Liu D, Parokonny AS, Schanen NC: High-resolution molecular characterization of 15q11-q13 rearrangements by array comparative genomic hybridization (array CGH) with detection of gene dosage. Am J Hum Genet 2004, 75: 267–281. 10.1086/422854
Article
PubMed Central
CAS
PubMed
Google Scholar
Bailey AR, Giunta BN, Obregon D, Nikolic WV, Tian J, Sanberg CD, Sutton DT, Tan JT: Peripheral biomarkers in autism: secreted amyloid precursor protein-α as a probable key player in early diagnosis. Int J Clin Exp Med 2008, 1: 338–344.
PubMed Central
PubMed
Google Scholar
Sokol DK, Chen D, Farlow MR, Dunn DW, Maloney B, Zimmer JA, Lahiri DK: High levels of Alzheimer beta-amyloid precursor protein (APP) in children with severely autistic behavior and aggression. J Child Neurol 2006, 21: 444–449.
PubMed
Google Scholar
Ray B, Long JM, Sokol DK, Lahiri DK: Increased secreted amyloid precursor protein-α (sAPPα) in severe autism: proposal of a specific, anabolic pathway and putative biomarker. PLoS One 2011, 6: e20405. 1–10 10.1371/journal.pone.0020405
Article
PubMed Central
CAS
PubMed
Google Scholar
Wegiel J, Frackowiak J, Mazur-Kolecka B, Schanen CN, Cook EH, Sigman M, Brown WT, Kuchna I, et al.: Abnormal intracellular accumulation and extracellular Aβ deposition in idiopathic and dup15q11.2-q13 autism spectrum disorders. PLoS One 2012, 7: e35414. 10.1371/journal.pone.0035414
Article
PubMed Central
CAS
PubMed
Google Scholar
Butterfield DA, Boyd-Kimball D: The critical role of methionine 35 in Alzheimer's amyloid beta-peptide (1–42)-induced oxidative stress and neurotoxicity. Biochim Biophys Acta 2005, 1703: 149–156. 10.1016/j.bbapap.2004.10.014
Article
CAS
PubMed
Google Scholar
Butterfield DA, Sultana R: Methionine-35 of aβ(1–42): importance for oxidative stress in Alzheimer disease. J Amino Acids 2011, 2011: 198430. doi:10.4061/2011/1984300
Article
PubMed Central
PubMed
Google Scholar
Drew SC, Masters CL, Barnham KL: Alanine-2 carbonyl is an oxygen ligand in Cu2+ coordination of Alzheimer’s disease amyloid-β peptide − relevance to N-terminally truncated forms. J Am Chem Soc 2009, 131: 8760–8761. 10.1021/ja903669a
Article
CAS
PubMed
Google Scholar
Chauhan A, Chauhan V, Brown WT, Cohen I: Oxidative stress in autism: increased lipid peroxidation and reduced serum levels of ceruloplasmin and transferrin–the antioxidant proteins. Life Sci 2004, 75: 2539–2549. 10.1016/j.lfs.2004.04.038
Article
CAS
PubMed
Google Scholar
Zoroglu SS, Armutcu F, Ozen S, Gurel A, Sivasli E, Yetkin O, Meram I: Increased oxidative stress and altered activities of erythrocyte free radical scavenging enzymes in autism. Eur Arch Psychiatr Clin Neurosci 2004, 254: 143–147.
Google Scholar
Sogut S, Zoroglu SS, Ozyurt H, Yilmaz HR, Ozugurlu F, Sivasli E, et al.: Changes in nitric oxide levels and antioxidant enzyme activities may have a role in the pathophysiological mechanisms involved in autism. Clin Chim Acta 2003, 331: 111–117. 10.1016/S0009-8981(03)00119-0
Article
CAS
PubMed
Google Scholar
Damodaran LPM, Arumugam G: Urinary oxidative stress markers in children with autism. Redox Rep 2011, 169: 216–222.
Article
Google Scholar
Ming X, Stein TP, Brimacombe M, Johnson WG, Lambert GH, Wagner GC: Increased excretion of a lipid peroxidation biomarker in autism. Prostaglandins Leukot Essent Fatty Acids 2005, 73: 379–384. 10.1016/j.plefa.2005.06.002
Article
CAS
PubMed
Google Scholar
James SJ, Cutler P, Melnyk S, Jernigan S, Janak L, Gaylor DW, Neubrander JA: Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism. Am J Clin Nutr 2004, 80: 1611–1617.
CAS
PubMed
Google Scholar
James SJ, Melnyk S, Jernigan S, Cleves MA, Halsted CH, Wong DH, Cutler P, Bock K, Boris M, Bradstreet JJ, Baker SM, Gaylor DW: Metabolic endophenotype and related genotypes are associated with oxidative stress in children with autism. Am J Med Genet B Neuropsychiatr Genet 2006, 141: 947–956.
Article
Google Scholar
Rose S, Melnyk S, Pavliv O, Bai S, Nick TG, Frye RE, James SJ: Evidence of oxidative damage and inflammation associated with low glutathione redox status in the autism brain. Transl Psychiatr 2012, 2: e134. doi:10.1038/tp.2012.61 10.1038/tp.2012.61
Article
CAS
Google Scholar
Sajdel-Sulkowska EM, Xu M, Koibuchi N: Increase in cerebellar neurotrophin-3 and oxidative stress markers in autism. Cerebellum 2009, 8: 366–372. 10.1007/s12311-009-0105-9
Article
CAS
PubMed
Google Scholar
Sajdel-Sulkowska EM, Xu M, McGinnis W, Koibuchi N: Brain region-specific changes in oxidative stress and neurotrophin levels in autism spectrum disorders (ASD). Cerebellum 2011, 10: 43–48. 10.1007/s12311-010-0223-4
Article
CAS
PubMed
Google Scholar
Chauhan A, Audhya T, Chauhan V: Brain region-specific glutathione redox imbalance in autism. Neurochem Res 2012, 37: 1681–1689. 10.1007/s11064-012-0775-4
Article
CAS
PubMed
Google Scholar
Li X, Chauhan A, Sheikh AM, Patil S, Chauhan V, Li X-M, Lina J, Brown T, Malik M: Elevated immune response in the brain of autistic patients. J Neuroimmunol 2009, 207: 111–116. 10.1016/j.jneuroim.2008.12.002
Article
PubMed Central
CAS
PubMed
Google Scholar
Croonenberghs J, Bosmans E, Deboutte D, Kenis G, Maes M: Activation of the inflammatory response system in autism. Neuropsychobiology 2002, 45: 1–6.
Article
CAS
PubMed
Google Scholar
Courchesne E, Pierce K: Why the frontal cortex in autism might be talking only to itself: local over-connectivity but long-distance disconnection. Curr Opin Neurobiol 2005, 15: 225–230. 10.1016/j.conb.2005.03.001
Article
CAS
PubMed
Google Scholar
Arqués O, Chicote I, Tenbaum S, Puig I, Palmer HG: Standardized relative quantification of immunofluorescence tissue staining. Protocol Exchange 2012. doi:10.1038/protex.2012.008
Google Scholar
Waters JC: Accuracy and precision in quantitative fluorescence microscopy. J Cell Biol 2009, 185: 1135–1148. doi:10.1083/jcb.200903097 10.1083/jcb.200903097
Article
PubMed Central
CAS
PubMed
Google Scholar
Frackowiak J, Miller DL, Potempska A, Sukontasup T, Mazur-Kolecka B: Secretion and accumulation of Aβ by brain vascular smooth muscle cells from AβPP-Swedish transgenic mice. J Neuropathol Exp Neurol 2003, 62: 685–696.
CAS
PubMed
Google Scholar
Frackowiak J, Sukontasup T, Potempska A, Mazur-Kolecka B: Lysosomal deposition of Aβ in cultures of brain vascular smooth muscle cells is enhanced by iron. Brain Res 2004, 1002: 67–75. 10.1016/j.brainres.2003.12.015
Article
CAS
PubMed
Google Scholar
Frackowiak J, Potempska A, Mazur-Kolecka B: Formation of amyloid-β oligomers in brain vascular smooth muscle cells transiently exposed to iron-induced oxidative stress. Acta Neuropathol 2009, 117: 557–567. 10.1007/s00401-009-0497-0
Article
CAS
PubMed
Google Scholar
Kim KS, Wen GY, Bancher C, Chen CMJ, Sapienza VJ, et al.: Detection and quantitation of amyloid β-peptide with two monoclonal antibodies. Neurosci Res Commun 1990, 7: 113–122.
CAS
Google Scholar
Miller DL, Currie JR, Mehta PD, Potempska A, Hwang YW, Wegiel J: Humoral immune response to fibrillar β-amyloid peptide. Biochemistry 2003, 42: 11682–11692. 10.1021/bi030100s
Article
CAS
PubMed
Google Scholar
Matsunaga Y, Saito N, Fujii A, Yokotani J, Takakura T, Nishimura T, Esaki H, Yamada T: A pH-dependent conformational transition of Aβ peptide and physicochemical properties of the conformers in the glial cell. Biochem J 2002, 361: 547–556. 10.1042/0264-6021:3610547
Article
PubMed Central
CAS
PubMed
Google Scholar
Potempska A, Mack K, Mehta P, Kim KS, Miller DL: Quantification of sub-femtomole amount of Alzheimer amyloid β peptides. Amyloid 1999, 6: 14–21. 10.3109/13506129908993283
Article
CAS
PubMed
Google Scholar
Kida E, Golabek AA, Walus M, Wujek P, Kaczmarski W, Wisniewski KE: Distribution of tripeptidyl peptidase I in human tissues under normal and pathological conditions. J Nuropathol Exp Neurol 2001, 60: 280–292.
CAS
Google Scholar
Winton MJ, Lee EB, Sun E, Wong MM, Leight S, Zhang B, Trojanowski JQ, Lee VM: Intraneuronal APP, not free Aβ peptides in 3xTg-AD mice: implications for tau versus Aβ-mediated Alzheimer neurodegeneration. J Neurosci 2011, 31: 7691–7699. 10.1523/JNEUROSCI.6637-10.2011
Article
PubMed Central
CAS
PubMed
Google Scholar
Nunan J, Small DH: Regulation of APP cleavage by alpha-, beta- and gamma-secretases. FEBS Lett 2000, 483: 6–10. 10.1016/S0014-5793(00)02076-7
Article
CAS
PubMed
Google Scholar
Näslund J, Schierhorn A, Hellman U, Lannfelt L, Roses AD, Tjernberg LO, Silberring J, Gandy SE, Winblad B, Greengard P, et al.: Relative abundance of Alzheimer A beta amyloid peptide variants in Alzheimer disease and normal aging. Proc Natl Acad Sci USA 1994, 91: 8378–8382. 10.1073/pnas.91.18.8378
Article
PubMed Central
PubMed
Google Scholar
Russo C, Saido TC, DeBusk LM, Tabaton M, Gambetti P, Teller JK: Heterogeneity of water-soluble amyloid beta-peptide in Alzheimer's disease and Down's syndrome brains. FEBS Lett 1997, 409: 411–416. 10.1016/S0014-5793(97)00564-4
Article
CAS
PubMed
Google Scholar
Baskin DS, Widmayer MA, Sharpe MA: Quantification and calibration of images in fluorescence microscopy. Anal Biochem 2010, 404: 118–126. doi:10.1016/j.ab.2010.05.029 10.1016/j.ab.2010.05.029
Article
CAS
PubMed
Google Scholar
Pike CJ, Overman MJ, Cotman CW: Amino-terminal deletions enhance aggregation of β-amyloid peptides in vitr o. J Biol Chem 1995, 270: 23895–23898. 10.1074/jbc.270.41.23895
Article
CAS
PubMed
Google Scholar
Wei W, Norton DD, Wang X, Kusiak JW: Aβ 17–42 in Alzheimer’s disease activates JNK and caspase-8 leading to neuronal apoptosis. Brain 2002, 125: 2036–2043. 10.1093/brain/awf205
Article
PubMed
Google Scholar
Chauhan V, Chauhan A: Abnormalities in membrane lipids, membrane-associated proteins, and signal transduction in autism. Oxidative Stress, Inflammation and Immune Abnormalities. In Autism. Edited by: Chauhan A, Chauhan V, Brown WT.. Boca Raton, FL: CRC Press, Taylor and Francis Group; 2010:177–20651.
Google Scholar
Cadenas E, Davies KJ: Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med 2000, 29: 222–230. 10.1016/S0891-5849(00)00317-8
Article
CAS
PubMed
Google Scholar
Long J, Liu C, Sun L, Gao H, Liu J: Neuronal mitochondrial toxicity of malondialdehyde: inhibitory effects on respiratory function and enzyme activities in rat brain mitochondria. Neurochem Res 2009, 34: 786–794. 10.1007/s11064-008-9882-7
Article
CAS
PubMed
Google Scholar
Giulivi C, Zhang YF, Omanska-Klusek A, Ross-Inta C, Wong S, Hertz-Picciotto I, Tassone F, Pessah IN: Mitochondrial dysfunction in autism. JAMA 2010, 304: 2389–2396. 10.1001/jama.2010.1706
Article
PubMed Central
CAS
PubMed
Google Scholar
Anitha A, Nakamura K, Thanseem I, Matsuzaki H, Miyachi T, Tsujii M, Iwata Y, Suzuki K, Sugiyama T, Mori N: Downregulation of the expression of mitochondrial electron transport complex genes in autism brains. Brain Pathol 2013, 23: 294–302. 10.1111/bpa.12002
Article
PubMed
Google Scholar
Pecorelli A, Leoncini S, De Felice C, Signorini C, Cerrone C, Valacchi G, Ciccoli L, Hayek J: Non-protein-bound iron and 4-hydroxynonenal protein adducts in classic autism. Brain Dev 2013,35(2):146–154. doi:10.1016/j.braindev.2012.03.011 10.1016/j.braindev.2012.03.011
Article
PubMed
Google Scholar
Sohal RS, Brunk UT: Lipofuscin as an indicator of oxidative stress and aging. Adv Exp Med Biol 1989, 266: 17–26.
CAS
PubMed
Google Scholar
Terman A, Brunk UT: Lipofuscin. Int J Biochem Cell Biol 2004, 36: 1400–1404. 10.1016/j.biocel.2003.08.009
Article
CAS
PubMed
Google Scholar
Lopez-Hurtado E, Prieto JJ: A microscopic study of language-related cortex in autism. Am J Biochem Biotechn 2008, 4: 130–145.
Article
Google Scholar
Roe MR, Xie H, Bandhakavi S, Griffin TJ: Proteomic mapping of 4-hydroxynonenal protein modification sites by solid-phase hydrazide chemistry and mass spectrometry. Anal Chem 2007, 79: 3747–3756. 10.1021/ac0617971
Article
CAS
PubMed
Google Scholar
Ishii T, Tatsuda E, Kumazawa S, Nakayama T, Uchida K: Molecular basis of enzyme inactivation by an endogenous electrophile 4-hydroxy-2-nonenal: identification of modification sites in glyceraldehyde-3-phosphate dehydrogenase. Biochemistry 2003, 42: 3474–3480. 10.1021/bi027172o
Article
CAS
PubMed
Google Scholar
Crifò C, Siems W, Soro S, Salerno C: Inhibition of defective adenylosuccinate lyase by HNE: a neurological disease that may be affected by oxidative stress. Biofactors 2005, 24: 131–136. 10.1002/biof.5520240115
Article
PubMed
Google Scholar
Crifò C, Capuozzo E, Siems W, Salerno C: Inhibition of ion transport ATPases by HNE. Biofactors 2005, 24: 137–140. 10.1002/biof.5520240116
Article
PubMed
Google Scholar
Cline SD, Riggins JN, Tornaletti S, Marnett LJ, Hanawalt PC: Malondialdehyde adducts in DNA arrest transcription by T7 RNA polymerase and mammalian RNA polymerase II. Proc Natl Acad Sci USA 2004, 101: 7275–7280. 10.1073/pnas.0402252101
Article
PubMed Central
CAS
PubMed
Google Scholar
Choi JW, Kim JH, Cho SC, Ha MK, Song KY, Youn HD, Park SC: Malondialdehyde inhibits an AMPK-mediated nuclear translocation and repression activity of ALDH2 in transcription. Biochem Biophys Res Commun 2011, 404: 400–406. 10.1016/j.bbrc.2010.11.131
Article
CAS
PubMed
Google Scholar
Siegel SJ, Bieschke J, Powers ET, Kelly JW: The oxidative stress metabolite 4-hydroxynonenal promotes Alzheimer protofibril formation. Biochemistry 2007, 46: 1503–1510. 10.1021/bi061853s
Article
PubMed Central
CAS
PubMed
Google Scholar
Tamagno E, Parola M, Bardini P, Piccini A, Borghi R, Guglielmotto M, Santoro G, Davit A, et al.: Beta-site APP cleaving enzyme up-regulation induced by 4-hydroxynonenal is mediated by stress-activated protein kinases pathways. J Neurochem 2005, 92: 628–636. 10.1111/j.1471-4159.2004.02895.x
Article
CAS
PubMed
Google Scholar
Mazur-Kolecka B, Golabek A, Nowicki K, Flory M, Frackowiak J: Amyloid-β impairs development of neuronal progenitor cells by oxidative mechanisms. Neurobiol Aging 2006, 27: 1181–1192. 10.1016/j.neurobiolaging.2005.07.006
Article
CAS
PubMed
Google Scholar