Bero AW, Yan P, Roh JH, Cirrito JR, Stewart FR, Raichle ME, Lee JM, Holtzman DM (2011) Neuronal activity regulates the regional vulnerability to amyloid-β 2 deposition. Nat Neurosci. https://doi.org/10.1038/nn.2801
Article
Google Scholar
Hardy J (1997) The Alzheimer family of diseases: many etiologies, one pathogenesis? Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.94.6.2095
Article
Google Scholar
Scheuner D, Eckman C, Jensen M, Song X, Citron M, Suzuki N, Bird TD, Hardy J, Hutton M, Kukull W, Larson E, Levy-Lahad E, Viitanen M, Peskind E, Poorkaj P, Schellenberg G, Tanzi R, Wasco W, Lannfelt L, Selkoe D, Younkin S (1996) Secreted amyloid β-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat Med. https://doi.org/10.1038/nm0896-864
Article
Google Scholar
Mawuenyega KG, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris JC, Yarasheski KE, Bateman RJ (2010) Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science 330:1774. https://doi.org/10.1126/science.1197623
Article
CAS
Google Scholar
Iliff JJ, Lee H, Yu M, Feng T, Logan J, Nedergaard M, Benveniste H (2013) Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. J Clin Investig. https://doi.org/10.1172/JCI67677
Article
Google Scholar
Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA, Nagelhus EA, Nedergaard M (2012) A paravascular pathway facilitates csf flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med. https://doi.org/10.1126/scitranslmed.3003748
Article
Google Scholar
Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, O’Donnell J, Christensen DJ, Nicholson C, Iliff JJ, Takano T, Deane R, Nedergaard M (2013) Sleep drives metabolite clearance from the adult brain. Science 1979:342. https://doi.org/10.1126/science.1241224
Article
CAS
Google Scholar
Mestre H, Hablitz LM, Xavier ALR, Feng W, Zou W, Pu T, Monai H, Murlidharan G, Rivera RMC, Simon MJ, Pike MM, Plá V, Du T, Kress BT, Wang X, Plog BA, Thrane AS, Lundgaard I, Abe Y, Yasui M, Thomas JH, Xiao M, Hirase H, Asokan A, Iliff JJ, Nedergaard M (2018) Aquaporin-4-dependent glymphatic solute transport in the rodent brain. Elife. https://doi.org/10.7554/eLife.40070
Article
Google Scholar
Rainey-Smith SR, Mazzucchelli GN, Villemagne VL, Brown BM, Porter T, Weinborn M, Bucks RS, Milicic L, Sohrabi HR, Taddei K, Ames D, Maruff P, Masters CL, Rowe CC, Salvado O, Martins RN, Laws SM (2018) Genetic variation in Aquaporin-4 moderates the relationship between sleep and brain Aβ-amyloid burden. Transl Psychiatry. https://doi.org/10.1038/S41398-018-0094-X
Article
Google Scholar
Smith AJ, Yao X, Dix JA, Jin BJ, Verkman AS (2017) Test of the “glymphatic” hypothesis demonstrates diffusive and aquaporin-4-independent solute transport in rodent brain parenchyma. Elife. https://doi.org/10.7554/elife.27679
Article
Google Scholar
Tarasoff-Conway JM, Carare RO, Osorio RS, Glodzik L, Butler T, Fieremans E, Axel L, Rusinek H, Nicholson C, Zlokovic BV, Frangione B, Blennow K, Ménard J, Zetterberg H, Wisniewski T, de Leon MJ (2015) Clearance systems in the brain—implications for Alzheimer disease. Nat Rev Neurol 11:457–470. https://doi.org/10.1038/nrneurol.2015.119
Article
CAS
Google Scholar
Xu Z, Xiao N, Chen Y, Huang H, Marshall C, Gao J, Cai Z, Wu T, Hu G, Xiao M (2015) Deletion of aquaporin-4 in APP/PS1 mice exacerbates brain Aβ accumulation and memory deficits. Mol Neurodegener 10:58. https://doi.org/10.1186/s13024-015-0056-1
Article
CAS
Google Scholar
Hablitz LM, Plá V, Giannetto M, Vinitsky HS, Stæger FF, Metcalfe T, Nguyen R, Benrais A, Nedergaard M (2020) Circadian control of brain glymphatic and lymphatic fluid flow. Nat Commun 11:4411. https://doi.org/10.1038/s41467-020-18115-2
Article
CAS
Google Scholar
Brancaccio M, Patton AP, Chesham JE, Maywood ES, Hastings MH (2017) Astrocytes control circadian timekeeping in the suprachiasmatic nucleus via glutamatergic signaling. Neuron 93:1420-1435.e5. https://doi.org/10.1016/j.neuron.2017.02.030
Article
CAS
Google Scholar
Ohayon MM, Carskadon MA, Guilleminault C, Vitiello MV (2004) Meta-analysis of quantitative sleep parameters from childhood to old age in healthy individuals: developing normative sleep values across the human lifespan. Sleep. https://doi.org/10.1093/sleep/27.7.1255
Article
Google Scholar
McCurry SM, Reynolds CF, Ancoli-Israel S, Teri L, Vitiello MV (2000) Treatment of sleep disturbance in Alzheimer’s disease. Sleep Med Rev. https://doi.org/10.1053/smrv.2000.0127
Article
Google Scholar
Meeks TW, Ropacki SA, Jeste DV (2006) The neurobiology of neuropsychiatric syndromes in dementia. Curr Opin Psychiatry. https://doi.org/10.1097/01.yco.0000245746.45384.0e
Article
Google Scholar
da Silva RAPC (2015) Sleep disturbances and mild cognitive impairment: a review. Sleep Sci 8:36–41
Article
Google Scholar
Lista S, O’Bryant SE, Blennow K, Dubois B, Hugon J, Zetterberg H (2015) Biomarkers in sporadic and familial Alzheimer’s disease. J Alzheimer’s Dis 47:291–317
Article
Google Scholar
Bastianini S, Berteotti C, Gabrielli A, del Vecchio F, Amici R, Alexandre C, Scammell TE, Gazea M, Kimura M, lo Martire V, Silvani A, Zoccoli G, (2014) SCOPRISM: a new algorithm for automatic sleep scoring in mice. J Neurosci Methods. https://doi.org/10.1016/j.jneumeth.2014.07.018
Article
Google Scholar
Carola V, D’Olimpio F, Brunamonti E, Mangia F, Renzi P (2002) Evaluation of the elevated plus-maze and open-field tests for the assessment of anxiety-related behaviour in inbred mice. Behav Brain Res. https://doi.org/10.1016/S0166-4328(01)00452-1
Article
Google Scholar
Ennaceur A, Delacour J (1988) A new one-trial test for neurobiological studies of memory in rats. 1: behavioral data. Behav Brain Res. https://doi.org/10.1016/0166-4328(88)90157-X
Article
Google Scholar
Antunes M, Biala G (2012) The novel object recognition memory: neurobiology, test procedure, and its modifications. Cogn Process 13:93–110
Article
CAS
Google Scholar
Davies DS, Ma J, Jegathees T, Goldsbury C (2017) Microglia show altered morphology and reduced arborization in human brain during aging and Alzheimer’s disease. Brain Pathol. https://doi.org/10.1111/bpa.12456
Article
Google Scholar
Young K, Morrison H (2018) Quantifying microglia morphology from photomicrographs of immunohistochemistry prepared tissue using imagej. J Vis Exp. https://doi.org/10.3791/57648
Article
Google Scholar
Wang C, Guerriero LE, Huffman DM, Ajwad AA, Brooks TC, Sunderam S, Seifert AW, O’Hara BF (2020) A comparative study of sleep and diurnal patterns in house mouse (Mus musculus) and Spiny mouse (Acomys cahirinus). Sci Rep. https://doi.org/10.1038/s41598-020-67859-w
Article
Google Scholar
Fritz EM, Kreuzer M, Altunkaya A, Singewald N, Fenzl T (2021) Altered sleep behavior in a genetic mouse model of impaired fear extinction. Sci Rep. https://doi.org/10.1038/s41598-021-88475-2
Article
Google Scholar
Wimmer ME, Rising J, Galante RJ, Wyner A, Pack AI, Abel T (2013) Aging in mice reduces the ability to sustain sleep/wake states. PLoS ONE. https://doi.org/10.1371/journal.pone.0081880
Article
Google Scholar
Li YK, Wang F, Wang W, Luo Y, Wu PF, Xiao JL, Hu ZL, Jin Y, Hu G, Chen JG (2012) Aquaporin-4 deficiency impairs synaptic plasticity and associative fear memory in the lateral amygdala: involvement of downregulation of glutamate transporter-1 expression. Neuropsychopharmacology. https://doi.org/10.1038/npp.2012.34
Article
Google Scholar
Skucas VA, Mathews IB, Yang J, Cheng Q, Treister A, Duffy AM, Verkman AS, Hempstead BL, Wood MA, Binder DK, Scharfman HE (2011) Impairment of select forms of spatial memory and neurotrophin-dependent synaptic plasticity by deletion of glial aquaporin-4. J Neurosci. https://doi.org/10.1523/jneurosci.6249-10.2011
Article
Google Scholar
Siegel JM (2005) Clues to the functions of mammalian sleep. Nature. https://doi.org/10.1038/nature04285
Article
Google Scholar
Irwin MR (2015) Why sleep is important for health: a psychoneuroimmunology perspective. Annu Rev Psychol. https://doi.org/10.1146/annurev-psych-010213-115205
Article
Google Scholar
Krause AJ, Simon EB, Mander BA, Greer SM, Saletin JM, Goldstein-Piekarski AN, Walker MP (2017) The sleep-deprived human brain. Nat Rev Neurosci. https://doi.org/10.1038/nrn.2017.55
Article
Google Scholar
Diekelmann S, Born J (2010) The memory function of sleep. Nat Rev Neurosci 11:114–126. https://doi.org/10.1038/NRN2762
Article
CAS
Google Scholar
Killgore WDS (2010) Effects of sleep deprivation on cognition. Prog Brain Res. https://doi.org/10.1016/B978-0-444-53702-7.00007-5
Article
Google Scholar
Peter-Derex L, Yammine P, Bastuji H, Croisile B (2015) Sleep and Alzheimer’s disease. Sleep Med Rev. https://doi.org/10.1016/j.smrv.2014.03.007
Article
Google Scholar
Ba L, Huang L, He Z, Deng S, Xie Y, Zhang M, Jacob C, Antonecchia E, Liu Y, Xiao W, Xie Q, Huang Z, Yi C, D’Ascenzo N, Ding F (2021) Does chronic sleep fragmentation lead to Alzheimer’s disease in young wild-type mice? Front Aging Neurosci. https://doi.org/10.3389/fnagi.2021.759983
Article
Google Scholar
Deane R, Sagare A, Hamm K, Parisi M, Lane S, Finn MB, Holtzman DM, Zlokovic BV (2008) apoE isoform-specific disruption of amyloid β peptide clearance from mouse brain. J Clin Investig. https://doi.org/10.1172/JCI36663
Article
Google Scholar
Nedergaard M (2013) Garbage truck of the brain. Science 1979:340. https://doi.org/10.1126/science.1240514
Article
Google Scholar
Kuchibhotla KV, Goldman ST, Lattarulo CR, Wu HY, Hyman BT, Bacskai BJ (2008) Aβ plaques lead to aberrant regulation of calcium homeostasis in vivo resulting in structural and functional disruption of neuronal networks. Neuron. https://doi.org/10.1016/j.neuron.2008.06.008
Article
Google Scholar
Harrison Y, Horne JA (2000) The impact of sleep deprivation on decision making: a review. J Exp Psychol Appl. https://doi.org/10.1037/1076-898X.6.3.236
Article
Google Scholar
Diekelmann S (2014) Sleep for cognitive enhancement. Front Syst Neurosci. https://doi.org/10.3389/fnsys.2014.00046
Article
Google Scholar
Inostroza M, Born J (2013) Sleep for preserving and transforming episodic memory. Annu Rev Neurosci. https://doi.org/10.1146/annurev-neuro-062012-170429
Article
Google Scholar
Goel N, Rao H, Durmer JS, Dinges DF (2009) Neurocognitive consequences of sleep deprivation. Semin Neurol. https://doi.org/10.1055/s-0029-1237117
Article
Google Scholar
Omisade A, Buxton OM, Rusak B (2010) Impact of acute sleep restriction on cortisol and leptin levels in young women. Physiol Behav. https://doi.org/10.1016/j.physbeh.2010.01.028
Article
Google Scholar
Spiegel K, Leproult R, van Cauter E (1999) Impact of sleep debt on metabolic and endocrine function. Lancet. https://doi.org/10.1016/S0140-6736(99)01376-8
Article
Google Scholar
Goldstein AN, Walker MP (2014) The role of sleep in emotional brain function. Annu Rev Clin Psychol. https://doi.org/10.1146/annurev-clinpsy-032813-153716
Article
Google Scholar
Zohar D, Tzischinsky O, Epstein R, Lavie P (2005) The effects of sleep loss on medical residents’ emotional reactions to work events: a cognitive-energy model. Sleep. https://doi.org/10.1093/sleep/28.1.47
Article
Google Scholar
Bastianini S, Alvente S, Berteotti C, Lo Martire V, Silvani A, Swoap SJ, Valli A, Zoccoli G, Cohen G (2017) Accurate discrimination of the wake-sleep states of mice using non-invasive whole-body plethysmography. Sci Rep. https://doi.org/10.1038/srep41698
Article
Google Scholar
Fisher SP, Godinho SIH, Pothecary CA, Hankins MW, Foster RG, Peirson SN (2012) Rapid assessment of sleep-wake behavior in mice. J Biol Rhythms. https://doi.org/10.1177/0748730411431550
Article
Google Scholar
Mégevand P, Quairiaux C, Lascano AM, Kiss JZ, Michel CM (2008) A mouse model for studying large-scale neuronal networks using EEG mapping techniques. Neuroimage. https://doi.org/10.1016/j.neuroimage.2008.05.016
Article
Google Scholar
Parfitt GM, Nguyen R, Bang JY, Aqrabawi AJ, Tran MM, Seo DK, Richards BA, Kim JC (2017) Bidirectional control of anxiety-related behaviors in mice: role of inputs arising from the ventral hippocampus to the lateral septum and medial prefrontal cortex. Neuropsychopharmacology. https://doi.org/10.1038/npp.2017.56
Article
Google Scholar
Trent NL, Menard JL (2010) The ventral hippocampus and the lateral septum work in tandem to regulate rats’ open-arm exploration in the elevated plus-maze. Physiol Behav. https://doi.org/10.1016/j.physbeh.2010.04.035
Article
Google Scholar
Tingley D, Buzsáki G (2018) Transformation of a spatial map across the hippocampal-lateral septal circuit. Neuron. https://doi.org/10.1016/j.neuron.2018.04.028
Article
Google Scholar
Balcerek E, Włodkowska U, Czajkowski R (2021) Retrosplenial cortex in spatial memory: focus on immediate early genes mapping. Mol Brain. https://doi.org/10.1186/S13041-021-00880-W
Article
Google Scholar
Adolphs R, Tranel D, Denburg N (2000) Impaired emotional declarative memory following unilateral amygdala damage. Learn Mem. https://doi.org/10.1101/lm.7.3.180
Article
Google Scholar
Manns JR, Bass DI (2016) The amygdala and prioritization of declarative memories. Curr Dir Psychol Sci. https://doi.org/10.1177/0963721416654456
Article
Google Scholar
Virta JJ, Heikkilä K, Perola M, Koskenvuo M, Räihä I, Rinne JO, Kaprio J (2013) Midlife sleep characteristics associated with late life cognitive function. Sleep. https://doi.org/10.5665/sleep.3052
Article
Google Scholar
Buysse DJ, Reynolds CF, Monk TH, Berman SR, Kupfer DJ (1989) The Pittsburgh sleep quality index: a new instrument for psychiatric practice and research. Psychiatry Res. https://doi.org/10.1016/0165-1781(89)90047-4
Article
Google Scholar
Simard M, Arcuino G, Takano T, Liu QS, Nedergaard M (2003) Signaling at the gliovascular interface. J Neurosci. https://doi.org/10.1523/jneurosci.23-27-09254.2003
Article
Google Scholar
Troili F, Cipollini V, Moci M, Morena E, Palotai M, Rinaldi V, Romano C, Ristori G, Giubilei F, Salvetti M, Orzi F, Guttmann CRG, Cavallari M (2020) Perivascular unit: this must be the place. The anatomical crossroad between the immune, vascular and nervous system. Front Neuroanat. https://doi.org/10.3389/fnana.2020.00017
Article
Google Scholar
Nedergaard M, Goldman SA (2020) Glymphatic failure as a final common pathway to dementia. Science 1979:370. https://doi.org/10.1126/science.abb8739
Article
CAS
Google Scholar
Benveniste H, Liu X, Koundal S, Sanggaard S, Lee H, & Wardlaw J (2019) The glymphatic system and waste clearance with brain aging: a review. Gerontology 65(2):106–119. https://doi.org/10.1159/000490349
Article
Google Scholar
Mestre H, Du T, Sweeney AM, Liu G, Samson AJ, Peng W, Mortensen KN, Stæger FF, Bork PAR, Bashford L, Toro ER, Tithof J, Kelley DH, Thomas JH, Hjorth PG, Martens EA, Mehta RI, Solis O, Blinder P, Kleinfeld D, Hirase H, Mori Y, Nedergaard M (2020) Cerebrospinal fluid influx drives acute ischemic tissue swelling. Science 1979:367. https://doi.org/10.1126/science.aax7171
Article
CAS
Google Scholar
Harrison IF, Ismail O, Machhada A, Colgan N, Ohene Y, Nahavandi P, Ahmed Z, Fisher A, Meftah S, Murray TK, Ottersen OP, Nagelhus EA, O’Neill MJ, Wells JA, Lythgoe MF (2020) Impaired glymphatic function and clearance of tau in an Alzheimer’s disease model. Brain. https://doi.org/10.1093/brain/awaa179
Article
Google Scholar
Kress BT, Iliff JJ, Xia M, Wang M, Wei Bs HS, Zeppenfeld D, Xie L, Hongyi Kang BS, Xu Q, Liew JA, Plog BA, Ding F, PhD RD, Nedergaard M (2014) Impairment of paravascular clearance pathways in the aging brain. Ann Neurol 76:845–861. https://doi.org/10.1002/ANA.24271
Article
CAS
Google Scholar
Wei F, Song J, Zhang C, Lin J, Xue R, Shan LD, Gong S, Zhang GX, Qin ZH, Xu GY, Wang LH (2019) Chronic stress impairs the aquaporin-4-mediated glymphatic transport through glucocorticoid signaling. Psychopharmacology. https://doi.org/10.1007/s00213-018-5147-6
Article
Google Scholar
Kress BT, Iliff JJ, Xia M, Wang M, Wei Bs HS, Zeppenfeld D, Xie L, Hongyi Kang BS, Xu Q, Liew JA, Plog BA, Ding F, PhD RD, Nedergaard M (2014) Impairment of paravascular clearance pathways in the aging brain. Ann Neurol. https://doi.org/10.1002/ana.24271
Article
Google Scholar
Arighi A, Arcaro M, Fumagalli GG, Carandini T, Pietroboni AM, Sacchi L, Fenoglio C, Serpente M, Sorrentino F, Isgrò G, Turkheimer F, Scarpini E, Galimberti D (2022) Aquaporin-4 cerebrospinal fluid levels are higher in neurodegenerative dementia: looking at glymphatic system dysregulation. Alzheimers Res Ther. https://doi.org/10.1186/S13195-022-01077-6
Article
Google Scholar
Kovacs GG, Yousef A, Kaindl S, Lee VM, Trojanowski JQ (2018) Connexin-43 and aquaporin-4 are markers of ageing-related tau astrogliopathy (ARTAG)-related astroglial response. Neuropathol Appl Neurobiol. https://doi.org/10.1111/nan.12427
Article
Google Scholar
Verkhratsky A, Steardo L, Parpura V, Montana V (2016) Translational potential of astrocytes in brain disorders. Prog Neurobiol. https://doi.org/10.1016/j.pneurobio.2015.09.003
Article
Google Scholar
Liaoi YF, Wang BJ, Cheng HT, Kuo LH, Wolfe MS (2004) Tumor necrosis factor-α, interleukin-1β, and interferon-γ stimulate γ-secretase-mediated cleavage of amyloid precursor protein through a JNK-dependent MAPK pathway. J Biol Chem. https://doi.org/10.1074/jbc.M402034200
Article
Google Scholar
Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Münch AE, Chung WS, Peterson TC, Wilton DK, Frouin A, Napier BA, Panicker N, Kumar M, Buckwalter MS, Rowitch DH, Dawson VL, Dawson TM, Stevens B, Barres BA (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature. https://doi.org/10.1038/nature21029
Article
Google Scholar