Ostrom QT, Gittleman H, Truitt G, Boscia A, Kruchko C, Barnholtz-Sloan JS (2018) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2011–2015. Neuro Oncol. 20(Suppl_4):iv1–iv86
Article
PubMed
PubMed Central
Google Scholar
Daly AF, Rixhon M, Adam C, Dempegioti A, Tichomirowa MA, Beckers A (2006) High prevalence of pituitary adenomas: a cross-sectional study in the province of Liege. Belgium J Clin Endocrinol Metab 91(12):4769–4775
Article
CAS
PubMed
Google Scholar
Ezzat S, Asa SL, Couldwell WT, Barr CE, Dodge WE, Vance ML et al (2004) The prevalence of pituitary adenomas: a systematic review. Cancer 101(3):613–619
Article
PubMed
Google Scholar
Fernandez A, Karavitaki N, Wass JA (2010) Prevalence of pituitary adenomas: a community-based, cross-sectional study in Banbury (Oxfordshire, UK). Clin Endocrinol (Oxf) 72(3):377–382
Article
Google Scholar
Kovacs K, Ryan N, Horvath E, Singer W, Ezrin C (1980) Pituitary adenomas in old age. J Gerontol 35(1):16–22
Article
CAS
PubMed
Google Scholar
McComb DJ, Ryan N, Horvath E, Kovacs K (1983) Subclinical adenomas of the human pituitary New light on old problems. Arch Pathol Lab Med. 107(9):488–491
CAS
PubMed
Google Scholar
Di Ieva A, Rotondo F, Syro LV, Cusimano MD, Kovacs K (2014) Aggressive pituitary adenomas–diagnosis and emerging treatments. Nat Rev Endocrinol 10(7):423–435
Article
PubMed
CAS
Google Scholar
Trouillas J, Burman P, McCormack A, Petersenn S, Popovic V, Dekkers O et al (2018) Aggressive pituitary tumours and carcinomas: two sides of the same coin? Eur J Endocrinol 178(6):C7–C9
Article
CAS
PubMed
Google Scholar
Wass JA, Karavitaki N (2009) Nonfunctioning pituitary adenomas: the oxford experience. Nat Rev Endocrinol 5(9):519–522
Article
PubMed
Google Scholar
Esposito D, Olsson DS, Ragnarsson O, Buchfelder M, Skoglund T, Johannsson G (2019) Non-functioning pituitary adenomas: indications for pituitary surgery and post-surgical management. Pituitary 22(4):422–434
Article
PubMed
PubMed Central
Google Scholar
Delgado-Lopez PD, Pi-Barrio J, Duenas-Polo MT, Pascual-Llorente M, Gordon-Bolanos MC (2018) Recurrent non-functioning pituitary adenomas: a review on the new pathological classification, management guidelines and treatment options. Clin Transl Oncol 20(10):1233–1245
Article
CAS
PubMed
Google Scholar
Kistka HM, Kasl RA, Nayeri A, Utz AL, Weaver KD, Chambless LB (2015) Imaging of resected nonfunctioning pituitary adenomas: the cost of surveillance. J Neurol Surg B Skull Base 76(5):344–350
Article
PubMed
PubMed Central
Google Scholar
Tampourlou M, Ntali G, Ahmed S, Arlt W, Ayuk J, Byrne JV et al (2017) Outcome of nonfunctioning pituitary adenomas that regrow after primary treatment: a study from two large UK centers. J Clin Endocrinol Metab 102(6):1889–1897
Article
PubMed
Google Scholar
Boelaert K, Gittoes NJ (2001) Radiotherapy for non-functioning pituitary adenomas. Eur J Endocrinol 144(6):569–575
Article
CAS
PubMed
Google Scholar
Hammarstrand C, Ragnarsson O, Bengtsson O, Bryngelsson IL, Johannsson G, Olsson DS (2018) Comorbidities in patients with non-functioning pituitary adenoma: influence of long-term growth hormone replacement. Eur J Endocrinol 179(4):229–237
Article
CAS
PubMed
Google Scholar
Asa SL, Mete O, Perry A, Osamura RY (2022) Overview of the 2022 WHO classification of pituitary tumors. Endocr Pathol 33(1):6–26
Article
CAS
PubMed
Google Scholar
Knosp E, Steiner E, Kitz K, Matula C (1993) Pituitary adenomas with invasion of the cavernous sinus space: a magnetic resonance imaging classification compared with surgical findings. Neurosurgery 33(4):610–617. https://doi.org/10.1227/00006123-199310000-00008
Article
CAS
PubMed
Google Scholar
Selman WR, Laws ER Jr, Scheithauer BW, Carpenter SM (1986) The occurrence of dural invasion in pituitary adenomas. J Neurosurg 64(3):402–407
Article
CAS
PubMed
Google Scholar
Micko AS, Wohrer A, Wolfsberger S, Knosp E (2015) Invasion of the cavernous sinus space in pituitary adenomas: endoscopic verification and its correlation with an MRI-based classification. J Neurosurg 122(4):803–811
Article
PubMed
Google Scholar
Thingholm TE, Jorgensen TJ, Jensen ON, Larsen MR (2006) Highly selective enrichment of phosphorylated peptides using titanium dioxide. Nat Protoc 1(4):1929–1935
Article
CAS
PubMed
Google Scholar
Rai A, Radotra BD, Mukherjee KK, Gupta SK, Dutta P (2018) Data of phosphoproteomic analysis of non-functioning pituitary adenoma. Data Brief 18:781–786
Article
PubMed
PubMed Central
Google Scholar
Pathan M, Keerthikumar S, Ang CS, Gangoda L, Quek CY, Williamson NA et al (2015) FunRich: an open access standalone functional enrichment and interaction network analysis tool. Proteomics 15(15):2597–2601
Article
CAS
PubMed
Google Scholar
Vizcaino JA, Deutsch EW, Wang R, Csordas A, Reisinger F, Rios D et al (2014) ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat Biotechnol 32(3):223–226
Article
CAS
PubMed
PubMed Central
Google Scholar
Gupta P, Rai A, Mukherjee KK, Sachdeva N, Radotra BD, Punia RPS et al (2018) Imatinib inhibits GH secretion from somatotropinomas. Front Endocrinol (Lausanne) 9:453
Article
Google Scholar
Scagliotti V, Avagliano L, Gualtieri A, Graziola F, Doi P, Chalker J et al (2016) Histopathology and molecular characterisation of intrauterine-diagnosed congenital craniopharyngioma. Pituitary 19(1):50–56
Article
CAS
PubMed
Google Scholar
McCabe MJ, Gaston-Massuet C, Tziaferi V, Gregory LC, Alatzoglou KS, Signore M et al (2011) Novel FGF8 mutations associated with recessive holoprosencephaly, craniofacial defects, and hypothalamo-pituitary dysfunction. J Clin Endocrinol Metab 96(10):E1709–E1718
Article
CAS
PubMed
PubMed Central
Google Scholar
Evans CO, Young AN, Brown MR, Brat DJ, Parks JS, Neish AS et al (2001) Novel patterns of gene expression in pituitary adenomas identified by complementary deoxyribonucleic acid microarrays and quantitative reverse transcription-polymerase chain reaction. J Clin Endocrinol Metab 86(7):3097–3107
CAS
PubMed
Google Scholar
Gualtieri A, Kyprianou N, Gregory LC, Vignola ML, Nicholson JG, Tan R et al (2021) Activating mutations in BRAF disrupt the hypothalamo-pituitary axis leading to hypopituitarism in mice and humans. Nat Commun 12(1):2028
Article
CAS
PubMed
PubMed Central
Google Scholar
Giri D, Vignola ML, Gualtieri A, Scagliotti V, McNamara P, Peak M et al (2017) Novel FOXA2 mutation causes hyperinsulinism, hypopituitarism with craniofacial and endoderm-derived organ abnormalities. Hum Mol Genet 26(22):4315–4326
Article
CAS
PubMed
Google Scholar
Sharma K, D’Souza RC, Tyanova S, Schaab C, Wisniewski JR, Cox J et al (2014) Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep 8(5):1583–1594
Article
CAS
PubMed
Google Scholar
Pinto SM, Nirujogi RS, Rojas PL, Patil AH, Manda SS, Subbannayya Y et al (2015) Quantitative phosphoproteomic analysis of IL-33-mediated signaling. Proteomics 15(2–3):532–544
Article
CAS
PubMed
PubMed Central
Google Scholar
Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P et al (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127(3):635–648
Article
CAS
PubMed
Google Scholar
Weatherly DB, Atwood JA 3rd, Minning TA, Cavola C, Tarleton RL, Orlando R (2005) A Heuristic method for assigning a false-discovery rate for protein identifications from Mascot database search results. Mol Cell Proteomics 4(6):762–772
Article
CAS
PubMed
Google Scholar
Eng JK, McCormack AL, Yates JR (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectr 5(11):976–989
Article
CAS
Google Scholar
Semba S, Han SY, Ikeda H, Horii A (2001) Frequent nuclear accumulation of beta-catenin in pituitary adenoma. Cancer 91(1):42–48
Article
CAS
PubMed
Google Scholar
Chambers TJ, Giles A, Brabant G, Davis JR (2013) Wnt signalling in pituitary development and tumorigenesis. Endocr Relat Cancer 20(3):R101–R111
Article
CAS
PubMed
Google Scholar
Fang D, Hawke D, Zheng Y, Xia Y, Meisenhelder J, Nika H et al (2007) Phosphorylation of beta-catenin by AKT promotes beta-catenin transcriptional activity. J Biol Chem 282(15):11221–11229
Article
CAS
PubMed
Google Scholar
Taurin S, Sandbo N, Qin Y, Browning D, Dulin NO (2006) Phosphorylation of beta-catenin by cyclic AMP-dependent protein kinase. J Biol Chem 281(15):9971–9976
Article
CAS
PubMed
Google Scholar
Taurin S, Sandbo N, Yau DM, Sethakorn N, Dulin NO (2008) Phosphorylation of beta-catenin by PKA promotes ATP-induced proliferation of vascular smooth muscle cells. Am J Physiol Cell Physiol 294(5):C1169–C1174
Article
CAS
PubMed
Google Scholar
Giorgianni F, Beranova-Giorgianni S, Desiderio DM (2004) Identification and characterization of phosphorylated proteins in the human pituitary. Proteomics 4(3):587–598
Article
CAS
PubMed
Google Scholar
Beranova-Giorgianni S, Zhao Y, Desiderio DM, Giorgianni F (2006) Phosphoproteomic analysis of the human pituitary. Pituitary 9(2):109–120
Article
CAS
PubMed
Google Scholar
Liu D, Li J, Li N, Lu M, Wen S, Zhan X (2020) Integration of quantitative phosphoproteomics and transcriptomics revealed phosphorylation-mediated molecular events as useful tools for a potential patient stratification and personalized treatment of human nonfunctional pituitary adenomas. EPMA J 11(3):419–467
Article
CAS
PubMed
PubMed Central
Google Scholar
Cicenas J, Zalyte E, Bairoch A, Gaudet P (2018) Kinases and Cancer. Cancers (Basel). https://doi.org/10.3390/cancers10030063
Article
Google Scholar
Lun XK, Szklarczyk D, Gabor A, Dobberstein N, Zanotelli VRT, Saez-Rodriguez J et al (2019) Analysis of the human kinome and phosphatome by mass cytometry reveals overexpression-induced effects on cancer-related signaling. Mol Cell 74(5):1086–1025
Article
CAS
PubMed
PubMed Central
Google Scholar
Clarke RB (2003) p27KIP1 phosphorylation by PKB/Akt leads to poor breast cancer prognosis. Breast Cancer Res 5(3):162–163
Article
PubMed
PubMed Central
Google Scholar
Xia W, Chen JS, Zhou X, Sun PR, Lee DF, Liao Y et al (2004) Phosphorylation/cytoplasmic localization of p21Cip1/WAF1 is associated with HER2/neu overexpression and provides a novel combination predictor for poor prognosis in breast cancer patients. Clin Cancer Res 10(11):3815–3824
Article
CAS
PubMed
Google Scholar
Clevers H, Loh KM, Nusse R (2014) Stem cell signaling An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science 346(6205):1248012
Article
PubMed
CAS
Google Scholar
Zhan T, Rindtorff N, Boutros M (2017) Wnt signaling in cancer. Oncogene 36(11):1461–1473
Article
CAS
PubMed
Google Scholar
Andoniadou CL, Matsushima D, Mousavy Gharavy SN, Signore M, Mackintosh AI, Schaeffer M et al (2013) Sox2(+) stem/progenitor cells in the adult mouse pituitary support organ homeostasis and have tumor-inducing potential. Cell Stem Cell 13(4):433–445
Article
CAS
PubMed
Google Scholar
Russell JP, Lim X, Santambrogio A, Yianni V, Kemkem Y, Wang B et al (2021) Pituitary stem cells produce paracrine WNT signals to control the expansion of their descendant progenitor cells. Elife. https://doi.org/10.7554/eLife.59142
Article
PubMed
PubMed Central
Google Scholar
Gaston-Massuet C, Andoniadou CL, Signore M, Sajedi E, Bird S, Turner JM et al (2008) Genetic interaction between the homeobox transcription factors HESX1 and SIX3 is required for normal pituitary development. Dev Biol 324(2):322–333
Article
CAS
PubMed
PubMed Central
Google Scholar
Gaston-Massuet C, McCabe MJ, Scagliotti V, Young RM, Carreno G, Gregory LC et al (2016) Transcription factor 7-like 1 is involved in hypothalamo-pituitary axis development in mice and humans. Proc Natl Acad Sci U S A 113(5):E548–E557
Article
CAS
PubMed
PubMed Central
Google Scholar
Gaston-Massuet C, Andoniadou CL, Signore M, Jayakody SA, Charolidi N, Kyeyune R et al (2011) Increased Wingless (Wnt) signaling in pituitary progenitor/stem cells gives rise to pituitary tumors in mice and humans. Proc Natl Acad Sci U S A 108(28):11482–11487
Article
CAS
PubMed
PubMed Central
Google Scholar
Buslei R, Nolde M, Hofmann B, Meissner S, Eyupoglu IY, Siebzehnrubl F et al (2005) Common mutations of beta-catenin in adamantinomatous craniopharyngiomas but not in other tumours originating from the sellar region. Acta Neuropathol 109(6):589–597
Article
CAS
PubMed
Google Scholar
Andoniadou CL, Gaston-Massuet C, Reddy R, Schneider RP, Blasco MA, Le Tissier P et al (2012) Identification of novel pathways involved in the pathogenesis of human adamantinomatous craniopharyngioma. Acta Neuropathol 124(2):259–271
Article
CAS
PubMed
PubMed Central
Google Scholar
Miyakoshi T, Takei M, Kajiya H, Egashira N, Takekoshi S, Teramoto A et al (2008) Expression of Wnt4 in human pituitary adenomas regulates activation of the beta-catenin-independent pathway. Endocr Pathol 19(4):261–273
Article
CAS
PubMed
Google Scholar
Elston MS, Gill AJ, Conaglen JV, Clarkson A, Shaw JM, Law AJ et al (2008) Wnt pathway inhibitors are strongly down-regulated in pituitary tumors. Endocrinology 149(3):1235–1242
Article
CAS
PubMed
Google Scholar
Moreno CS, Evans CO, Zhan X, Okor M, Desiderio DM, Oyesiku NM (2005) Novel molecular signaling and classification of human clinically nonfunctional pituitary adenomas identified by gene expression profiling and proteomic analyses. Cancer Res 65(22):10214–10222
Article
CAS
PubMed
Google Scholar
Salomon MP, Wang X, Marzese DM, Hsu SC, Nelson N, Zhang X et al (2018) The epigenomic landscape of pituitary adenomas reveals specific alterations and differentiates among acromegaly, cushing’s disease and endocrine-inactive subtypes. Clin Cancer Res 24(17):4126–4136
Article
CAS
PubMed
Google Scholar
Lan X, Gao H, Wang F, Feng J, Bai J, Zhao P et al (2016) Whole-exome sequencing identifies variants in invasive pituitary adenomas. Oncol Lett 12(4):2319–2328
Article
CAS
PubMed
PubMed Central
Google Scholar
Caimari F, Korbonits M (2016) Novel genetic causes of pituitary adenomas. Clin Cancer Res 22(20):5030–5042
Article
CAS
PubMed
Google Scholar
Song ZJ, Reitman ZJ, Ma ZY, Chen JH, Zhang QL, Shou XF et al (2016) The genome-wide mutational landscape of pituitary adenomas. Cell Res 26(11):1255–1259
Article
CAS
PubMed
PubMed Central
Google Scholar
Rubinfeld B, Albert I, Porfiri E, Fiol C, Munemitsu S, Polakis P (1996) Binding of GSK3beta to the APC-beta-catenin complex and regulation of complex assembly. Science 272(5264):1023–1026
Article
CAS
PubMed
Google Scholar
Aberle H, Bauer A, Stappert J, Kispert A, Kemler R (1997) Beta-catenin is a target for the ubiquitin-proteasome pathway. EMBO J 16(13):3797–3804
Article
CAS
PubMed
PubMed Central
Google Scholar
Hino S, Tanji C, Nakayama KI, Kikuchi A (2005) Phosphorylation of beta-catenin by cyclic AMP-dependent protein kinase stabilizes beta-catenin through inhibition of its ubiquitination. Mol Cell Biol 25(20):9063–9072
Article
CAS
PubMed
PubMed Central
Google Scholar
Brudvik KW, Paulsen JE, Aandahl EM, Roald B, Tasken K (2011) Protein kinase A antagonist inhibits beta-catenin nuclear translocation, c-Myc and COX-2 expression and tumor promotion in Apc(Min/+) mice. Mol Cancer 10:149
Article
CAS
PubMed
PubMed Central
Google Scholar
Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P et al (1996) Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J 15(23):6541–6551
Article
CAS
PubMed
PubMed Central
Google Scholar