Bell GS, Sander JW: The epidemiology of epilepsy: the size of the problem. Seizure 2001, 10(4):306–314; quiz 315–306.
Bien CG, Kurthen M, Baron K, Lux S, Helmstaedter C, Schramm J, Elger CE (2001) Long-term seizure outcome and antiepileptic drug treatment in surgically treated temporal lobe epilepsy patients: a controlled study. Epilepsia 42(11):1416–1421
Article
CAS
PubMed
Google Scholar
Mitchell JW, Seri S, Cavanna AE (2012) Pharmacotherapeutic and Non-Pharmacological Options for Refractory and Difficult-to-Treat Seizures. Journal of central nervous system disease 4:105–115
Article
PubMed
PubMed Central
Google Scholar
Legido A, Katsetos CD (2014) Experimental studies in epilepsy: immunologic and inflammatory mechanisms. Seminars in pediatric neurology 21(3):197–206
Article
PubMed
Google Scholar
Noebels J (2015) Pathway-driven discovery of epilepsy genes. Nat Neurosci 18(3):344–350
Article
CAS
PubMed
PubMed Central
Google Scholar
Patel DC, Tewari BP, Chaunsali L, Sontheimer H: Neuron-glia interactions in the pathophysiology of epilepsy. Nat Rev Neurosci 2019.
Hackett AR, Lee JK (2016) Understanding the NG2 Glial Scar after Spinal Cord Injury. Front Neurol 7:199
Article
PubMed
PubMed Central
Google Scholar
Levine JM, Reynolds R, Fawcett JW (2001) The oligodendrocyte precursor cell in health and disease. Trends Neurosci 24(1):39–47
Article
CAS
PubMed
Google Scholar
McTigue DM, Wei P, Stokes BT (2001) Proliferation of NG2-positive cells and altered oligodendrocyte numbers in the contused rat spinal cord. The Journal of neuroscience : the official journal of the Society for Neuroscience 21(10):3392–3400
Article
CAS
PubMed
Google Scholar
Lytle JM, Wrathall JR (2007) Glial cell loss, proliferation and replacement in the contused murine spinal cord. Eur J Neurosci 25(6):1711–1724
Article
PubMed
Google Scholar
Tripathi R, McTigue DM (2007) Prominent oligodendrocyte genesis along the border of spinal contusion lesions. Glia 55(7):698–711
Article
PubMed
Google Scholar
Zai LJ, Wrathall JR (2005) Cell proliferation and replacement following contusive spinal cord injury. Glia 50(3):247–257
Article
PubMed
Google Scholar
Geha S, Pallud J, Junier MP, Devaux B, Leonard N, Chassoux F, Chneiweiss H, Daumas-Duport C, Varlet P (2010) NG2+/Olig2+ cells are the major cycle-related cell population of the adult human normal brain. Brain Pathol 20(2):399–411
Article
PubMed
Google Scholar
Luo Y, Hu Q, Zhang Q, Hong S, Tang X, Cheng L, Jiang L (2015) Alterations in hippocampal myelin and oligodendrocyte precursor cells during epileptogenesis. Brain Res 1627:154–164
Article
CAS
PubMed
Google Scholar
Scanlon C, Mueller SG, Cheong I, Hartig M, Weiner MW, Laxer KD (2013) Grey and white matter abnormalities in temporal lobe epilepsy with and without mesial temporal sclerosis. J Neurol 260(9):2320–2329
Article
PubMed
Google Scholar
Bardehle S, Kruger M, Buggenthin F, Schwausch J, Ninkovic J, Clevers H, Snippert HJ, Theis FJ, Meyer-Luehmann M, Bechmann I et al: Live imaging of astrocyte responses to acute injury reveals selective juxtavascular proliferation. Nature neuroscience 2013, 16(5):580-+.
Sosunov AA, Wu XP, Tsankova NM, Guilfoyle E, McKhann GM, Goldman JE (2014) Phenotypic Heterogeneity and Plasticity of Isocortical and Hippocampal Astrocytes in the Human Brain. J Neurosci 34(6):2285–2298
Article
CAS
PubMed
PubMed Central
Google Scholar
Sosunov AA, McGovern RA, Mikell CB, Wu XP, Coughlin DG, Crino PB, Weiner HL, Ghatan S, Goldman JE, McKhann GM: Epileptogenic but MRI-normal perituberal tissue in Tuberous Sclerosis Complex contains tuber-specific abnormalities. Acta Neuropathol Com 2015, 3.
Bedner P, Dupper A, Huttmann K, Muller J, Herde MK, Dublin P, Deshpande T, Schramm J, Haussler U, Haas CA et al (2015) Astrocyte uncoupling as a cause of human temporal lobe epilepsy. Brain : a journal of neurology 138(Pt 5):1208–1222
Article
PubMed
Google Scholar
Steinhauser C, Grunnet M, Carmignoto G: Crucial role of astrocytes in temporal lobe epilepsy. Neuroscience 2015.
Mitchell A, Roussos P, Peter C, Tsankova N, Akbarian S (2014) The future of neuroepigenetics in the human brain. Prog Mol Biol Transl Sci 128:199–228
Article
PubMed
PubMed Central
Google Scholar
Jiang Y, Matevossian A, Huang HS, Straubhaar J, Akbarian S (2008) Isolation of neuronal chromatin from brain tissue. BMC Neurosci 9:42
Article
PubMed
PubMed Central
Google Scholar
Matevossian A, Akbarian S: Neuronal nuclei isolation from human postmortem brain tissue. Journal of visualized experiments : JoVE 2008(20).
Psych EC, Akbarian S, Liu C, Knowles JA, Vaccarino FM, Farnham PJ, Crawford GE, Jaffe AE, Pinto D, Dracheva S et al (2015) The PsychENCODE project. Nat Neurosci 18(12):1707–1712
Article
Google Scholar
Cheung I, Shulha HP, Jiang Y, Matevossian A, Wang J, Weng Z, Akbarian S (2010) Developmental regulation and individual differences of neuronal H3K4me3 epigenomes in the prefrontal cortex. Proc Natl Acad Sci USA 107(19):8824–8829
Article
CAS
PubMed
PubMed Central
Google Scholar
Shulha HP, Crisci JL, Reshetov D, Tushir JS, Cheung I, Bharadwaj R, Chou HJ, Houston IB, Peter CJ, Mitchell AC et al (2012) Human-specific histone methylation signatures at transcription start sites in prefrontal neurons. PLoS Biol 10(11):e1001427
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun W, Cornwell A, Li J, Peng S, Osorio MJ, Aalling N, Wang S, Benraiss A, Lou N, Goldman SA et al (2017) SOX9 Is an Astrocyte-Specific Nuclear Marker in the Adult Brain Outside the Neurogenic Regions. J Neurosci 37(17):4493–4507
Article
CAS
PubMed
PubMed Central
Google Scholar
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21
Article
CAS
PubMed
Google Scholar
Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30(7):923–930
Article
CAS
PubMed
Google Scholar
Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550
Article
PubMed
PubMed Central
Google Scholar
Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C, Singh H, Glass CK (2010) Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 38(4):576–589
Article
CAS
PubMed
PubMed Central
Google Scholar
da Huang W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57
Article
CAS
PubMed
Google Scholar
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102(43):15545–15550
Article
CAS
PubMed
PubMed Central
Google Scholar
Zheng GX, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, Ziraldo SB, Wheeler TD, McDermott GP, Zhu J et al (2017) Massively parallel digital transcriptional profiling of single cells. Nat Commun 8:14049
Article
CAS
PubMed
PubMed Central
Google Scholar
Hao Y, Hao S, Andersen-Nissen E, Mauck WM, 3rd, Zheng S, Butler A, Lee MJ, Wilk AJ, Darby C, Zager M et al: Integrated analysis of multimodal single-cell data. Cell 2021, 184(13):3573–3587 e3529.
van den Brink SC, Sage F, Vertesy A, Spanjaard B, Peterson-Maduro J, Baron CS, Robin C, van Oudenaarden A (2017) Single-cell sequencing reveals dissociation-induced gene expression in tissue subpopulations. Nat Methods 14(10):935–936
Article
PubMed
Google Scholar
Aran D, Looney AP, Liu L, Wu E, Fong V, Hsu A, Chak S, Naikawadi RP, Wolters PJ, Abate AR et al (2019) Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat Immunol 20(2):163–172
Article
CAS
PubMed
PubMed Central
Google Scholar
Harris JA, Mihalas S, Hirokawa KE, Whitesell JD, Choi H, Bernard A, Bohn P, Caldejon S, Casal L, Cho A et al (2019) Hierarchical organization of cortical and thalamic connectivity. Nature 575(7781):195–202
Article
CAS
PubMed
PubMed Central
Google Scholar
Darmanis S, Sloan SA, Zhang Y, Enge M, Caneda C, Shuer LM, Hayden Gephart MG, Barres BA, Quake SR (2015) A survey of human brain transcriptome diversity at the single cell level. Proc Natl Acad Sci U S A 112(23):7285–7290
Article
CAS
PubMed
PubMed Central
Google Scholar
Cao J, O'Day DR, Pliner HA, Kingsley PD, Deng M, Daza RM, Zager MA, Aldinger KA, Blecher-Gonen R, Zhang F et al: A human cell atlas of fetal gene expression. Science 2020, 370(6518).
Tome-Garcia J, Tejero R, Nudelman G, Yong RL, Sebra R, Wang H, Fowkes M, Magid M, Walsh M, Silva-Vargas V et al: Prospective Isolation and Comparison of Human Germinal Matrix and Glioblastoma EGFR+ Populations with Stem Cell Properties. Stem Cell Reports 2017.
Tome-Garcia JD, F.; Tsankova, N. M.: FACS-based Isolation of Neural and Glioma Stem Cell Populations from Fresh Human Tissues Utilizing EGF Ligand. Bio-protocol 2017, 7(24):e2659.
Rowitch DH, Lu QR, Kessaris N, Richardson WD (2002) An “oligarchy” rules neural development. Trends Neurosci 25(8):417–422
Article
CAS
PubMed
Google Scholar
Lu QR, Yuk D, Alberta JA, Zhu Z, Pawlitzky I, Chan J, McMahon AP, Stiles CD, Rowitch DH (2000) Sonic hedgehog–regulated oligodendrocyte lineage genes encoding bHLH proteins in the mammalian central nervous system. Neuron 25(2):317–329
Article
CAS
PubMed
Google Scholar
Vallstedt A, Klos JM, Ericson J (2005) Multiple dorsoventral origins of oligodendrocyte generation in the spinal cord and hindbrain. Neuron 45(1):55–67
Article
CAS
PubMed
Google Scholar
Zhang Y, Sloan SA, Clarke LE, Caneda C, Plaza CA, Blumenthal PD, Vogel H, Steinberg GK, Edwards MS, Li G et al (2016) Purification and Characterization of Progenitor and Mature Human Astrocytes Reveals Transcriptional and Functional Differences with Mouse. Neuron 89(1):37–53
Article
CAS
PubMed
Google Scholar
Manuel MN, Mi D, Mason JO, Price DJ (2015) Regulation of cerebral cortical neurogenesis by the Pax6 transcription factor. Front Cell Neurosci 9:70
Article
PubMed
PubMed Central
Google Scholar
Cvekl A, Callaerts P (2017) PAX6: 25th anniversary and more to learn. Exp Eye Res 156:10–21
Article
CAS
PubMed
Google Scholar
Matsumoto Y, Osumi N: [Role of Pax6 in the developing central nervous system]. Brain and nerve = Shinkei kenkyu no shinpo 2008, 60(4):365–374.
Sakurai K, Osumi N (2008) The neurogenesis-controlling factor, Pax6, inhibits proliferation and promotes maturation in murine astrocytes. The Journal of neuroscience : the official journal of the Society for Neuroscience 28(18):4604–4612
Article
CAS
PubMed
Google Scholar
Goc J, Liu JY, Sisodiya SM, Thom M (2014) A spatiotemporal study of gliosis in relation to depth electrode tracks in drug-resistant epilepsy. Eur J Neurosci 39(12):2151–2162
Article
PubMed
PubMed Central
Google Scholar
Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S (2014) Phatnani HP. Guarnieri P: An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex 34(36):11929–11947
CAS
Google Scholar
Lake BB, Codeluppi S, Yung YC, Gao D, Chun J, Kharchenko PV, Linnarsson S, Zhang K (2017) A comparative strategy for single-nucleus and single-cell transcriptomes confirms accuracy in predicted cell-type expression from nuclear RNA. Sci Rep 7(1):6031
Article
PubMed
PubMed Central
Google Scholar
Grindberg RV, Yee-Greenbaum JL, McConnell MJ, Novotny M, O’Shaughnessy AL, Lambert GM, Arauzo-Bravo MJ, Lee J, Fishman M, Robbins GE et al (2013) RNA-sequencing from single nuclei. Proc Natl Acad Sci U S A 110(49):19802–19807
Article
CAS
PubMed
PubMed Central
Google Scholar
Barthelson RA, Lambert GM, Vanier C, Lynch RM, Galbraith DW (2007) Comparison of the contributions of the nuclear and cytoplasmic compartments to global gene expression in human cells. BMC Genomics 8:340
Article
PubMed
PubMed Central
Google Scholar
Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, 3rd, Hao Y, Stoeckius M, Smibert P, Satija R: Comprehensive Integration of Single-Cell Data. Cell 2019, 177(7):1888–1902 e1821.
Jurga AM, Paleczna M, Kadluczka J, Kuter KZ: Beyond the GFAP-Astrocyte Protein Markers in the Brain. Biomolecules 2021, 11(9).
Escartin C, Galea E, Lakatos A, O’Callaghan JP, Petzold GC, Serrano-Pozo A, Steinhauser C, Volterra A, Carmignoto G, Agarwal A et al (2021) Reactive astrocyte nomenclature, definitions, and future directions. Nat Neurosci 24(3):312–325
Article
CAS
PubMed
PubMed Central
Google Scholar
Liddelow SA, Barres BA (2017) Reactive Astrocytes: Production, Function, and Therapeutic Potential. Immunity 46(6):957–967
Article
CAS
PubMed
Google Scholar
Al-Dalahmah O, Sosunov AA, Shaik A, Ofori K, Liu Y, Vonsattel JP, Adorjan I, Menon V, Goldman JE (2020) Single-nucleus RNA-seq identifies Huntington disease astrocyte states. Acta Neuropathol Commun 8(1):19
Article
CAS
PubMed
PubMed Central
Google Scholar
Fard MK, van der Meer F, Sanchez P, Cantuti-Castelvetri L, Mandad S, Jakel S, Fornasiero EF, Schmitt S, Ehrlich M, Starost L et al: BCAS1 expression defines a population of early myelinating oligodendrocytes in multiple sclerosis lesions. Sci Transl Med 2017, 9(419).
Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, Lennon NJ, Livak KJ, Mikkelsen TS, Rinn JL (2014) The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 32(4):381–386
Article
CAS
PubMed
PubMed Central
Google Scholar
Qiu X, Mao Q, Tang Y, Wang L, Chawla R, Pliner HA, Trapnell C (2017) Reversed graph embedding resolves complex single-cell trajectories. Nat Methods 14(10):979–982
Article
CAS
PubMed
PubMed Central
Google Scholar
Colodner KJ, Montana RA, Anthony DC, Folkerth RD, De Girolami U, Feany MB (2005) Proliferative potential of human astrocytes. J Neuropathol Exp Neurol 64(2):163–169
Article
PubMed
Google Scholar
Liu B, Neufeld AH (2007) Activation of epidermal growth factor receptors in astrocytes: from development to neural injury. J Neurosci Res 85(16):3523–3529
Article
CAS
PubMed
Google Scholar
Codega P, Silva-Vargas V, Paul A, Maldonado-Soto AR, Deleo AM, Pastrana E, Doetsch F (2014) Prospective identification and purification of quiescent adult neural stem cells from their in vivo niche. Neuron 82(3):545–559
Article
CAS
PubMed
PubMed Central
Google Scholar
Tome-Garcia J, Erfani P, Nudelman G, Tsankov AM, Katsyv I, Tejero R, Bin Z, Walsh M, Friedel RH, Zaslavsky E et al (2018) Analysis of chromatin accessibility uncovers TEAD1 as a regulator of migration in human glioblastoma. Nat Commun 9(1):4020
Article
PubMed
PubMed Central
Google Scholar
Cardona-Alberich A, Tourbez M, Pearce SF, Sibley CR (2021) Elucidating the cellular dynamics of the brain with single-cell RNA sequencing. RNA Biol 18(7):1063–1084
Article
CAS
PubMed
PubMed Central
Google Scholar
Armand EJ, Li J, Xie F, Luo C, Mukamel EA (2021) Single-Cell Sequencing of Brain Cell Transcriptomes and Epigenomes. Neuron 109(1):11–26
Article
CAS
PubMed
PubMed Central
Google Scholar
Pfisterer U, Petukhov V, Demharter S, Meichsner J, Thompson JJ, Batiuk MY, Asenjo-Martinez A, Vasistha NA, Thakur A, Mikkelsen J et al (2020) Identification of epilepsy-associated neuronal subtypes and gene expression underlying epileptogenesis. Nat Commun 11(1):5038
Article
CAS
PubMed
PubMed Central
Google Scholar
Jungblut M, Tiveron MC, Barral S, Abrahamsen B, Knobel S, Pennartz S, Schmitz J, Perraut M, Pfrieger FW, Stoffel W et al (2012) Isolation and characterization of living primary astroglial cells using the new GLAST-specific monoclonal antibody ACSA-1. Glia 60(6):894–907
Article
PubMed
Google Scholar
Foo LC, Allen NJ, Bushong EA, Ventura PB, Chung WS, Zhou L, Cahoy JD, Daneman R, Zong H, Ellisman MH et al (2011) Development of a method for the purification and culture of rodent astrocytes. Neuron 71(5):799–811
Article
CAS
PubMed
PubMed Central
Google Scholar
Halene TB, Kozlenkov A, Jiang Y, Mitchell AC, Javidfar B, Dincer A, Park R, Wiseman J, Croxson PL, Giannaris EL et al (2016) NeuN+ neuronal nuclei in non-human primate prefrontal cortex and subcortical white matter after clozapine exposure. Schizophr Res 170(2–3):235–244
Article
PubMed
PubMed Central
Google Scholar
Kundakovic M, Jiang Y, Kavanagh DH, Dincer A, Brown L, Pothula V, Zharovsky E, Park R, Jacobov R, Magro I et al (2017) Practical Guidelines for High-Resolution Epigenomic Profiling of Nucleosomal Histones in Postmortem Human Brain Tissue. Biol Psychiat 81(2):162–170
Article
CAS
PubMed
Google Scholar
Fullard JF, Giambartolomei C, Hauberg ME, Xu K, Voloudakis G, Shao Z, Bare C, Dudley JT, Mattheisen M, Robakis NK et al (2017) Open chromatin profiling of human postmortem brain infers functional roles for non-coding schizophrenia loci. Hum Mol Genet 26(10):1942–1951
Article
CAS
PubMed
PubMed Central
Google Scholar
Yamaguchi M, Seki T, Imayoshi I, Tamamaki N, Hayashi Y, Tatebayashi Y, Hitoshi S (2016) Neural stem cells and neuro/gliogenesis in the central nervous system: understanding the structural and functional plasticity of the developing, mature, and diseased brain. J Physiol Sci 66(3):197–206
Article
CAS
PubMed
Google Scholar
Dixit AB, Banerjee J, Srivastava A, Tripathi M, Sarkar C, Kakkar A, Jain M, Chandra PS (2016) RNA-seq analysis of hippocampal tissues reveals novel candidate genes for drug refractory epilepsy in patients with MTLE-HS. Genomics 107(5):178–188
Article
CAS
PubMed
Google Scholar
Han CL, Zhao XM, Liu YP, Wang KL, Chen N, Hu W, Zhang JG, Ge M, Meng FG (2019) Gene Expression Profiling of Two Epilepsy Models Reveals the ECM/Integrin signaling Pathway is Involved in Epiletogenesis. Neuroscience 396:187–199
Article
CAS
PubMed
Google Scholar
Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Munch AE, Chung WS, Peterson TC et al (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541(7638):481–487
Article
CAS
PubMed
PubMed Central
Google Scholar
Messing A, Brenner M, Feany MB, Nedergaard M, Goldman JE (2012) Alexander disease. J Neurosci 32(15):5017–5023
Article
CAS
PubMed
PubMed Central
Google Scholar
Sosunov AA, Guilfoyle E, Wu X, McKhann GM 2nd, Goldman JE (2013) Phenotypic conversions of “protoplasmic” to “reactive” astrocytes in Alexander disease. J Neurosci 33(17):7439–7450
Article
CAS
PubMed
PubMed Central
Google Scholar
Pearson TS, Akman C, Hinton VJ, Engelstad K, De Vivo DC (2013) Phenotypic spectrum of glucose transporter type 1 deficiency syndrome (Glut1 DS). Curr Neurol Neurosci Rep 13(4):342
Article
PubMed
Google Scholar
Sugimoto J, Tanaka M, Sugiyama K, Ito Y, Aizawa H, Soma M, Shimizu T, Mitani A, Tanaka K (2018) Region-specific deletions of the glutamate transporter GLT1 differentially affect seizure activity and neurodegeneration in mice. Glia 66(4):777–788
Article
PubMed
Google Scholar
Steinhauser C, Grunnet M, Carmignoto G (2016) Crucial role of astrocytes in temporal lobe epilepsy. Neuroscience 323:157–169
Article
CAS
PubMed
Google Scholar
Deshpande T, Li T, Herde MK, Becker A, Vatter H, Schwarz MK, Henneberger C, Steinhauser C, Bedner P (2017) Subcellular reorganization and altered phosphorylation of the astrocytic gap junction protein connexin43 in human and experimental temporal lobe epilepsy. Glia 65(11):1809–1820
Article
PubMed
Google Scholar
Liu M, Pleasure SJ, Collins AE, Noebels JL, Naya FJ, Tsai MJ, Lowenstein DH (2000) Loss of BETA2/NeuroD leads to malformation of the dentate gyrus and epilepsy. Proc Natl Acad Sci U S A 97(2):865–870
Article
CAS
PubMed
PubMed Central
Google Scholar
Jakel S, Agirre E, Mendanha Falcao A, van Bruggen D, Lee KW, Knuesel I, Malhotra D, Ffrench-Constant C, Williams A, Castelo-Branco G (2019) Altered human oligodendrocyte heterogeneity in multiple sclerosis. Nature 566(7745):543–547
Article
CAS
PubMed
PubMed Central
Google Scholar
Falcao AM, van Bruggen D, Marques S, Meijer M, Jakel S, Agirre E, Samudyata, Floriddia EM, Vanichkina DP, Ffrench-Constant C et al: Disease-specific oligodendrocyte lineage cells arise in multiple sclerosis. Nat Med 2018, 24(12):1837–1844.
Tatsumi K, Isonishi A, Yamasaki M, Kawabe Y, Morita-Takemura S, Nakahara K, Terada Y, Shinjo T, Okuda H, Tanaka T et al (2018) Olig2-Lineage Astrocytes: A Distinct Subtype of Astrocytes That Differs from GFAP Astrocytes. Front Neuroanat 12:8
Article
PubMed
PubMed Central
Google Scholar
Griemsmann S, Hoft SP, Bedner P, Zhang J, von Staden E, Beinhauer A, Degen J, Dublin P, Cope DW, Richter N et al (2015) Characterization of Panglial Gap Junction Networks in the Thalamus, Neocortex, and Hippocampus Reveals a Unique Population of Glial Cells. Cereb Cortex 25(10):3420–3433
Article
PubMed
Google Scholar
Jiang P, Chen C, Wang R, Chechneva OV, Chung SH, Rao MS, Pleasure DE, Liu Y, Zhang Q, Deng W (2013) hESC-derived Olig2+ progenitors generate a subtype of astroglia with protective effects against ischaemic brain injury. Nat Commun 4:2196
Article
PubMed
Google Scholar
Ohayon D, Escalas N, Cochard P, Glise B, Danesin C, Soula C (2019) Sulfatase 2 promotes generation of a spinal cord astrocyte subtype that stands out through the expression of Olig2. Glia 67(8):1478–1495
Article
PubMed
PubMed Central
Google Scholar
Wang H, Xu L, Lai C, Hou K, Chen J, Guo Y, Sambangi A, Swaminathan S, Xie C, Wu Z et al (2021) Region-specific distribution of Olig2-expressing astrocytes in adult mouse brain and spinal cord. Mol Brain 14(1):36
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen Y, Miles DK, Hoang T, Shi J, Hurlock E, Kernie SG, Lu QR (2008) The basic helix-loop-helix transcription factor olig2 is critical for reactive astrocyte proliferation after cortical injury. The Journal of neuroscience : the official journal of the Society for Neuroscience 28(43):10983–10989
Article
CAS
PubMed
Google Scholar
Tatsumi K, Takebayashi H, Manabe T, Tanaka KF, Makinodan M, Yamauchi T, Makinodan E, Matsuyoshi H, Okuda H, Ikenaka K et al (2008) Genetic fate mapping of Olig2 progenitors in the injured adult cerebral cortex reveals preferential differentiation into astrocytes. J Neurosci Res 86(16):3494–3502
Article
CAS
PubMed
Google Scholar
Cai J, Chen Y, Cai WH, Hurlock EC, Wu H, Kernie SG, Parada LF, Lu QR (2007) A crucial role for Olig2 in white matter astrocyte development. Development 134(10):1887–1899
Article
CAS
PubMed
Google Scholar
Marshall CA, Novitch BG, Goldman JE (2005) Olig2 directs astrocyte and oligodendrocyte formation in postnatal subventricular zone cells. The Journal of neuroscience : the official journal of the Society for Neuroscience 25(32):7289–7298
Article
CAS
PubMed
Google Scholar
Liu X, Li C, Li J, Xie L, Hong Z, Zheng K, Zhao X, Yang A, Xu X, Tao H et al (2022) EGF signaling promotes the lineage conversion of astrocytes into oligodendrocytes. Mol Med 28(1):50
Article
CAS
PubMed
PubMed Central
Google Scholar
Hou J, Bi H, Ye Z, Huang W, Zou G, Zou X, Shi YS, Shen Y, Ma Q, Kirchhoff F et al (2021) Pen-2 Negatively Regulates the Differentiation of Oligodendrocyte Precursor Cells into Astrocytes in the Central Nervous System. The Journal of neuroscience : the official journal of the Society for Neuroscience 41(23):4976–4990
Article
CAS
PubMed
Google Scholar
Hu JG, Wang YX, Zhou JS, Chen CJ, Wang FC, Li XW, Lu HZ (2011) Differential gene expression in oligodendrocyte progenitor cells, oligodendrocytes and type II astrocytes. Tohoku J Exp Med 223(3):161–176
Article
CAS
PubMed
Google Scholar