Greig NH, Tweedie D, Rachmany L, Li Y, Rubovitch V, Schreiber S et al (2014) Incretin mimetics as pharmacologic tools to elucidate and as a new drug strategy to treat traumatic brain injury. Alzheimers Dement 10:S62–S75
Article
Google Scholar
LaPlaca MC, Simon CM, Prado GR, Cullen DK (2007) CNS injury biomechanics and experimental models. Prog Brain Res 161:13–26
Article
CAS
Google Scholar
Cheng G, Kong R, Zhang L, Zhang J (2012) Mitochondria in traumatic brain injury and mitochondrial-targeted multipotential therapeutic strategies. Br J Pharmacol 167:699–719
Article
CAS
Google Scholar
McIntosh TK, Juhler M, Wieloch T (1998) Novel pharmacologic strategies in the treatment of experimental traumatic brain injury. J Neurotrauma 15:731–769
Article
CAS
Google Scholar
Simon DW, McGeachy MJ, Bayır H, Clark RSB, Loane DJ, Kochanek PM (2017) The far-reaching scope of neuroinflammation after traumatic brain injury. Nat Rev Neurol 13:171–191
Article
Google Scholar
Temkin NR, Anderson GD, Winn HR, Ellenbogen RG, Britz GW, Schuster J et al (2007) Magnesium sulfate for neuroprotection after traumatic brain injury: a randomised controlled trial. Lancet Neurol 6:29–38
Article
CAS
Google Scholar
Bains M, Hall ED (2012) Antioxidant therapies in traumatic brain and spinal cord injury. Biochim Biophys Acta BBA Mol Basis Dis 1822:675–684
Article
CAS
Google Scholar
Das M, Royer TV, Leff LG (2012) Interactions between aquatic bacteria and an aquatic hyphomycete on decomposing maple leaves. Fungal Ecol 5:236–244
Article
Google Scholar
Maas AI, Stocchetti N, Bullock R (2008) Moderate and severe traumatic brain injury in adults. Lancet Neurol 7:728–741
Article
Google Scholar
Bellander B-M, Singhrao SK, Ohlsson M, Mattsson P, Svensson M (2001) Complement activation in the human brain after traumatic head injury. J Neurotrauma 18:1295–1311
Article
CAS
Google Scholar
Stahel PF, Morganti-Kossmann MC, Perez D, Redaelli C, Gloor B, Trentz O et al (2001) Intrathecal levels of complement-derived soluble membrane attack complex (sC5b-9) correlate with blood–brain barrier dysfunction in patients with traumatic brain injury. J Neurotrauma 18:773–781
Article
CAS
Google Scholar
Leinhase I, Schmidt OI, Thurman JM, Hossini AM, Rozanski M, Taha ME et al (2006) Pharmacological complement inhibition at the C3 convertase level promotes neuronal survival, neuroprotective intracerebral gene expression, and neurological outcome after traumatic brain injury. Exp Neurol 199:454–464
Article
CAS
Google Scholar
Stahel PF, Flierl MA, Morgan BP, Persigehl I, Stoll C, Conrad C et al (2009) Absence of the complement regulatory molecule CD59a leads to exacerbated neuropathology after traumatic brain injury in mice. J Neuroinflamm 6:2
Article
CAS
Google Scholar
Burk A-M, Martin M, Flierl MA, Rittirsch D, Helm M, Lampl L et al (2012) Early complementopathy after multiple injuries in humans. Shock 37:348–354
Article
Google Scholar
Orsini F, De Blasio D, Zangari R, Zanier ER, De Simoni M-G (2014) Versatility of the complement system in neuroinflammation, neurodegeneration and brain homeostasis. Front Cell Neurosci 8:380
Article
CAS
Google Scholar
Neglia L, Fumagalli S, Orsini F, Zanetti A, Perego C, De Simoni M-G (2020) Mannose-binding lectin has a direct deleterious effect on ischemic brain microvascular endothelial cells. J Cereb Blood Flow Metab 40:1608–1620
Article
CAS
Google Scholar
Orsini F, Villa P, Parrella S, Zangari R, Zanier ER, Gesuete R et al (2012) Targeting mannose-binding lectin confers long-lasting protection with a surprisingly wide therapeutic window in cerebral ischemia. Circulation 126:1484–1494
Article
CAS
Google Scholar
Orsini F, Chrysanthou E, Dudler T, Cummings WJ, Takahashi M, Fujita T et al (2016) Mannan binding lectin-associated serine protease-2 (MASP-2) critically contributes to post-ischemic brain injury independent of MASP-1. J Neuroinflamm 13:213
Article
CAS
Google Scholar
Neglia L, Oggioni M, Mercurio D, De Simoni M-G, Fumagalli S (2020) Specific contribution of mannose-binding lectin murine isoforms to brain ischemia/reperfusion injury. Cell Mol Immunol 17:218–226
Article
CAS
Google Scholar
Orsini F, Fumagalli S, Császár E, Tóth K, De Blasio D, Zangari R et al (2018) Mannose-binding lectin drives platelet inflammatory phenotype and vascular damage after cerebral ischemia in mice via IL (interleukin)-1α. Arterioscler Thromb Vasc Biol 38:2678–2690
Article
CAS
Google Scholar
Zanier ER, Fumagalli S, Perego C, Pischiutta F, De Simoni M-G (2015) Shape descriptors of the “never resting” microglia in three different acute brain injury models in mice. Intensive Care Med Exp 3:7
Article
Google Scholar
Longhi L, Perego C, Ortolano F, Zanier ER, Bianchi P, Stocchetti N et al (2009) C1-inhibitor attenuates neurobehavioral deficits and reduces contusion volume after controlled cortical impact brain injury in mice*. Crit Care Med 37:659–665
Article
CAS
Google Scholar
De Blasio D, Fumagalli S, Orsini F, Neglia L, Perego C, Ortolano F et al (2019) Human brain trauma severity is associated with lectin complement pathway activation. J Cereb Blood Flow Metab 39:794–807
Article
Google Scholar
Pischiutta F, D’Amico G, Dander E, Biondi A, Biagi E, Citerio G et al (2014) Immunosuppression does not affect human bone marrow mesenchymal stromal cell efficacy after transplantation in traumatized mice brain. Neuropharmacology 79:119–126
Article
CAS
Google Scholar
Zanier ER, Montinaro M, Vigano M, Villa P, Fumagalli S, Pischiutta F et al (2011) Human umbilical cord blood mesenchymal stem cells protect mice brain after trauma. Crit Care Med 39:2501–2510
Article
Google Scholar
Zanier ER, Marchesi F, Ortolano F, Perego C, Arabian M, Zoerle T et al (2015) Fractalkine receptor deficiency is associated with early protection but late worsening of outcome following brain trauma in mice. J Neurotrauma 33:1060–1072
Article
Google Scholar
Zanier ER, Pischiutta F, Riganti L, Marchesi F, Turola E, Fumagalli S et al (2014) Bone marrow mesenchymal stromal cells drive protective M2 microglia polarization after brain trauma. Neurotherapeutics 11:679–695
Article
CAS
Google Scholar
De Blasio D, Fumagalli S, Longhi L, Orsini F, Palmioli A, Stravalaci M et al (2017) Pharmacological inhibition of mannose-binding lectin ameliorates neurobehavioral dysfunction following experimental traumatic brain injury. J Cereb Blood Flow Metab 37:938–950
Article
Google Scholar
Brody DL, Mac Donald C, Kessens CC, Yuede C, Parsadanian M, Spinner M et al (2007) Electromagnetic controlled cortical impact device for precise, graded experimental traumatic brain injury. J Neurotrauma 24:657–673
Article
Google Scholar
Fujimoto ST, Longhi L, Saatman KE, Conte V, Stocchetti N, McIntosh TK (2004) Motor and cognitive function evaluation following experimental traumatic brain injury. Neurosci Biobehav Rev 28:365–378
Article
Google Scholar
Mouzon BC, Bachmeier C, Ferro A, Ojo J-O, Crynen G, Acker CM et al (2014) Chronic neuropathological and neurobehavioral changes in a repetitive mild traumatic brain injury model. Ann Neurol 75:241–254
Article
Google Scholar
Longhi L, Orsini F, De Blasio D, Fumagalli S, Ortolano F, Locatelli M et al (2014) Mannose-binding lectin is expressed after clinical and experimental traumatic brain injury and its deletion is protective*. Read Online Crit Care Med Soc Crit Care Med 42:1910–1918
CAS
Google Scholar
Perego C, Fumagalli S, De Simoni M-G (2011) Temporal pattern of expression and colocalization of microglia/macrophage phenotype markers following brain ischemic injury in mice. J Neuroinflamm 8:174
Article
CAS
Google Scholar
Fumagalli S, Fiordaliso F, Perego C, Corbelli A, Mariani A, De Paola M et al (2019) The phagocytic state of brain myeloid cells after ischemia revealed by superresolution structured illumination microscopy. J Neuroinflamm 16:9
Article
Google Scholar
Petersen SV, Thiel S, Jensen L, Steffensen R, Jensenius JC (2001) An assay for the mannan-binding lectin pathway of complement activation. J Immunol Methods 257:107–116
Article
CAS
Google Scholar
Dodds AW (1993) Small-scale preparation of complement components C3 and C4. Methods Enzymol 223:46–61
Article
CAS
Google Scholar
Schwaeble WJ, Lynch NJ, Clark JE, Marber M, Samani NJ, Ali YM et al (2011) Targeting of mannan-binding lectin-associated serine protease-2 confers protection from myocardial and gastrointestinal ischemia/reperfusion injury. Proc Natl Acad Sci 108:7523–7528
Article
CAS
Google Scholar
Ali YM, Lynch NJ, Haleem KS, Fujita T, Endo Y, Hansen S et al (2012) The lectin pathway of complement activation is a critical component of the innate immune response to pneumococcal infection. PLoS Pathog 8:e1002793
Article
CAS
Google Scholar
Vang Petersen S, Thiel S, Jensenius JC (2001) The mannan-binding lectin pathway of complement activation: biology and disease association. Mol Immunol 38:133–149
Article
CAS
Google Scholar
Wallis R, Mitchell DA, Schmid R, Schwaeble WJ, Keeble AH (2010) Paths reunited: initiation of the classical and lectin pathways of complement activation. Immunobiology 215:1–11
Article
CAS
Google Scholar
Chen C-B, Wallis R (2004) Two mechanisms for mannose-binding protein modulation of the activity of its associated serine proteases. J Biol Chem 279:26058–26065
Article
CAS
Google Scholar
Héja D, Harmat V, Fodor K, Wilmanns M, Dobó J, Kékesi KA et al (2012) Monospecific inhibitors show that both mannan-binding lectin-associated serine protease-1 (MASP-1) and -2 are essential for lectin pathway activation and reveal structural plasticity of MASP-2. J Biol Chem 287:20290–20300
Article
CAS
Google Scholar
Héja D, Kocsis A, Dobó J, Szilágyi K, Szász R, Závodszky P et al (2012) Revised mechanism of complement lectin-pathway activation revealing the role of serine protease MASP-1 as the exclusive activator of MASP-2. Proc Natl Acad Sci 109:10498–10503
Article
Google Scholar
Kocsis A, Kékesi KA, Szász R, Végh BM, Balczer J, Dobó J et al (2010) Selective inhibition of the lectin pathway of complement with phage display selected peptides against mannose-binding lectin-associated serine protease (MASP)-1 and -2: significant contribution of MASP-1 to lectin pathway activation. J Immunol 185:4169–4178
Article
CAS
Google Scholar
Degn SE, Kjaer TR, Kidmose RT, Jensen L, Hansen AG, Tekin M et al (2014) Complement activation by ligand-driven juxtaposition of discrete pattern recognition complexes. Proc Natl Acad Sci 111:13445–13450
Article
CAS
Google Scholar
Yaseen S, Demopulos G, Dudler T, Yabuki M, Wood CL, Cummings WJ et al (2017) Lectin pathway effector enzyme mannan-binding lectin-associated serine protease-2 can activate native complement C3 in absence of C4 and/or C2. FASEB J 31:2210–2219
Article
CAS
Google Scholar
van der Pol P, Schlagwein N, van Gijlswijk DJ, Berger SP, Roos A, Bajema IM et al (2012) Mannan-binding lectin mediates renal ischemia/reperfusion injury independent of complement activation. Am J Transplant 12:877–887
Article
CAS
Google Scholar
Gesuete R, Storini C, Fantin A, Stravalaci M, Zanier ER, Orsini F et al (2009) Recombinant C1 inhibitor in brain ischemic injury. Ann Neurol 66:332–342
Article
CAS
Google Scholar
Dantzer R (2001) Cytokine-induced sickness behavior: where do we stand? Brain Behav Immun 15:7–24
Article
CAS
Google Scholar
Bodnar CN, Morganti JM, Bachstetter AD (2018) Depression following a traumatic brain injury: uncovering cytokine dysregulation as a pathogenic mechanism. Neural Regen Res 13:1693–1704
Article
Google Scholar
Wang C, Yue H, Hu Z, Shen Y, Ma J, Li J et al (2020) Microglia mediate forgetting via complement-dependent synaptic elimination. Science 367:688–694
Article
CAS
Google Scholar
Hong S, Beja-Glasser VF, Nfonoyim BM, Frouin A, Li S, Ramakrishnan S et al (2016) Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 352:712–716
Article
CAS
Google Scholar
Zanier ER, Bertani I, Sammali E, Pischiutta F, Chiaravalloti MA, Vegliante G et al (2018) Induction of a transmissible tau pathology by traumatic brain injury. Brain J Neurol 141:2685–2699
Google Scholar
Klein RS (2020) On complement, memory, and microglia. N Engl J Med 382:2056–2058
Article
Google Scholar
Osthoff M, Walder B, Delhumeau C, Trendelenburg M, Turck N (2017) Association of lectin pathway protein levels and genetic variants early after injury with outcomes after severe traumatic brain injury: a prospective cohort study. J Neurotrauma 34:2560–2566
Article
Google Scholar
Alawieh A, Langley EF, Weber S, Adkins D, Tomlinson S (2018) Identifying the role of complement in triggering neuroinflammation after traumatic brain injury. J Neurosci Off J Soc Neurosci 38:2519–2532
Article
CAS
Google Scholar
Lynch NJ, Khan S-H, Stover CM, Sandrini SM, Marston D, Presanis JS et al (2005) Composition of the lectin pathway of complement in gallus gallus: absence of mannan-binding lectin-associated serine protease-1 in birds. J Immunol 174:4998–5006
Article
CAS
Google Scholar