Montine TJ, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Dickson DW, Duyckaerts C, Frosch MP, Masliah E, Mirra SS, Nelson PT, Schneider JA, Thal DR, Trojanowski JQ, Vinters HV, Hyman BT (2012) National Institute on Aging-Alzheimer’s association guidelines for the neuropathologic assessment of Alzheimer’s disease: a practical approach. Acta Neuropathol 123(1):1–11 https://doi.org/10.1007/s00401-011-0910-3
CAS
PubMed
Google Scholar
Duyckaerts C, Delatour B, Potier M-C (2009) Classification and basic pathology of Alzheimer disease. Acta Neuropathol 118(1):5–36 https://doi.org/10.1007/s00401-009-0532-1
CAS
PubMed
Google Scholar
Alafuzoff I, Thal DR, Arzberger T, Bogdanovic N, Al-Sarraj S, Bodi I, Boluda S, Bugiani O, Duyckaerts C, Gelpi E, Gentleman S, Giaccone G, Graeber M, Hortobagyi T, Höftberger R, Ince P, Ironside JW, Kavantzas N, King A, Korkolopoulou P, Kovács GG, Meyronet D, Monoranu C, Nilsson T, Parchi P, Patsouris E, Pikkarainen M, Revesz T, Rozemuller A, Seilhean D et al (2009) Assessment of β-amyloid deposits in human brain: a study of the BrainNet Europe Consortium. Acta Neuropathol 117(3):309–320 https://doi.org/10.1007/s00401-009-0485-4
CAS
PubMed
PubMed Central
Google Scholar
Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8(6):595–608 10.15252/emmm.201606210
CAS
PubMed
PubMed Central
Google Scholar
Oikawa N, Walter J (2019) Presenilins and γ-Secretase in membrane Proteostasis. Cells 8(3) https://doi.org/10.3390/cells8030209
Haass C, Kaether C, Thinakaran G, Sisodia S (2012) Trafficking and proteolytic processing of APP. Cold Spring Harb Perspect Med 2(5):a006270 https://doi.org/10.1101/cshperspect.a006270
PubMed
PubMed Central
Google Scholar
Walter S, Jumpertz T, Hüttenrauch M, Ogorek I, Gerber H, Storck SE, Zampar S, Dimitrov M, Lehmann S, Lepka K, Berndt C, Wiltfang J, Becker-Pauly C, Beher D, Pietrzik CU, Fraering PC, Wirths O, Weggen S (2019) The metalloprotease ADAMTS4 generates N-truncated Aβ4-x species and marks oligodendrocytes as a source of amyloidogenic peptides in Alzheimer’s disease. Acta Neuropathol 137(2):239–257 https://doi.org/10.1007/s00401-018-1929-5
CAS
PubMed
Google Scholar
Tekirian TL, Saido TC, Markesbery WR, Russell MJ, Wekstein DR, Patel E, Geddes JW (1998) N-terminal heterogeneity of parenchymal and cerebrovascular Abeta deposits. J Neuropathol Exp Neurol 57(1):76–94 https://doi.org/10.1097/00005072-199801000-00009
CAS
PubMed
Google Scholar
Saito T, Suemoto T, Brouwers N, Sleegers K, Funamoto S, Mihira N, Matsuba Y, Yamada K, Nilsson P, Takano J, Nishimura M, Iwata N, van Broeckhoven C, Ihara Y, Saido TC (2011) Potent amyloidogenicity and pathogenicity of Aβ43. Nat Neurosci 14(8):1023–1032 https://doi.org/10.1038/nn.2858
CAS
PubMed
Google Scholar
Saido TC, Yamao-Harigaya W, Iwatsubo T, Kawashima S (1996) Amino- and carboxyl-terminal heterogeneity of beta-amyloid peptides deposited in human brain. Neurosci Lett 215(3):173–176. https://doi.org/10.1016/0304-3940(96)12970-0
Article
CAS
PubMed
Google Scholar
García-González L, Pilat D, Baranger K, Rivera S (2019) Emerging alternative proteinases in APP metabolism and Alzheimer’s disease pathogenesis: a focus on MT1-MMP and MT5-MMP. Front Aging Neurosci 11:244 https://doi.org/10.3389/fnagi.2019.00244
PubMed
PubMed Central
Google Scholar
Dunys J, Valverde A, Checler F (2018) Are N- and C-terminally truncated Aβ species key pathological triggers in Alzheimer’s disease? J Biol Chem 293(40):15419–15428 https://doi.org/10.1074/jbc.R118.003999
CAS
PubMed
PubMed Central
Google Scholar
Becker-Pauly C, Pietrzik CU (2017) The Metalloprotease Meprin β is an alternative β-Secretase of APP. Front Mol Neurosci 9 https://doi.org/10.3389/fnmol.2016.00159
Shimizu T, Watanabe A, Ogawara M, Mori H, Shirasawa T (2000) Isoaspartate formation and neurodegeneration in Alzheimer’s disease. Arch Biochem Biophys 381(2):225–234 https://doi.org/10.1006/abbi.2000.1955
CAS
PubMed
Google Scholar
Schilling S, Zeitschel U, Hoffmann T, Heiser U, Francke M, Kehlen A, Holzer M, Hutter-Paier B, Prokesch M, Windisch M, Jagla W, Schlenzig D, Lindner C, Rudolph T, Reuter G, Cynis H, Montag D, Demuth H-U, Rossner S (2008) Glutaminyl cyclase inhibition attenuates pyroglutamate Abeta and Alzheimer’s disease-like pathology. Nat Med 14(10):1106–1111 https://doi.org/10.1038/nm.1872
CAS
PubMed
Google Scholar
Saido TC, Iwatsubo T, Mann DM, Shimada H, Ihara Y, Kawashima S (1995) Dominant and differential deposition of distinct beta-amyloid peptide species, a beta N3(pE), in senile plaques. Neuron 14(2):457–466. https://doi.org/10.1016/0896-6273(95)90301-1
Article
CAS
PubMed
Google Scholar
Kummer MP, Hermes M, Delekarte A, Hammerschmidt T, Kumar S, Terwel D, Walter J, Pape H-C, Konig S, Roeber S, Jessen F, Klockgether T, Korte M, Heneka MT (2011) Nitration of tyrosine 10 critically enhances amyloid beta aggregation and plaque formation. Neuron 71(5):833–844 https://doi.org/10.1016/j.neuron.2011.07.001
CAS
PubMed
Google Scholar
Kumar S, Rezaei-Ghaleh N, Terwel D, Thal DR, Richard M, Hoch M, Mc Donald JM, Wullner U, Glebov K, Heneka MT, Walsh DM, Zweckstetter M, Walter J (2011) Extracellular phosphorylation of the amyloid beta-peptide promotes formation of toxic aggregates during the pathogenesis of Alzheimer’s disease. EMBO J 30(11):2255–2265 https://doi.org/10.1038/emboj.2011.138
CAS
PubMed
PubMed Central
Google Scholar
Kumar S, Wirths O, Stuber K, Wunderlich P, Koch P, Theil S, Rezaei-Ghaleh N, Zweckstetter M, Bayer TA, Brustle O, Thal DR, Walter J (2016) Phosphorylation of the amyloid beta-peptide at Ser26 stabilizes oligomeric assembly and increases neurotoxicity. Acta Neuropathol 131(4):525–537 https://doi.org/10.1007/s00401-016-1546-0
CAS
PubMed
PubMed Central
Google Scholar
Frost JL, Le KX, Cynis H, Ekpo E, Kleinschmidt M, Palmour RM, Ervin FR, Snigdha S, Cotman CW, Saido TC, Vassar RJ, St George-Hyslop P, Ikezu T, Schilling S, Demuth H-U, Lemere CA (2013) Pyroglutamate-3 amyloid-beta deposition in the brains of humans, non-human primates, canines, and Alzheimer disease-like transgenic mouse models. Am J Pathol 183(2):369–381 https://doi.org/10.1016/j.ajpath.2013.05.005
CAS
PubMed
PubMed Central
Google Scholar
Bayer TA, Wirths O (2014) Focusing the amyloid cascade hypothesis on N-truncated Abeta peptides as drug targets against Alzheimer’s disease. Acta Neuropathol 127(6):787–801 https://doi.org/10.1007/s00401-014-1287-x
CAS
PubMed
PubMed Central
Google Scholar
Roher AE, Kokjohn TA, Clarke SG, Sierks MR, Maarouf CL, Serrano GE, Sabbagh MS, Beach TG (2017) APP/Aβ structural diversity and Alzheimer’s disease pathogenesis. Neurochem Int 110:1–13 https://doi.org/10.1016/j.neuint.2017.08.007
CAS
PubMed
PubMed Central
Google Scholar
Wirths O, Zampar S (2019) Emerging roles of N- and C-terminally truncated Aβ species in Alzheimer’s disease. Expert Opin Ther Targets 23(12):991–1004 https://doi.org/10.1080/14728222.2019.1702972
CAS
PubMed
Google Scholar
Thal DR, Walter J, Saido TC, Fandrich M (2015) Neuropathology and biochemistry of Abeta and its aggregates in Alzheimer’s disease. Acta Neuropathol 129(2):167–182 https://doi.org/10.1007/s00401-014-1375-y
CAS
PubMed
Google Scholar
Rezaei-Ghaleh N, Amininasab M, Kumar S, Walter J, Zweckstetter M (2016) Phosphorylation modifies the molecular stability of beta-amyloid deposits. Nat Commun 7:11359 https://doi.org/10.1038/ncomms11359
CAS
PubMed
PubMed Central
Google Scholar
Kumar S, Walter J (2011) Phosphorylation of amyloid beta (Abeta) peptides - a trigger for formation of toxic aggregates in Alzheimer’s disease. Aging 3(8):803–812. https://doi.org/10.18632/aging.100362
Article
PubMed
PubMed Central
Google Scholar
Kumar S, Singh S, Hinze D, Josten M, Sahl H-G, Siepmann M, Walter J (2012) Phosphorylation of amyloid-beta peptide at serine 8 attenuates its clearance via insulin-degrading and angiotensin-converting enzymes. J Biol Chem 287(11):8641–8651 https://doi.org/10.1074/jbc.M111.279133
CAS
PubMed
PubMed Central
Google Scholar
Barykin EP, Mitkevich VA, Kozin SA, Makarov AA (2017) Amyloid β modification: a key to the sporadic Alzheimer’s disease? Front Genet 8 https://doi.org/10.3389/fgene.2017.00058
Lott IT, Head E (2019) Dementia in Down syndrome: unique insights for Alzheimer disease research. Nat Rev Neurol 15(3):135–147 https://doi.org/10.1038/s41582-018-0132-6
PubMed
Google Scholar
Head E, Lott IT, Wilcock DM, Lemere CA (2016) Aging in Down syndrome and the development of Alzheimer’s disease neuropathology. Curr Alzheimer Res 13(1):18–29 https://doi.org/10.2174/1567205012666151020114607
CAS
PubMed
PubMed Central
Google Scholar
Abrahamson EE, Head E, Lott IT, Handen BL, Mufson EJ, Christian BT, Klunk WE, Ikonomovic MD (2019) Neuropathological correlates of amyloid PET imaging in Down syndrome. Dev Neurobiol 79(7):750–766 https://doi.org/10.1002/dneu.22713
PubMed
Google Scholar
Teller JK, Russo C, DeBusk LM, Angelini G, Zaccheo D, Dagna-Bricarelli F, Scartezzini P, Bertolini S, Mann DM, Tabaton M, Gambetti P (1996) Presence of soluble amyloid beta-peptide precedes amyloid plaque formation in Down’s syndrome. Nat Med 2(1):93–95 https://doi.org/10.1038/nm0196-93
CAS
PubMed
Google Scholar
Mori C, Spooner ET, Wisniewsk KE, Wisniewski TM, Yamaguch H, Saido TC, Tolan DR, Selkoe DJ, Lemere CA (2002) Intraneuronal Abeta42 accumulation in Down syndrome brain. Amyloid 9(2):88–102 https://doi.org/10.3109/13506120208995241
CAS
PubMed
Google Scholar
Davidson YS, Robinson A, Prasher VP, Mann DMA (2018) The age of onset and evolution of Braak tangle stage and Thal amyloid pathology of Alzheimer’s disease in individuals with Down syndrome. Acta Neuropathol Commun 6 https://doi.org/10.1186/s40478-018-0559-4
Lemere CA, Blusztajn JK, Yamaguchi H, Wisniewski T, Saido TC, Selkoe DJ (1996) Sequence of deposition of heterogeneous amyloid beta-peptides and APO E in Down syndrome: implications for initial events in amyloid plaque formation. Neurobiol Dis 3(1):16–32 https://doi.org/10.1006/nbdi.1996.0003
CAS
PubMed
Google Scholar
Liu K, Solano I, Mann D, Lemere C, Mercken M, Trojanowski JQ, Lee VM-Y (2006) Characterization of Abeta11-40/42 peptide deposition in Alzheimer’s disease and young Down’s syndrome brains: implication of N-terminally truncated Abeta species in the pathogenesis of Alzheimer’s disease. Acta Neuropathol 112(2):163–174 https://doi.org/10.1007/s00401-006-0077-5
CAS
PubMed
Google Scholar
Kumar S, Wirths O, Theil S, Gerth J, Bayer TA, Walter J (2013) Early intraneuronal accumulation and increased aggregation of phosphorylated Abeta in a mouse model of Alzheimer’s disease. Acta Neuropathol 125(5):699–709 https://doi.org/10.1007/s00401-013-1107-8
CAS
PubMed
Google Scholar
Rezaei-Ghaleh N, Kumar S, Walter J, Zweckstetter M (2016) Phosphorylation interferes with maturation of amyloid-beta Fibrillar structure in the N terminus. J Biol Chem 291(31):16059–16067 https://doi.org/10.1074/jbc.M116.728956
CAS
PubMed
PubMed Central
Google Scholar
Ashby EL, Miners JS, Kumar S, Walter J, Love S, Kehoe PG (2015) Investigation of Abeta phosphorylated at serine 8 (pAbeta) in Alzheimer’s disease, dementia with Lewy bodies and vascular dementia. Neuropathol Appl Neurobiol 41(4):428–444 https://doi.org/10.1111/nan.12212
CAS
PubMed
Google Scholar
Gerth J, Kumar S, Rijal Upadhaya A, Ghebremedhin E, von Arnim CAF, Thal DR, Walter J (2018) Modified amyloid variants in pathological subgroups of β-amyloidosis. Ann Clin Transl Neurol 5(7):815–831 https://doi.org/10.1002/acn3.577
CAS
PubMed
PubMed Central
Google Scholar
Kumar S, Frost JL, Cotman CW, Head E, Palmour R, Lemere CA, Walter J (2018) Deposition of phosphorylated amyloid-β in brains of aged nonhuman primates and canines. Brain Pathol 28(3):427–430 https://doi.org/10.1111/bpa.12573
PubMed
Google Scholar
Rijal Upadhaya A, Kosterin I, Kumar S, von Arnim CAF, Yamaguchi H, Fandrich M, Walter J, Thal DR (2014) Biochemical stages of amyloid-beta peptide aggregation and accumulation in the human brain and their association with symptomatic and pathologically preclinical Alzheimer’s disease. Brain 137(Pt 3):887–903 https://doi.org/10.1093/brain/awt362
PubMed
Google Scholar
Jankowsky JL, Zheng H (2017) Practical considerations for choosing a mouse model of Alzheimer’s disease. Mol Neurodegener 12(1):89 https://doi.org/10.1186/s13024-017-0231-7
PubMed
PubMed Central
Google Scholar
Sasaguri H, Nilsson P, Hashimoto S, Nagata K, Saito T, de Strooper B, Hardy J, Vassar R, Winblad B, Saido TC (2017) APP mouse models for Alzheimer’s disease preclinical studies. EMBO J 36(17):2473–2487. https://doi.org/10.15252/embj.201797397
Article
CAS
PubMed
PubMed Central
Google Scholar
Webster SJ, Bachstetter AD, Nelson PT, Schmitt FA, van Eldik LJ (2014) Using mice to model Alzheimer’s dementia: an overview of the clinical disease and the preclinical behavioral changes in 10 mouse models. Front Genet 5 https://doi.org/10.3389/fgene.2014.00088
Drummond E, Wisniewski T (2017) Alzheimer’s disease: experimental models and reality. Acta Neuropathol 133(2):155–175 https://doi.org/10.1007/s00401-016-1662-x
CAS
PubMed
Google Scholar
Braidy N, Munoz P, Palacios AG, Castellano-Gonzalez G, Inestrosa NC, Chung RS, Sachdev P, Guillemin GJ (2012) Recent rodent models for Alzheimer’s disease: clinical implications and basic research. J Neural Transm (Vienna) 119(2):173–195 https://doi.org/10.1007/s00702-011-0731-5
CAS
Google Scholar
Mucke L, Masliah E, Yu GQ, Mallory M, Rockenstein EM, Tatsuno G, Hu K, Kholodenko D, Johnson-Wood K, McConlogue L (2000) High-level neuronal expression of abeta 1-42 in wild-type human amyloid protein precursor transgenic mice: Synaptotoxicity without plaque formation. J Neurosci 20(11):4050–4058 https://doi.org/10.1523/JNEUROSCI.20-11-04050.2000
CAS
PubMed
PubMed Central
Google Scholar
Rockenstein E, Mallory M, Mante M, Sisk A, Masliaha E (2001) Early formation of mature amyloid-beta protein deposits in a mutant APP transgenic model depends on levels of Abeta (1-42). J Neurosci Res 66(4):573–582 https://doi.org/10.1002/jnr.1247
CAS
PubMed
Google Scholar
Davis J, Xu F, Deane R, Romanov G, Previti ML, Zeigler K, Zlokovic BV, van Nostrand WE (2004) Early-onset and robust cerebral microvascular accumulation of amyloid beta-protein in transgenic mice expressing low levels of a vasculotropic Dutch/Iowa mutant form of amyloid beta-protein precursor. J Biol Chem 279(19):20296–20306 https://doi.org/10.1074/jbc.M312946200
CAS
Google Scholar
Jankowsky JL, Slunt HH, Ratovitski T, Jenkins NA, Copeland NG, Borchelt DR (2001) Co-expression of multiple transgenes in mouse CNS: a comparison of strategies. Biomol Eng 17(6):157–165 https://doi.org/10.1016/s1389-0344(01)00067-3
CAS
Google Scholar
Holcomb L, Gordon MN, McGowan E, Yu X, Benkovic S, Jantzen P, Wright K, Saad I, Mueller R, Morgan D, Sanders S, Zehr C, O’Campo K, Hardy J, Prada CM, Eckman C, Younkin S, Hsiao K, Duff K (1998) Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nat Med 4(1):97–100 https://doi.org/10.1038/nm0198-097
CAS
PubMed
Google Scholar
Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R, Mattson MP, Akbari Y, LaFerla FM (2003) Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 39(3):409–421. https://doi.org/10.1016/S0896-6273(03)00434-3
Article
CAS
PubMed
Google Scholar
Hosoda R, Saido TC, Otvos L, Arai T, Mann DM, Lee VM, Trojanowski JQ, Iwatsubo T (1998) Quantification of modified amyloid beta peptides in Alzheimer disease and Down syndrome brains. J Neuropathol Exp Neurol 57(11):1089–1095 https://doi.org/10.1097/00005072-199811000-00012
CAS
PubMed
Google Scholar
Iwatsubo T, Saido TC, Mann DM, Lee VM, Trojanowski JQ (1996) Full-length amyloid-beta (1-42(43)) and amino-terminally modified and truncated amyloid-beta 42(43) deposit in diffuse plaques. Am J Pathol 149(6):1823–1830
CAS
PubMed
PubMed Central
Google Scholar
Jankowsky JL, Fadale DJ, Anderson J, Xu GM, Gonzales V, Jenkins NA, Copeland NG, Lee MK, Younkin LH, Wagner SL, Younkin SG, Borchelt DR (2004) Mutant presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo: evidence for augmentation of a 42-specific gamma secretase. Hum Mol Genet 13(2):159–170 https://doi.org/10.1093/hmg/ddh019
CAS
PubMed
Google Scholar
Takeuchi A, Irizarry MC, Duff K, Saido TC, Hsiao Ashe K, Hasegawa M, Mann DM, Hyman BT, Iwatsubo T (2000) Age-related amyloid beta deposition in transgenic mice overexpressing both Alzheimer mutant presenilin 1 and amyloid beta precursor protein Swedish mutant is not associated with global neuronal loss. Am J Pathol 157(1):331–339. https://doi.org/10.1016/s0002-9440(10)64544-0
Article
CAS
PubMed
PubMed Central
Google Scholar
LaFerla FM, Green KN, Oddo S (2007) Intracellular amyloid-beta in Alzheimer’s disease. Nat Rev Neurosci 8(7):499–509 https://doi.org/10.1038/nrn2168
CAS
PubMed
Google Scholar
Billings LM, Oddo S, Green KN, McGaugh JL, LaFerla FM (2005) Intraneuronal Abeta causes the onset of early Alzheimer’s disease-related cognitive deficits in transgenic mice. Neuron 45(5):675–688 https://doi.org/10.1016/j.neuron.2005.01.040
CAS
PubMed
Google Scholar
Takahashi RH, Nagao T, Gouras GK (2017) Plaque formation and the intraneuronal accumulation of beta-amyloid in Alzheimer’s disease. Pathol Int 67(4):185–193. https://doi.org/10.1111/pin.12520a
Miravalle L, Calero M, Takao M, Roher AE, Ghetti B, Vidal R (2005) Amino-terminally truncated Abeta peptide species are the main component of cotton wool plaques. Biochemistry 44(32):10810–10821 https://doi.org/10.1021/bi0508237
CAS
PubMed
Google Scholar
Cabrera E, Mathews P, Mezhericher E, Beach TG, Deng J, Neubert TA, Rostagno A, Ghiso J (2018) Aβ truncated species: Implications for brain clearance mechanisms and amyloid plaque deposition. Biochim Biophys Acta Mol basis Dis 1864(1):208–225 https://doi.org/10.1016/j.bbadis.2017.07.005
CAS
PubMed
Google Scholar
Chung S-H (2009) Aberrant phosphorylation in the pathogenesis of Alzheimer's disease. BMB Rep 42(8):467–474 https://doi.org/10.5483/bmbrep.2009.42.8.467
CAS
PubMed
Google Scholar
Weitzdoerfer R, Toran N, Subramaniyan S, Pollak A, Dierssen M, Lubec G (2015) A cluster of protein kinases and phosphatases modulated in fetal Down syndrome (trisomy 21) brain. Amino Acids 47(6):1127–1134 https://doi.org/10.1007/s00726-015-1941-1
CAS
PubMed
Google Scholar
Braithwaite SP, Stock JB, Lombroso PJ, Nairn AC (2012) Protein phosphatases and Alzheimer's disease. Prog Mol Biol Transl Sci 106:343–379 https://doi.org/10.1016/B978-0-12-396456-4.00012-2
CAS
PubMed
PubMed Central
Google Scholar
Rosenberger AFN, Hilhorst R, Coart E, García Barrado L, Naji F, Rozemuller AJM, van der Flier WM, Scheltens P, Hoozemans JJM, van der Vies SM (2016) Protein Kinase Activity Decreases with Higher Braak Stages of Alzheimer's Disease Pathology. J Alzheimers Dis 49(4):927–943 https://doi.org/10.3233/JAD-150429
CAS
PubMed
Google Scholar
Cline EN, Bicca MA, Viola KL, Klein WL The Amyloid-β Oligomer Hypothesis: Beginning of the Third Decade. J Alzheimers Dis 64(Suppl 1):S567–S610 https://doi.org/10.3233/JAD-179941
Li S, Selkoe DJ (2020) A mechanistic hypothesis for the impairment of synaptic plasticity by soluble Aβ oligomers from Alzheimer’s brain. J Neurochem. https://doi.org/10.1111/jnc.15007
Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol. 8(2):101–112. https://doi.org/10.1038/nrm2101
Jäkel L, van Nostrand WE, Nicoll JAR, Werring DJ, Verbeek MM (2017) Animal models of cerebral amyloid angiopathy. Clin Sci 131(19):2469–2488 https://doi.org/10.1042/CS20170033
PubMed
Google Scholar
Klohs J, Rudin M, Shimshek DR, Beckmann N (2014) Imaging of cerebrovascular pathology in animal models of Alzheimer's disease. Front Aging Neurosci 6:32 https://doi.org/10.3389/fnagi.2014.00032
PubMed
PubMed Central
Google Scholar
Calhoun ME, Burgermeister P, Phinney AL, Stalder M, Tolnay M, Wiederhold KH, Abramowski D, Sturchler-Pierrat C, Sommer B, Staufenbiel M, Jucker M (1999) Neuronal overexpression of mutant amyloid precursor protein results in prominent deposition of cerebrovascular amyloid. Proc Natl Acad Sci U S A 96(24):14088–14093 https://doi.org/10.1073/pnas.96.24.14088
CAS
PubMed
PubMed Central
Google Scholar
Herzig MC, van Nostrand WE, Jucker M (2006) Mechanism of cerebral beta-amyloid angiopathy: murine and cellular models. Brain Pathol 16(1):40–54 https://doi.org/10.1111/j.1750-3639.2006.tb00560.x
CAS
PubMed
Google Scholar
Kamp JA, Moursel LG, Haan J, Terwindt GM, Lesnik Oberstein SAMJ, van Duinen SG, van Roon-Mom WMC (2014) Amyloid β in hereditary cerebral hemorrhage with amyloidosis-Dutch type. Rev Neurosci 25(5):641–651 https://doi.org/10.1515/revneuro-2014-0008
CAS
PubMed
Google Scholar
Grabowski TJ, Cho HS, Vonsattel JP, Rebeck GW, Greenberg SM (2001) Novel amyloid precursor protein mutation in an Iowa family with dementia and severe cerebral amyloid angiopathy. Ann Neurol 49(6):697–705 https://doi.org/10.1002/ana.1009
CAS
PubMed
Google Scholar
Russo C, Saido TC, DeBusk LM, Tabaton M, Gambetti P, Teller JK (1997) Heterogeneity of water-soluble amyloid beta-peptide in Alzheimer’s disease and Down’s syndrome brains. FEBS Lett 409(3):411–416 https://doi.org/10.1016/s0014-5793(97)00564-4
CAS
PubMed
Google Scholar