Albargothy NJ, Johnston DA, MacGregor-Sharp M, Weller RO, Verma A, Hawkes CA et al (2018) Convective influx/glymphatic system: tracers injected into the CSF enter and leave the brain along separate periarterial basement membrane pathways. Acta Neuropathol 136(1):139–152
Article
CAS
PubMed
PubMed Central
Google Scholar
Brambilla F, Lavatelli F, Di Silvestre D, Valentini V, Palladini G, Merlini G et al (2013) Shotgun protein profile of human adipose tissue and its changes in relation to systemic amyloidoses. J Proteome Res 12(12):5642–5655
Article
CAS
PubMed
Google Scholar
Charidimou A, Martinez-Ramirez S, Shoamanesh A, Oliveira-Filho J, Frosch M, Vashkevich A et al (2015) Cerebral amyloid angiopathy with and without hemorrhage: evidence for different disease phenotypes. Neurology 84(12):1206–1212
Article
CAS
PubMed
PubMed Central
Google Scholar
DeMattos RB, Cirrito JR, Parsadanian M, May PC, O'Dell MA, Taylor JW et al (2004) ApoE and clusterin cooperatively suppress Aβ levels and deposition: evidence that apoE regulates extracellular Aβ metabolism in vivo. Neuron 41(2):193–202
Article
CAS
PubMed
Google Scholar
DeMattos RB, O'dell MA, Parsadanian M, Taylor JW, Harmony JA, Bales KR et al (2002) Clusterin promotes amyloid plaque formation and is critical for neuritic toxicity in a mouse model of Alzheimer's disease. Proc Natl Acad Sci U S A 99(16):10843–10848
Article
CAS
PubMed
PubMed Central
Google Scholar
Evans KC, Berger EP, Cho CG, Weisgraber KH, Lansbury PT Jr (1995) Apolipoprotein E is a kinetic but not a thermodynamic inhibitor of amyloid formation: implications for the pathogenesis and treatment of Alzheimer disease. Proc Natl Acad Sci U S A 92(3):763–767
Article
CAS
PubMed
PubMed Central
Google Scholar
Fagan AM, Watson M, Parsadanian M, Bales KR, Paul SM, Holtzman DM (2002) Human and murine apoE markedly alters Aβ metabolism before and after plaque formation in a mouse model of Alzheimer's disease. Neurobiol Dis 9(3):305–318
Article
CAS
PubMed
Google Scholar
Garai K, Verghese PB, Baban B, Holtzman DM, Frieden C (2014) The binding of apolipoprotein E to oligomers and fibrils of amyloid-β alters the kinetics of amyloid aggregation. Biochemistry 53(40):6323–6331
Article
CAS
PubMed
PubMed Central
Google Scholar
Greenberg SM, Vonsattel JP (1997) Diagnosis of cerebral amyloid angiopathy. Sensitivity and specificity of cortical biopsy. Stroke 28(7):1418–1422
Article
CAS
PubMed
Google Scholar
Hasegawa K, Ozawa D, Ookoshi T, Naiki H (2013) Surface-bound basement membrane components accelerate amyloid-β peptide nucleation in air-free wells: an in vitro model of cerebral amyloid angiopathy. Biochim Biophys Acta 1834(8):1624–1631
Article
CAS
PubMed
Google Scholar
Holtzman DM (2004) In vivo effects of apoE and clusterin on amyloid-β metabolism and neuropathology. J Mol Neurosci 23(3):247–254
Article
CAS
PubMed
Google Scholar
Holtzman DM, Bales KR, Tenkova T, Fagan AM, Parsadanian M, Sartorius LJ et al (2000) Apolipoprotein E isoform-dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer's disease. Proc Natl Acad Sci U S A 97(6):2892–2897
Article
CAS
PubMed
PubMed Central
Google Scholar
Holtzman DM, Bales KR, Wu S, Bhat P, Parsadanian M, Fagan AM et al (1999) Expression of human apolipoprotein E reduces amyloid-β deposition in a mouse model of Alzheimer's disease. J Clin Invest 103(6):R15–R21
Article
CAS
PubMed
PubMed Central
Google Scholar
Hondius DC, Eigenhuis KN, Morrema THJ, van der Schors RC, van Nierop P, Bugiani M et al (2018) Proteomics analysis identifies new markers associated with capillary cerebral amyloid angiopathy in Alzheimer's disease. Acta Neuropathol Commun 6(1):46
Article
PubMed
PubMed Central
Google Scholar
Hori Y, Hashimoto T, Nomoto H, Hyman BT, Iwatsubo T (2015) Role of apolipoprotein E in β-amyloidogenesis: isoform-specific effects on protofibril to fibril conversion of Aβ in vitro and brain Aβ deposition in vivo. J Biol Chem 290(24):15163–15174
Article
CAS
PubMed
PubMed Central
Google Scholar
Huynh TV, Davis AA, Ulrich JD, Holtzman DM (2017) Apolipoprotein E and Alzheimer's disease: the influence of apolipoprotein E on amyloid-β and other amyloidogenic proteins. J Lipid Res 58(5):824–836
Article
CAS
PubMed
PubMed Central
Google Scholar
Inoue Y, Ueda M, Tasaki M, Takeshima A, Nagatoshi A, Masuda T et al (2017) Sushi repeat-containing protein 1: a novel disease-associated molecule in cerebral amyloid angiopathy. Acta Neuropathol 134(4):605–617
Article
CAS
PubMed
Google Scholar
Lin CM, Arishima H, Kikuta KI, Naiki H, Kitai R, Kodera T et al (2018) Pathological examination of cerebral amyloid angiopathy in patients who underwent removal of lobar hemorrhages. J Neurol 265(3):567–577
Article
CAS
PubMed
Google Scholar
Lomakin A, Chung DS, Benedek GB, Kirschner DA, Teplow DB (1996) On the nucleation and growth of amyloid β-protein fibrils: detection of nuclei and quantitation of rate constants. Proc Natl Acad Sci U S A 93(3):1125–1129
Article
CAS
PubMed
PubMed Central
Google Scholar
Manousopoulou A, Gatherer M, Smith C, Nicoll JAR, Woelk CH, Johnson M et al (2017) Systems proteomic analysis reveals that clusterin and tissue inhibitor of metalloproteinases 3 increase in leptomeningeal arteries affected by cerebral amyloid angiopathy. Neuropathol Appl Neurobiol 43(6):492–504
Article
CAS
PubMed
Google Scholar
Morinaga A, Hasegawa K, Nomura R, Ookoshi T, Ozawa D, Goto Y et al (2010) Critical role of interfaces and agitation on the nucleation of Aβ amyloid fibrils at low concentrations of Aβ monomers. Biochim Biophys Acta 1804(4):986–995
Article
CAS
PubMed
Google Scholar
Morris AW, Sharp MM, Albargothy NJ, Fernandes R, Hawkes CA, Verma A et al (2016) Vascular basement membranes as pathways for the passage of fluid into and out of the brain. Acta Neuropathol 131(5):725–736
Article
CAS
PubMed
PubMed Central
Google Scholar
Naiki H, Gejyo F (1999) Kinetic analysis of amyloid fibril formation. Methods Enzymol 309:305–318
Article
CAS
PubMed
Google Scholar
Naiki H, Gejyo F, Nakakuki K (1997) Concentration-dependent inhibitory effects of apolipoprotein E on Alzheimer's β-amyloid fibril formation in vitro. Biochemistry 36(20):6243–6250
Article
CAS
PubMed
Google Scholar
Naiki H, Nakakuki K (1996) First-order kinetic model of Alzheimer's β-amyloid fibril extension in vitro. Lab Investig 74(2):374–383
CAS
PubMed
Google Scholar
Narayan P, Orte A, Clarke RW, Bolognesi B, Hook S, Ganzinger KA et al (2011) The extracellular chaperone clusterin sequesters oligomeric forms of the amyloid-β(1-40) peptide. Nat Struct Mol Biol 19(1):79–83
Article
PubMed
PubMed Central
Google Scholar
Paoletti AC, Parmely TJ, Tomomori-Sato C, Sato S, Zhu D, Conaway RC et al (2006) Quantitative proteomic analysis of distinct mammalian mediator complexes using normalized spectral abundance factors. Proc Natl Acad Sci U S A 103(50):18928–18933
Article
CAS
PubMed
PubMed Central
Google Scholar
Pitas RE, Boyles JK, Lee SH, Hui D, Weisgraber KH (1987) Lipoproteins and their receptors in the central nervous system. Characterization of the lipoproteins in cerebrospinal fluid and identification of apolipoprotein B, E (LDL) receptors in the brain. J Biol Chem 262(29):14352–14360
CAS
PubMed
Google Scholar
Poon S, Rybchyn MS, Easterbrook-Smith SB, Carver JA, Pankhurst GJ, Wilson MR (2002) Mildly acidic pH activates the extracellular molecular chaperone clusterin. J Biol Chem 277(42):39532–39540
Article
CAS
PubMed
Google Scholar
Qi XM, Wang C, Chu XK, Li G, Ma JF (2018) Intraventricular infusion of clusterin ameliorated cognition and pathology in Tg6799 model of Alzheimer's disease. BMC Neurosci 19(1):2
Article
PubMed
PubMed Central
Google Scholar
Sanan DA, Weisgraber KH, Russell SJ, Mahley RW, Huang D, Saunders A et al (1994) Apolipoprotein E associates with β amyloid peptide of Alzheimer's disease to form novel monofibrils. Isoform apoE4 associates more efficiently than apoE3. J Clin Invest 94(2):860–869
Article
CAS
PubMed
PubMed Central
Google Scholar
Tai LM, Balu D, Avila-Munoz E, Abdullah L, Thomas R, Collins N et al (2017) EFAD transgenic mice as a human APOE relevant preclinical model of Alzheimer's disease. J Lipid Res 58(9):1733–1755
Article
CAS
PubMed
PubMed Central
Google Scholar
van Dijk KD, Jongbloed W, Heijst JA, Teunissen CE, Groenewegen HJ, Berendse HW et al (2013) Cerebrospinal fluid and plasma clusterin levels in Parkinson’s disease. Parkinsonism Relat Disord 19(12):1079–1083
Article
PubMed
Google Scholar
Weller RO, Preston SD, Subash M, Carare RO (2009) Cerebral amyloid angiopathy in the aetiology and immunotherapy of Alzheimer disease. Alzheimers Res Ther 1(2):6
Article
PubMed
PubMed Central
Google Scholar
Wisniewski T, Castaño EM, Golabek A, Vogel T, Frangione B (1994) Acceleration of Alzheimer's fibril formation by apolipoprotein E in vitro. Am J Pathol 145(5):1030–1035
CAS
PubMed
PubMed Central
Google Scholar
Wojtas AM, Kang SS, Olley BM, Gatherer M, Shinohara M, Lozano PA et al (2017) Loss of clusterin shifts amyloid deposition to the cerebrovasculature via disruption of perivascular drainage pathways. Proc Natl Acad Sci U S A 114(33):E6962–E6971
Article
CAS
PubMed
PubMed Central
Google Scholar
Wood SJ, Chan W, Wetzel R (1996) Seeding of Aβ fibril formation is inhibited by all three isotypes of apolipoprotein E. Biochemistry 35(38):12623–12628
Article
CAS
PubMed
Google Scholar
Wyatt AR, Yerbury JJ, Dabbs RA, Wilson MR (2012) Roles of extracellular chaperones in amyloidosis. J Mol Biol 421(4–5):499–516
Article
CAS
PubMed
Google Scholar
Wyatt AR, Yerbury JJ, Ecroyd H, Wilson MR (2013) Extracellular chaperones and proteostasis. Annu Rev Biochem 82:295–322
Article
CAS
PubMed
Google Scholar
Yamada M (2015) Cerebral amyloid angiopathy: emerging concepts. J Stroke 17(1):17–30
Article
PubMed
PubMed Central
Google Scholar
Yamada M, Naiki H (2012) Cerebral amyloid angiopathy. Prog Mol Biol Transl Sci 107:41–78
Article
CAS
PubMed
Google Scholar
Yerbury JJ, Poon S, Meehan S, Thompson B, Kumita JR, Dobson CM et al (2007) The extracellular chaperone clusterin influences amyloid formation and toxicity by interacting with prefibrillar structures. FASEB J 21(10):2312–2322
Article
CAS
PubMed
Google Scholar
Zekonyte J, Sakai K, Nicoll JA, Weller RO, Carare RO (2016) Quantification of molecular interactions between apoE, amyloid-β (Aβ) and laminin: relevance to accumulation of Aβ in Alzheimer's disease. Biochim Biophys Acta 1862(5):1047–1053
Article
CAS
PubMed
Google Scholar