Adelsberger H, Quasthoff S, Grosskreutz J, Lepier A, Eckel F, Lersch C (2000) The chemotherapeutic oxaliplatin alters voltage-gated Na(+) channel kinetics on rat sensory neurons. Eur J Pharmacol 406:25–32.
Article
CAS
Google Scholar
Agoston GE, Wu JH, Izenwasser S, George C, Katz J, Kline RH, Newman AH (1997) Novel N-substituted 3 alpha-[bis(4′-fluorophenyl)methoxy]tropane analogues: selective ligands for the dopamine transporter. J Med Chem 40:4329–4339. https://doi.org/10.1021/jm970525a.
Article
CAS
PubMed
Google Scholar
Alexandre J, Nicco C, Chéreau C, Laurent A, Weill B, Goldwasser F, Batteux F (2006) Improvement of the therapeutic index of anticancer drugs by the superoxide dismutase mimic mangafodipir. J Natl Cancer Inst 98:236–244. https://doi.org/10.1093/jnci/djj049.
Article
CAS
PubMed
Google Scholar
André T, Boni C, Mounedji-Boudiaf L, Navarro M, Tabernero J, Hickish T, Topham C, Zaninelli M, Clingan P, Bridgewater J, Tabah-Fisch I, de Gramont A, Multicenter International Study of Oxaliplatin/5-Fluorouracil/Leucovorin in the Adjuvant Treatment of Colon Cancer (MOSAIC) Investigators (2004) Oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment for colon cancer. N Engl J Med 350:2343–2351. https://doi.org/10.1056/NEJMoa032709.
Article
PubMed
Google Scholar
Bains JS, Shaw CA (1997) Neurodegenerative disorders in humans: the role of glutathione in oxidative stress-mediated neuronal death. Brain Res Brain Res Rev 25:335–358.
Article
CAS
Google Scholar
Bakogeorgos M, Georgoulias V (2017) Risk-reduction and treatment of chemotherapy-induced peripheral neuropathy. Expert Rev Anticancer Ther 17:1045–1060. https://doi.org/10.1080/14737140.2017.1374856.
Article
CAS
PubMed
Google Scholar
Belrose JC, Xie Y-F, Gierszewski LJ, MacDonald JF, Jackson MF (2012) Loss of glutathione homeostasis associated with neuronal senescence facilitates TRPM2 channel activation in cultured hippocampal pyramidal neurons. Mol Brain 5:11. https://doi.org/10.1186/1756-6606-5-11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Benoit E, Brienza S, Dubois JM (2006) Oxaliplatin, an anticancer agent that affects both Na+ and K+ channels in frog peripheral myelinated axons. Gen Physiol Biophys 25:263–276.
Article
CAS
Google Scholar
Brewer JR, Morrison G, Dolan ME, Fleming GF (2016) Chemotherapy-induced peripheral neuropathy: current status and progress. Gynecol Oncol 140:176–183. https://doi.org/10.1016/j.ygyno.2015.11.011.
Article
CAS
PubMed
Google Scholar
Brown DA, Passmore GM (2009) Neural KCNQ (Kv7) channels. Br J Pharmacol 156:1185–1195. https://doi.org/10.1111/j.1476-5381.2009.00111.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Calcutt NA, Smith DR, Frizzi K, Sabbir MG, Chowdhury SKR, Mixcoatl-Zecuatl T, Saleh A, Muttalib N, Van der Ploeg R, Ochoa J, Gopaul A, Tessler L, Wess J, Jolivalt CG, Fernyhough P (2017) Selective antagonism of muscarinic receptors is neuroprotective in peripheral neuropathy. J Clin Invest 127:608–622. https://doi.org/10.1172/JCI88321.
Article
PubMed
PubMed Central
Google Scholar
Cantrell AR, Ma JY, Scheuer T, Catterall WA (1996) Muscarinic modulation of sodium current by activation of protein kinase C in rat hippocampal neurons. Neuron 16:1019–1026.
Article
CAS
Google Scholar
Carozzi VA, Canta A, Chiorazzi A (2015) Chemotherapy-induced peripheral neuropathy: what do we know about mechanisms? Neurosci Lett 596:90–107. https://doi.org/10.1016/j.neulet.2014.10.014.
Article
CAS
PubMed
Google Scholar
Cascinu S, Catalano V, Cordella L, Labianca R, Giordani P, Baldelli AM, Beretta GD, Ubiali E, Catalano G (2002) Neuroprotective effect of reduced glutathione on oxaliplatin-based chemotherapy in advanced colorectal cancer: a randomized, double-blind, placebo-controlled trial. J Clin Oncol Off J Am Soc Clin Oncol 20:3478–3483. https://doi.org/10.1200/JCO.2002.07.061.
Article
CAS
Google Scholar
Cavaletti G, Alberti P, Marmiroli P (2011) Chemotherapy-induced peripheral neurotoxicity in the era of pharmacogenomics. Lancet Oncol 12:1151–1161. https://doi.org/10.1016/S1470-2045(11)70131-0.
Article
CAS
PubMed
Google Scholar
Cerles O, Benoit E, Chéreau C, Chouzenoux S, Morin F, Guillaumot M-A, Coriat R, Kavian N, Loussier T, Santulli P, Marcellin L, Saidu NEB, Weill B, Batteux F, Nicco C (2017) Niclosamide inhibits Oxaliplatin neurotoxicity while improving colorectal Cancer therapeutic response. Mol Cancer Ther 16:300–311. https://doi.org/10.1158/1535-7163.MCT-16-0326.
Article
CAS
PubMed
Google Scholar
Cheng K, Shang AC, Drachenberg CB, Zhan M, Raufman J-P (2017) Differential expression of M3 muscarinic receptors in progressive colon neoplasia and metastasis. Oncotarget 8:21106–21114. https://doi.org/10.18632/oncotarget.15500.
Article
PubMed
PubMed Central
Google Scholar
Coriat R, Alexandre J, Nicco C, Quinquis L, Benoit E, Chéreau C, Lemaréchal H, Mir O, Borderie D, Tréluyer J-M, Weill B, Coste J, Goldwasser F, Batteux F (2014) Treatment of oxaliplatin-induced peripheral neuropathy by intravenous mangafodipir. J Clin Invest 124:262–272. https://doi.org/10.1172/JCI68730.
Article
CAS
PubMed
Google Scholar
Cui J, Hollmén M, Li L, Chen Y, Proulx ST, Reker D, Schneider G, Detmar M (2016) New use of an old drug: inhibition of breast cancer stem cells by benztropine mesylate. Oncotarget 8:1007–1022. https://doi.org/10.18632/oncotarget.13537.
Article
PubMed Central
Google Scholar
Cunha T (2005) A cascade of cytokines mediates mechanical inflammatory hypernociception in mice. - PubMed - NCBI. Proc Natl Acad Sci 102(5):1755–1760.
Article
CAS
Google Scholar
de Gramont A, Figer A, Seymour M, Homerin M, Hmissi A, Cassidy J, Boni C, Cortes-Funes H, Cervantes A, Freyer G, Papamichael D, Le Bail N, Louvet C, Hendler D, de Braud F, Wilson C, Morvan F, Bonetti A (2000) Leucovorin and fluorouracil with or without oxaliplatin as first-line treatment in advanced colorectal cancer. J Clin Oncol Off J Am Soc Clin Oncol 18:2938–2947. https://doi.org/10.1200/JCO.2000.18.16.2938.
Article
Google Scholar
Deshmukh VA, Tardif V, Lyssiotis CA, Green CC, Kerman B, Kim HJ, Padmanabhan K, Swoboda JG, Ahmad I, Kondo T, Gage FH, Theofilopoulos AN, Lawson BR, Schultz PG, Lairson LL (2013) A regenerative approach to the treatment of multiple sclerosis. Nature 502:327–332. https://doi.org/10.1038/nature12647.
Article
CAS
PubMed
PubMed Central
Google Scholar
Deuis JR, Zimmermann K, Romanovsky AA, Possani LD, Cabot PJ, Lewis RJ, Vetter I (2013) An animal model of oxaliplatin-induced cold allodynia reveals a crucial role for Nav1.6 in peripheral pain pathways. Pain 154:1749–1757. https://doi.org/10.1016/j.pain.2013.05.032.
Article
CAS
PubMed
PubMed Central
Google Scholar
Doughty CT, Seyedsadjadi R (2018) Approach to peripheral neuropathy for the primary care clinician. Am J Med. https://doi.org/10.1016/j.amjmed.2017.12.042.
Feldman EL, Bennett DLH, Nave K-A, Jensen TS (2017) New horizons in diabetic neuropathy: mechanisms, bioenergetics, and pain. Neuron 93:1296–1313. https://doi.org/10.1016/j.neuron.2017.02.005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Felton J, Hu S, Raufman J-P (2018) Targeting M3 muscarinic receptors for Colon Cancer therapy. Curr Mol Pharmacol. https://doi.org/10.2174/1874467211666180119115828.
Fields RD, Dutta DJ, Belgrad J, Robnett M (2017) Cholinergic signaling in myelination. Glia 65:687–698. https://doi.org/10.1002/glia.23101.
Article
PubMed
Google Scholar
Flatters SJL, Bennett GJ (2006) Studies of peripheral sensory nerves in paclitaxel-induced painful peripheral neuropathy: evidence for mitochondrial dysfunction. Pain 122:245–257. https://doi.org/10.1016/j.pain.2006.01.037.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fujii T (2017) Expression and Function of the Cholinergic System in Immune Cells - PubMed – NCBI. Front Immunol 8:1085.
Article
Google Scholar
Goebbels S, Oltrogge JH, Kemper R, Heilmann I, Bormuth I, Wolfer S, Wichert SP, Mobius W, Liu X, Lappe-Siefke C, Rossner MJ, Groszer M, Suter U, Frahm J, Boretius S, Nave K-A (2010) Elevated phosphatidylinositol 3,4,5-trisphosphate in glia triggers cell-autonomous membrane wrapping and myelination. J Neurosci 30:8953–8964. https://doi.org/10.1523/JNEUROSCI.0219-10.2010.
Article
CAS
PubMed
Google Scholar
Gonçalves NP, Vægter CB, Andersen H, Østergaard L, Calcutt NA, Jensen TS (2017) Schwann cell interactions with axons and microvessels in diabetic neuropathy. Nat Rev Neurol 13:135–147. https://doi.org/10.1038/nrneurol.2016.201.
Article
CAS
PubMed
Google Scholar
Gonçalves NP, Vægter CB, Pallesen LT (2018) Peripheral glial cells in the development of diabetic neuropathy. Front Neurol 9. https://doi.org/10.3389/fneur.2018.00268.
González-Reyes S, Guzmán-Beltrán S, Medina-Campos ON, Pedraza-Chaverri J (2013) Curcumin pretreatment induces Nrf2 and an antioxidant response and prevents hemin-induced toxicity in primary cultures of cerebellar granule neurons of rats. Oxidative Med Cell Longev 2013:801418. https://doi.org/10.1155/2013/801418.
Article
CAS
Google Scholar
Grisold W, Cavaletti G, Windebank AJ (2012) Peripheral neuropathies from chemotherapeutics and targeted agents: diagnosis, treatment, and prevention. Neuro-Oncology 14(Suppl 4):iv45–iv54. https://doi.org/10.1093/neuonc/nos203.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hache G, Guiard BP, Nguyen TH, Quesseveur G, Gardier AM, Peters D, Munro G, Coudoré F (2015) Antinociceptive activity of the new triple reuptake inhibitor NS18283 in a mouse model of chemotherapy-induced neuropathic pain. Eur J Pain 19:322–333. https://doi.org/10.1002/ejp.550.
Article
CAS
PubMed
Google Scholar
Heinen A, Lehmann HC, Küry P (2013) Negative regulators of schwann cell differentiation-novel targets for peripheral nerve therapies? J Clin Immunol 33(Suppl 1):S18–S26. https://doi.org/10.1007/s10875-012-9786-9.
Article
PubMed
Google Scholar
Imai S, Koyanagi M, Azimi Z, Nakazato Y, Matsumoto M, Ogihara T, Yonezawa A, Omura T, Nakagawa S, Wakatsuki S, Araki T, Kaneko S, Nakagawa T, Matsubara K (2017) Taxanes and platinum derivatives impair Schwann cells via distinct mechanisms. Sci Rep 7:5947. https://doi.org/10.1038/s41598-017-05784-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Iqbal A, George TJ (2017) Randomized clinical trials in Colon and Rectal Cancer. Surg Oncol Clin N Am 26:689–704. https://doi.org/10.1016/j.soc.2017.05.008.
Article
PubMed
Google Scholar
Jack MM, Ryals JM, Wright DE (2012) Protection from diabetes-induced peripheral sensory neuropathy--a role for elevated glyoxalase I? Exp Neurol 234:62–69. https://doi.org/10.1016/j.expneurol.2011.12.015.
Article
CAS
PubMed
Google Scholar
Kagiava A, Tsingotjidou A, Emmanouilides C, Theophilidis G (2008) The effects of oxaliplatin, an anticancer drug, on potassium channels of the peripheral myelinated nerve fibres of the adult rat. Neurotoxicology 29:1100–1106. https://doi.org/10.1016/j.neuro.2008.09.005.
Article
CAS
PubMed
Google Scholar
Kamei N, Tobe K, Suzuki R, Ohsugi M, Watanabe T, Kubota N, Ohtsuka-Kowatari N, Kumagai K, Sakamoto K, Kobayashi M, Yamauchi T, Ueki K, Oishi Y, Nishimura S, Manabe I, Hashimoto H, Ohnishi Y, Ogata H, Tokuyama K, Tsunoda M, Ide T, Murakami K, Nagai R, Kadowaki T (2006) Overexpression of monocyte chemoattractant protein-1 in adipose tissues causes macrophage recruitment and insulin resistance. J Biol Chem 281:26602–26614. https://doi.org/10.1074/jbc.M601284200.
Article
CAS
PubMed
Google Scholar
Kellogg AP, Wiggin TD, Larkin DD, Hayes JM, Stevens MJ, Pop-Busui R (2007) Protective effects of cyclooxygenase-2 gene inactivation against peripheral nerve dysfunction and intraepidermal nerve fiber loss in experimental diabetes. Diabetes 56:2997–3005. https://doi.org/10.2337/db07-0740.
Article
CAS
PubMed
Google Scholar
Keswani SC, Polley M, Pardo CA, Griffin JW, McArthur JC, Hoke A (2003) Schwann cell chemokine receptors mediate HIV-1 gp120 toxicity to sensory neurons. Ann Neurol 54:287–296. https://doi.org/10.1002/ana.10645.
Article
CAS
PubMed
Google Scholar
Khalilzadeh E, Azarpey F, Hazrati R, Vafaei Saiah G (2018) Evaluation of different classes of histamine H1 and H2 receptor antagonist effects on neuropathic nociceptive behavior following tibial nerve transection in rats. Eur J Pharmacol 834:221–229. https://doi.org/10.1016/j.ejphar.2018.07.011.
Article
CAS
PubMed
Google Scholar
Kiernan MC, Burke D, Andersen KV, Bostock H (2000) Multiple measures of axonal excitability: a new approach in clinical testing. Muscle Nerve 23:399–409.
Article
CAS
Google Scholar
Krishnan AV, Lin CS-Y, Park SB, Kiernan MC (2008) Assessment of nerve excitability in toxic and metabolic neuropathies. J Peripher Nerv Syst JPNS 13:7–26. https://doi.org/10.1111/j.1529-8027.2008.00155.x.
Article
CAS
PubMed
Google Scholar
Laedermann CJ, Abriel H, Decosterd I (2015) Post-translational modifications of voltage-gated sodium channels in chronic pain syndromes. Front Pharmacol 6. https://doi.org/10.3389/fphar.2015.00263.
Lang PM, Fleckenstein J, Passmore GM, Brown DA, Grafe P (2008) Retigabine reduces the excitability of unmyelinated peripheral human axons. Neuropharmacology 54:1271–1278. https://doi.org/10.1016/j.neuropharm.2008.04.006.
Article
CAS
PubMed
Google Scholar
Laurent A, Nicco C, Chéreau C, Goulvestre C, Alexandre J, Alves A, Lévy E, Goldwasser F, Panis Y, Soubrane O, Weill B, Batteux F (2005) Controlling tumor growth by modulating endogenous production of reactive oxygen species. Cancer Res 65:948–956.
CAS
PubMed
Google Scholar
Lehky TJ, Leonard GD, Wilson RH, Grem JL, Floeter MK (2004) Oxaliplatin-induced neurotoxicity: acute hyperexcitability and chronic neuropathy. Muscle Nerve 29:387–392. https://doi.org/10.1002/mus.10559.
Article
CAS
PubMed
Google Scholar
Lehmann HC, Höke A (2010) Schwann cells as a therapeutic target for peripheral neuropathies. CNS Neurol Disord Drug Targets 9:801–806.
Article
CAS
Google Scholar
Liu Z, Jin Y-Q, Chen L, Wang Y, Yang X, Cheng J, Wu W, Qi Z, Shen Z (2015) Specific marker expression and cell state of Schwann cells during culture in vitro. PLoS One 10:e0123278. https://doi.org/10.1371/journal.pone.0123278.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lopes LCG, Galhardoni R, Silva V, Jorge FMH, Yeng LT, Callegaro D, Chadi G, Teixeira MJ, Ciampi de Andrade D (2018) Beyond weakness: characterization of pain, sensory profile and conditioned pain modulation in patients with motor neuron disease: a controlled study. Eur J Pain Lond Engl 22:72–83. https://doi.org/10.1002/ejp.1091.
Article
CAS
Google Scholar
Loprinzi CL, Qin R, Dakhil SR, Fehrenbacher L, Flynn KA, Atherton P, Seisler D, Qamar R, Lewis GC, Grothey A (2014) Phase III randomized, placebo-controlled, double-blind study of intravenous calcium and magnesium to prevent oxaliplatin-induced sensory neurotoxicity (N08CB/Alliance). J Clin Oncol Off J Am Soc Clin Oncol 32:997–1005. https://doi.org/10.1200/JCO.2013.52.0536.
Article
CAS
Google Scholar
Loreti S, Vilaró MT, Visentin S, Rees H, Levey AI, Tata AM (2006) Rat Schwann cells express M1-M4 muscarinic receptor subtypes. J Neurosci Res 84:97–105. https://doi.org/10.1002/jnr.20874.
Article
CAS
PubMed
Google Scholar
Mangelus M, Kroyter A, Galron R, Sokolovsky M (2001) Reactive oxygen species regulate signaling pathways induced by M1 muscarinic receptors in PC12M1 cells. J Neurochem 76:1701–1711.
Article
CAS
Google Scholar
Marchand F, Perretti M, McMahon SB (2005) Role of the immune system in chronic pain. Nat Rev Neurosci 6:521–532. https://doi.org/10.1038/nrn1700.
Article
CAS
PubMed
Google Scholar
McKearney JW (1982) Stimulant actions of histamine H1 antagonists on operant behavior in the squirrel monkey. Psychopharmacology 77:156–158.
Article
CAS
Google Scholar
Melemedjian OK, Tillu DV, Moy JK, Asiedu MN, Mandell EK, Ghosh S, Dussor G, Price TJ (2014) Local translation and retrograde axonal transport of CREB regulates IL-6-induced nociceptive plasticity. Mol Pain 10:45. https://doi.org/10.1186/1744-8069-10-45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mendell J (2003) Painful sensory neuropathy. N Engl J Med 348(13). https://doi.org/10.1056/NEJMcp022282.
Miraucourt LS, Moisset X, Dallel R, Voisin DL (2009) Glycine inhibitory dysfunction induces a selectively dynamic, morphine-resistant, and neurokinin 1 receptor- independent mechanical allodynia. J Neurosci 29:2519–2527. https://doi.org/10.1523/JNEUROSCI.3923-08.2009.
Article
CAS
PubMed
Google Scholar
Morales M-C, Pérez-Yarza G, Nieto-Rementeria N, Boyano M-D, Jangi M, Atencia R, Asumendi A (2005) Intracellular glutathione levels determine cell sensitivity to apoptosis induced by the antineoplasic agent N-(4-hydroxyphenyl) retinamide. Anticancer Res 25:1945–1951.
CAS
PubMed
Google Scholar
Park B, Kim K, Rhee D, Pyo S (2012) The apoptotic effect of allicin in MCF-7 human breast cancer cells: role for ATF3. FASEB J 26:lb367–lb367.
Article
Google Scholar
Passmore G, Brown D (2007) Effects of M-channel mod-ulators on peripheral excitability inrat hairy skin. Soc Neurosci Abstr 681:8.
Google Scholar
Peters CM, Jimenez-Andrade JM, Jonas BM, Sevcik MA, Koewler NJ, Ghilardi JR, Wong GY, Mantyh PW (2007) Intravenous paclitaxel administration in the rat induces a peripheral sensory neuropathy characterized by macrophage infiltration and injury to sensory neurons and their supporting cells. Exp Neurol 203:42–54. https://doi.org/10.1016/j.expneurol.2006.07.022.
Article
CAS
PubMed
Google Scholar
Pulvers JN, Marx G (2017) Factors associated with the development and severity of oxaliplatin-induced peripheral neuropathy: a systematic review. Asia Pac J Clin Oncol. https://doi.org/10.1111/ajco.12694.
Rawlins FA, Villegas J (1978) Autoradiographic localization of acetylcholine receptors in the Schwann cell membrane of the squid nerve fiber. J Cell Biol 77:371–376.
Article
CAS
Google Scholar
Renn CL, Carozzi VA, Rhee P, Gallop D, Dorsey SG, Cavaletti G (2011) Multimodal assessment of painful peripheral neuropathy induced by chronic oxaliplatin-based chemotherapy in mice. Mol Pain 7:29. https://doi.org/10.1186/1744-8069-7-29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sagara M, Satoh J, Wada R, Yagihashi S, Takahashi K, Fukuzawa M, Muto G, Muto Y, Toyota T (1996) Inhibition of development of peripheral neuropathy in streptozotocin-induced diabetic rats with N-acetylcysteine. Diabetologia 39:263–269.
Article
CAS
Google Scholar
Schlumberger S, Kristan KČ, Ota K, Frangež R, Molgό J, Sepčić K, Benoit E, Maček P (2014) Permeability characteristics of cell-membrane pores induced by ostreolysin a/pleurotolysin B, binary pore-forming proteins from the oyster mushroom. FEBS Lett 588:35–40. https://doi.org/10.1016/j.febslet.2013.10.038.
Article
CAS
PubMed
Google Scholar
Scholz J, Woolf CJ (2007) The neuropathic pain triad: neurons, immune cells and glia. Nat Neurosci 10:1361–1368. https://doi.org/10.1038/nn1992.
Article
CAS
PubMed
Google Scholar
Seretny M, Currie GL, Sena ES, Ramnarine S, Grant R, MacLeod MR, Colvin LA, Fallon M (2014) Incidence, prevalence, and predictors of chemotherapy-induced peripheral neuropathy: a systematic review and meta-analysis. Pain 155:2461–2470. https://doi.org/10.1016/j.pain.2014.09.020.
Article
PubMed
Google Scholar
Shi X, Chen Y, Nadeem L, Xu G (2013) Beneficial effect of TNF-α inhibition on diabetic peripheral neuropathy. J Neuroinflammation 10:69. https://doi.org/10.1186/1742-2094-10-69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sima AAF, Zhang W (2014) Mechanisms of diabetic neuropathy: axon dysfunction. Handb Clin Neurol 126:429–442. https://doi.org/10.1016/B978-0-444-53480-4.00031-X.
Article
PubMed
Google Scholar
Sittl R, Carr RW, Schwarz JR, Grafe P (2010) The Kv7 potassium channel activator flupirtine affects clinical excitability parameters of myelinated axons in isolated rat sural nerve. J Peripher Nerv Syst JPNS 15:63–72. https://doi.org/10.1111/j.1529-8027.2010.00253.x.
Article
CAS
PubMed
Google Scholar
Sittl R, Lampert A, Huth T, Schuy ET, Link AS, Fleckenstein J, Alzheimer C, Grafe P, Carr RW (2012) Anticancer drug oxaliplatin induces acute cooling-aggravated neuropathy via sodium channel subtype Na(V)1.6-resurgent and persistent current. Proc Natl Acad Sci U S A 109:6704–6709. https://doi.org/10.1073/pnas.1118058109.
Article
PubMed
PubMed Central
Google Scholar
Spindel ER (2012) Muscarinic receptor agonists and antagonists: effects on Cancer. Handb Exp Pharmacol:451–468. https://doi.org/10.1007/978-3-642-23274-9_19.
Starkweather A (2010) Increased interleukin-6 activity associated with painful chemotherapy-induced peripheral neuropathy in women after breast cancer treatment. Nurs Res Pract 2010:281531. https://doi.org/10.1155/2010/281531.
Article
PubMed
PubMed Central
Google Scholar
Ta LE, Low PA, Windebank AJ (2009) Mice with cisplatin and oxaliplatin-induced painful neuropathy develop distinct early responses to thermal stimuli. Mol Pain 5:9. https://doi.org/10.1186/1744-8069-5-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trachootham D, Alexandre J, Huang P (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8:579–591. https://doi.org/10.1038/nrd2803.
Article
CAS
PubMed
Google Scholar
Ulugol A, Oltulu C, Gunduz O, Citak C, Carrara R, Shaqaqi MR, Sanchez AM, Dogrul A (2012) 5-HT7 receptor activation attenuates thermal hyperalgesia in streptozocin-induced diabetic mice. Pharmacol Biochem Behav 102:344–348. https://doi.org/10.1016/j.pbb.2012.05.006.
Article
CAS
PubMed
Google Scholar
Urrunaga NH, Jadeja RN, Rachakonda V, Ahmad D, McLean LP, Cheng K, Shah V, Twaddell WS, Raufman J-P, Khurana S (2015) M1 muscarinic receptors modify oxidative stress response to acetaminophen-induced acute liver injury. Free Radic Biol Med 78:66–81. https://doi.org/10.1016/j.freeradbiomed.2014.09.032.
Article
CAS
PubMed
Google Scholar
Vazquez E, Kahlenbach J, Segond von Banchet G, König C, Schaible H-G, Ebersberger A (2012) Spinal interleukin-6 is an amplifier of arthritic pain in the rat. Arthritis Rheum 64:2233–2242. https://doi.org/10.1002/art.34384.
Article
CAS
PubMed
Google Scholar
Verdiyan EE, Allakhverdiev ES, Maksimov GV (2016) Study of the peripheral nerve fibers myelin structure changes during activation of Schwann cell acetylcholine receptors. PLoS One 11:e0158083. https://doi.org/10.1371/journal.pone.0158083.
Article
CAS
PubMed
PubMed Central
Google Scholar
Verstappen CCP, Heimans JJ, Hoekman K, Postma TJ (2003) Neurotoxic complications of chemotherapy in patients with cancer: clinical signs and optimal management. Drugs 63:1549–1563.
Article
CAS
Google Scholar
Vinik AI, Casellini C, Névoret ML. Alternative Quantitative Tools in the Assessment of DiabeticPeripheral and Autonomic Neuropathy. Int Rev Neurobiol. 2016;127:235-85. https://www-ncbi-nlm-nih-gov.frodon.univ-paris5.fr/pubmed/?term=Alternative+Quantitative+Tools+in+the+Assessment+of+Diabetic+Peripheral+and+Autonomic+Neuropathy.
Wagner AD, Syn NL, Moehler M, Grothe W, Yong WP, Tai B-C, Ho J, Unverzagt S (2017) Chemotherapy for advanced gastric cancer. Cochrane Database Syst Rev 8:CD004064. https://doi.org/10.1002/14651858.CD004064.pub4.
Article
PubMed
Google Scholar
Watson JC, Dyck PJB (2015) Peripheral neuropathy: a practical approach to diagnosis and symptom management. Mayo Clin Proc 90:940–951. https://doi.org/10.1016/j.mayocp.2015.05.004.
Article
PubMed
Google Scholar
Webster RG, Brain KL, Wilson RH, Grem JL, Vincent A (2005) Oxaliplatin induces hyperexcitability at motor and autonomic neuromuscular junctions through effects on voltage-gated sodium channels. Br J Pharmacol 146:1027–1039. https://doi.org/10.1038/sj.bjp.0706407.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu D-F, Chandra D, McMahon T, Wang D, Dadgar J, Kharazia VN, Liang Y-J, Waxman SG, Dib-Hajj SD, Messing RO (2012) PKCε phosphorylation of the sodium channel NaV1.8 increases channel function and produces mechanical hyperalgesia in mice. J Clin Invest 122:1306–1315. https://doi.org/10.1172/JCI61934.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu H, Xia H, Tang Q, Xu H, Wei G, Chen Y, Dai X, Gong Q, Bi F (2017) Acetylcholine acts through M3 muscarinic receptor to activate the EGFR signaling and promotes gastric cancer cell proliferation. Sci Rep 7:40802. https://doi.org/10.1038/srep40802.
Article
CAS
PubMed
PubMed Central
Google Scholar