Aguzzi A, Barres BA, Bennett ML (2013) Microglia: scapegoat, saboteur, or something else? Science 339:156–161. doi:10.1126/science.1227901
Article
CAS
PubMed
PubMed Central
Google Scholar
Aguzzi A, Sigurdson C, Heikenwaelder M (2008) Molecular mechanisms of Prion Pathogenesis. Annu Rev Pathol Mech Dis 3:11–40. doi:10.1146/annurev.pathmechdis.3.121806.154326
Article
CAS
Google Scholar
Anekonda TS, Quinn JF (2011) Calcium channel blocking as a therapeutic strategy for Alzheimer’s disease: the case for isradipine. Biochim Biophys Acta 1812:1584–1590. doi:10.1016/j.bbadis.2011.08.013
Article
CAS
PubMed
PubMed Central
Google Scholar
Ansoleaga B, Garcia-Esparcia P, Llorens F, Hernandez-Ortega K, Carmona M, Del Rio JA, Zerr I, Ferrer I (2016) Altered mitochondria, protein synthesis machinery, and Purine metabolism are molecular contributors to the pathogenesis of Creutzfeldt-Jakob disease. J Neuropathol Exp Neurol 75:755–769. doi:10.1093/jnen/nlw048
Article
Google Scholar
Atarashi R, Satoh K, Sano K, Fuse T, Yamaguchi N, Ishibashi D, Matsubara T, Nakagaki T, Yamanaka H, Shirabe S, Yamada M, Mizusawa H, Kitamoto T, Klug G, McGlade A, Collins SJ, Nishida N (2011) Ultrasensitive human prion detection in cerebrospinal fluid by real-time quaking-induced conversion. Nat Med 17:175–8. doi:10.1038/nm.2294
Article
CAS
PubMed
Google Scholar
Averna M, de Tullio R, Passalacqua M, Salamino F, Pontremoli S, Melloni E (2001) Changes in intracellular calpastatin localization are mediated by reversible phosphorylation. Biochem J 354:25–30. doi:10.1042/0264-6021:3540025
Article
CAS
PubMed
PubMed Central
Google Scholar
Baker CA, Lu ZY, Zaitsev I, Manuelidis L (1999) Microglial activation varies in different models of Creutzfeldt-Jakob disease. J Virol 73:5089–97
CAS
PubMed
PubMed Central
Google Scholar
Bezprozvanny IB (2010) Calcium signaling and neurodegeneration. Acta Nat 2:72–82
CAS
Google Scholar
Bezprozvanny I, Mattson MP (2008) Neuronal calcium mishandling and the pathogenesis of Alzheimer’s disease. Trends Neurosci 31:454–463. doi:10.1016/j.tins.2008.06.005
Article
CAS
PubMed
PubMed Central
Google Scholar
Bishop MT, Kovacs GG, Sanchez-Juan P, Knight RSG (2008) Cathepsin D SNP associated with increased risk of variant Creutzfeldt-Jakob disease. BMC Med Genet 9:31. doi:10.1186/1471-2350-9-31
Article
PubMed
PubMed Central
Google Scholar
Bleich S, Kropp S, Degner D, Zerr I, Pilz J, Gleiter CH, Otto M, Ruther E, Kretzschmar HA, Wiltfang J, Kornhuber J, Poser S (2000) Creutzfeldt-Jakob disease and oxidative stress 6. Acta Neurol Scand 101:332–334
Article
CAS
PubMed
Google Scholar
Boom A, Pochet R, Authelet M, Pradier L, Borghgraef P, Van Leuven F, Heizmann CW, Brion JP (2 004) Astrocytic calcium/zinc binding protein S100A6 over expression in Alzheimer’s disease and in PS1/APP transgenic mice models. Biochim Biophys Acta Mol Cell Res 1742:161–168
Carimalo J, Cronier S, Petit G, Peyrin JM, Boukhtouche F, Arbez N, Lemaigre-Dubreuil Y, Brugg B, Miquel MC (2005) Activation of the JNK-c-Jun pathway during the early phase of neuronal apoptosis induced by PrP106-126 and prion infection. Eur J Neurosci 21:2311–2319. doi:10.1111/j.1460-9568.2005.04080.x
Article
CAS
PubMed
Google Scholar
Carulla P, Bribián A, Rangel A, Gavín R, Ferrer I, Caelles C, Del Río JA, Llorens F (2011) Neuroprotective role of PrPC against kainate-induced epileptic seizures and cell death depends on the modulation of JNK3 activation by GluR6/7-PSD-95 binding. Mol Biol Cell 22:3041–54. doi:10.1091/mbc.E11-04-0321
Article
CAS
PubMed
PubMed Central
Google Scholar
Cassard H, Torres JM, Lacroux C, Douet JY, Benestad SL, Lantier F, Lugan S, Lantier I, Costes P, Aron N, Reine F, Herzog L, Espinosa JC, Beringue V, Andreoletti O (2014) Evidence for zoonotic potential of ovine scrapie prions. Nat Commun 5:5821. doi:10.1038/ncomms6821
Article
CAS
PubMed
Google Scholar
Caughey B, Lansbury PT (2003) Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu Rev Neurosci 26:267–98. doi:10.1146/annurev.neuro.26.010302.081142
Article
CAS
PubMed
Google Scholar
Chaitanya GV, Babu PP (2008) Activation of calpain, cathepsin-b and caspase-3 during transient focal cerebral ischemia in rat model. Neurochem Res 33:2178–2186. doi:10.1007/s11064-007-9567-7
Article
CAS
PubMed
Google Scholar
Chen M, Won DJ, Krajewski S, Gottlieb RA (2002) Calpain and mitochondria in ischemia/reperfusion injury. J Biol Chem 277:29181–29186. doi:10.1074/jbc.M204951200
Article
CAS
PubMed
Google Scholar
Colby DW, Prusiner SB (2011) Prions. Cold Spring Harb Perspect Biol 3:1–22. doi:10.1101/cshperspect.a006833
Article
CAS
Google Scholar
Conus S, Simon HU (2008) Cathepsins: Key modulators of cell death and inflammatory responses. Biochem Pharmacol 76:1374–1382. doi:10.1016/j.bcp.2008.07.041
Article
CAS
PubMed
Google Scholar
Cramm M, Schmitz M, Karch A, Mitrova E, Kuhn F, Schroeder B, Raeber A, Varges D, Kim YS, Satoh K, Collins S, Zerr I (2016) Stability and reproducibility underscore utility of RT-QuIC for diagnosis of Creutzfeldt-Jakob Disease. Mol Neurobiol 53:1896–1904. doi:10.1007/s12035-015-9133-2
Article
CAS
PubMed
Google Scholar
Dandoy-Dron F, Guillo F, Benboudjema L, Deslys JP, Lasmézas C, Dormont D, Tovey MG, Dron M (1998) Gene expression of scrapie: Cloning of a new scrapie-responsive gene and the identification of increased levels of seven other mRNA transcripts. J Biol Chem 273:7691–7697. doi:10.1074/jbc.273.13.7691
Article
CAS
PubMed
Google Scholar
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21. doi:10.1093/bioinformatics/bts635
Article
CAS
PubMed
Google Scholar
Ermak G, Davies KJ (2002) Calcium and oxidative stress: from cell signaling to cell death. Mol Immunol 38:713–721
Article
CAS
Google Scholar
Fernández-Montalván A, Assfalg-Machleidt I, Pfeiler D, Fritz H, Jochum M, Machleidt W (2006) ??-Calpain binds to lipid bilayers via the exposed hydrophobic surface of its Ca2 + −activated conformation. Biol Chem 387:617–627. doi:10.1515/BC.2006.079
Article
PubMed
Google Scholar
Ferreira A (2012) Calpain dysregulation in Alzheimer’s disease. ISRN Biochem 2012:728571. doi:10.5402/2012/728571
Article
PubMed
PubMed Central
Google Scholar
Ferrer I (2002) Synaptic pathology and cell death in the cerebellum in Creutzfeldt-Jakob disease. Cerebellum 1:213–222. doi:10.1080/14734220260418448
Article
CAS
PubMed
Google Scholar
Ferrer I (2002) Differential expression of phosphorylated translation initiation factor 2 alpha in Alzheimer’s disease and Creutzfeldt-Jakob’s disease. Neuropathol Appl Neurobiol 28:441–451. doi:10.1046/j.1365-2990.2002.t01-1-00410.x
Article
CAS
PubMed
Google Scholar
Freixes M, Rodríguez A, Dalfó E, Ferrer I (2006) Oxidation, glycoxidation, lipoxidation, nitration, and responses to oxidative stress in the cerebral cortex in Creutzfeldt-Jakob disease. Neurobiol Aging 27:1807–1815. doi:10.1016/j.neurobiolaging.2005.10.006
Article
CAS
PubMed
Google Scholar
Gambetti P, Dong Z, Yuan J, Xiao X, Zheng M, Alshekhlee A, Castellani R, Cohen M, Barria MA, Gonzalez-Romero D, Belay ED, Schonberger LB, Marder K, Harris C, Burke JR, Montine T, Wisniewski T, Dickson DW, Soto C, Hulette CM, Mastrianni JA, Kong Q, Zou WQ (2008) A novel human disease with abnormal prion protein sensitive to protease. Ann Neurol 63:697–708. doi:10.1002/ana.21420
Article
CAS
PubMed
PubMed Central
Google Scholar
Gambetti P, Kong Q, Zou W, Parchi P, Chen SG (2003) Sporadic and familial CJD: Classification and characterisation. Br Med Bull 66:213–239. doi:10.1093/bmb/66.1.213
Article
CAS
PubMed
Google Scholar
Garcia-Esparcia P, Llorens F, Carmona M, Ferrer I (2014) Complex Deregulation and Expression of Cytokines and Mediators of the Immune Response in Parkinson’s Disease Brain is Region Dependent. Brain Pathol. 73–75. doi: 10.1111/bpa.12137
Geschwind MD (2016) Rapidly progressive dementia. Contin Lifelong Learn Neurol 22:510–537. doi:10.1212/CON.0000000000000319
Article
Google Scholar
Ghosh A, Greenberg ME (1995) Calcium signaling in neurons: molecular mechanisms and cellular consequences. Science 268:239–247. doi:10.1126/science.7716515
Article
CAS
PubMed
Google Scholar
Gleichmann M, Mattson MP (2011) Neuronal calcium homeostasis and dysregulation. Antioxid Redox Signal 14:1261–73. doi:10.1089/ars.2010.3386
Article
CAS
PubMed
PubMed Central
Google Scholar
Goll DE, Thompson VF, Li H, Wei W, Cong J (2003) The Calpain System. Physiol Rev. 731–801. doi:10.1152/physrev.00029.2002
Gray F, Chretien F, Adle-Biassette H, Dorandeu A, Ereau T, Delisle MB, Kopp N, Ironside JW, Vital C (1999) Neuronal apoptosis in Creutzfeldt-Jakob disease. J Neuropathol Exp Neurol 58:321–8
Article
CAS
PubMed
Google Scholar
Gray SP, O’Connor VM, Perry VH (2006) Increased expression of glial fibrillary acidic protein fragments and mu-calpain activation within the hippocampus of prion-infected mice. Biochem Soc Trans 34:51–4. doi:10.1042/BST0340051
Article
CAS
PubMed
Google Scholar
Grynspan F, Griffin WR, Cataldo A, Katayama S, Nixon RA (1997) Active site-directed antibodies identify calpain II as an early- appearing and pervasive component of neurofibrillary pathology in Alzheimer’s disease. Brain Res 763:145–158. doi:10.1016/S0006-8993(97)00384-3
Article
CAS
PubMed
Google Scholar
Gu Y, Fujioka H, Mishra RS, Li R, Singh N (2002) Prion peptide 106–126 modulates the aggregation of cellular prion protein and induces the synthesis of potentially neurotoxic transmembrane PrP. J Biol Chem 277:2275–2286. doi:10.1074/jbc.M104345200
Article
CAS
PubMed
Google Scholar
Guo Y, Gong HS, Zhang J, Xie WL, Tian C, Chen C, Shi Q, Wang S Bin, Xu Y, Zhang BY, Dong XP (2012) Remarkable reduction of MAP2 in the brains of scrapie-infected rodents and human prion disease possibly correlated with the increase of calpain. PLoS One. doi:10.1371/journal.pone.0030163
Hai PH, Doh-Ura K, Nakanishi H (2007) Impairment of microglial responses to facial nerve axotomy in cathepsin S-deficient mice. J Neurosci Res 85:2196–2206. doi:10.1002/jnr.21357
Article
Google Scholar
Halder R, Hennion M, Vidal RO, Shomroni O, Rahman R-U, Rajput A, Centeno TP, van Bebber F, Capece V, Vizcaino JCG, Schuetz A-L, Burkhardt S, Benito E, Sala MN, Javan SB, Haass C, Schmid B, Fischer A, Bonn S (2016) DNA methylation changes in plasticity genes accompany the formation and maintenance of memory. Nat Neurosci 19:102–110. doi:10.1038/nn.4194
CAS
PubMed
Google Scholar
Hetz C, Castilla J, Soto C (2007) Perturbation of endoplasmic reticulum homeostasis facilitates prion replication. J Biol Chem 282:12725–12733. doi:10.1074/jbc.M611909200
Article
CAS
PubMed
PubMed Central
Google Scholar
Hetz C, Lee A-H, Gonzalez-Romero D, Thielen P, Castilla J, Soto C, Glimcher LH (2008) Unfolded protein response transcription factor XBP-1 does not influence prion replication or pathogenesis. Proc Natl Acad Sci U S A 105:757–62. doi:10.1073/pnas.0711094105
Article
CAS
PubMed
PubMed Central
Google Scholar
Hetz C, Russelakis-Carneiro M, Maundrell K, Castilla J, Soto C (2003) Caspase-12 and endoplasmic reticulum stress mediate neurotoxicity of pathological prion protein. EMBO J 22:5435–5445. doi:10.1093/emboj/cdg537
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang Y, Wang KKW (2001) The calpain family and human disease. Trends Mol Med 7:355–362. doi:10.1016/S1471-4914(01)02049-4
Article
CAS
PubMed
Google Scholar
Hurley MJ, Brandon B, Gentleman SM, Dexter DT (2013) Parkinson’s disease is associated with altered expression of CaV1 channels and calcium-binding proteins. Brain 136:2077–2097. doi:10.1093/brain/awt134
Article
PubMed
Google Scholar
Jimenez-Huete A, Lievens PMJ, Vidal R, Piccardo P, Ghetti B, Tagliavini F, Frangione B, Prelli F (1998) Endogenous proteolytic cleavage of normal and disease- associated isoforms of the human prion protein in neural and non-neural tissues. Am J Pathol 153:1561–1572
Article
CAS
PubMed
PubMed Central
Google Scholar
Kawahara M (2004) Disruption of calcium homeostasis in the pathogenesis of Alzheimer’s disease and other conformational diseases. Curr Alzheimer Res 1:87–95. doi:10.2174/1567205043332234
Article
CAS
PubMed
Google Scholar
Kayed R, Lasagna-Reeves CA (2012) Molecular mechanisms of amyloid oligomers toxicity. Adv Alzheimer’s Dis 3:67–78. doi:10.3233/978-1-61499-154-0-67
Article
Google Scholar
Khosravani H, Zhang Y, Tsutsui S, Hameed S, Altier C, Hamid J, Chen L, Villemaire M, Ali Z, Jirik FR, Zamponi GW (2008) Prion protein attenuates excitotoxicity by inhibiting NMDA receptors. J Cell Biol 181:551–555. doi:10.1083/jcb.200711002
Article
CAS
PubMed
PubMed Central
Google Scholar
Kirschke H, Wiederanders B, Brömme D, Rinne A (1989) Cathepsin S from bovine spleen. Purification, distribution, intracellular localization and action on proteins. Biochem J 264:467–73
Article
CAS
PubMed
PubMed Central
Google Scholar
Kovacs GG, Budka H (2008) Prion diseases: from protein to cell pathology. Am J Pathol 172:555–565. doi:10.2353/ajpath.2008.070442
Article
CAS
PubMed
PubMed Central
Google Scholar
Kovacs GG, Budka H (2010) Distribution of apoptosis-related proteins in sporadic Creutzfeldt-Jakob disease. Brain Res 1323:192–199. doi:10.1016/j.brainres.2010.01.089
Article
CAS
PubMed
Google Scholar
Kovács GG, Gelpi E, Ströbel T, Ricken G, Nyengaard JR, Bernheimer H, Budka H (2007) Involvement of the endosomal-lysosomal system correlates with regional pathology in Creutzfeldt-Jakob disease. J Neuropathol Exp Neurol 66:628–636. doi:10.1097/nen.0b013e318093ecc7
Article
PubMed
Google Scholar
Kristensson K, Feuerstein B, Taraboulos A, Hyun WC, Prusiner SB, DeArmond SJ (1993) Scrapie prions alter receptor-mediated calcium responses in cultured cells. Neurology 43:2335–2341
Article
CAS
PubMed
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079. doi:10.1093/bioinformatics/btp352
Article
PubMed
PubMed Central
Google Scholar
Liberski PP, Sikorska B, Bratosiewicz-Wasik J, Gajdusek DC, Brown P (2004) Neuronal cell death in transmissible spongiform encephalopathies (prion diseases) revisited: from apoptosis to autophagy. Int J Biochem Cell Biol 36:2473–90. doi:10.1016/j.biocel.2004.04.016
Article
CAS
PubMed
Google Scholar
Lin MC, Mirzabekov T, Kagan BL (1997) Channel formation by a neurotoxic prion protein fragment. J Biol Chem 272:44–47
Article
CAS
PubMed
Google Scholar
Llorens F, Ansoleaga B, Garcia-Esparcia P, Zafar S, Grau-Rivera O, López-González I, Blanco R, Carmona M, Yagüe J, Nos C, Del Río JA, Gelpí E, Zerr I, Ferrer I (2013) PrP mRNA and protein expression in brain and PrP(c) in CSF in Creutzfeldt-Jakob disease MM1 and VV2. Prion 7:383–93. doi:10.4161/pri.26416
Article
CAS
PubMed
PubMed Central
Google Scholar
Llorens F, Lopez-Gonzalez I, Thune K, Carmona M, Zafar S, Andeoletti O, Zerr I, Ferrer I (2014) Subtype and regional-specific neuroinflammation in sporadic creutzfeldt-jakob disease. Front Aging Neurosci. doi:10.3389/fnagi.2014.00198
Llorens F, Zafar S, Ansoleaga B, Shafiq M, Blanco R, Carmona M, Grau-Rivera O, Nos C, Gelpí E, del Río JA, Zerr I, Ferrer I (2015) Subtype and regional regulation of prion biomarkers in sporadic Creutzfeldt-Jakob disease. Neuropathol Appl Neurobiol 41:631–645. doi:10.1111/nan.12175
Article
CAS
PubMed
Google Scholar
Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. doi:10.1186/s13059-014-0550-8
Article
PubMed
PubMed Central
Google Scholar
Mays CE, Soto C (2016) The stress of prion disease. Brain Res 1648:553–560. doi:10.1016/j.brainres.2016.04.009
Article
CAS
PubMed
Google Scholar
McGuire LI, Peden AH, Orru CD, Wilham JM, Appleford NE, Mallinson G, Andrews M, Head MW, Caughey B, Will RG, Knight RS, Green AJ (2012) Real time quaking-induced conversion analysis of cerebrospinal fluid in sporadic Creutzfeldt-Jakob disease. Ann Neurol 72:278–285. doi:10.1002/ana.23589
Article
PubMed
PubMed Central
Google Scholar
Melo JB, Agostinho P, Oliveira CR (2007) Prion protein aggregation and neurotoxicity in cortical neurons. Ann N Y Acad Sci 1096:220–229. doi:10.1196/annals.1397.088
Article
CAS
PubMed
Google Scholar
Moreno J, Radford H, Peretti D, Steinert VN, Martin M, Halliday M, Morgan J, Dinsdale D, Ortori C, Barrett D, Tsaytler P, Bertolotti A, Willis A, Bushell M, Mallucci G (2012) Sustained translational repression by eIF2α-P mediates prion neurodegeneration. Nature 485:507–511. doi:10.1038/nature11058
CAS
PubMed
PubMed Central
Google Scholar
Nakanishi H (2003) Neuronal and microglial cathepsins in aging and age-related diseases. Ageing Res Rev 2:367–381. doi:10.1016/S1568-1637(03)00027-8
Article
CAS
PubMed
Google Scholar
Padilla D, Béringue V, Espinosa JC, Andreoletti O, Jaumain E, Reine F, Herzog L, Gutierrez-Adan A, Pintado B, Laude H, Torres JM (2011) Sheep and goat BSE propagate more efficiently than cattle BSE in human PrP transgenic mice. PLoS Pathog. doi:10.1371/journal.ppat.1001319
Pamplona R, Naudí A, Gavín R, Pastrana MA, Sajnani G, Ilieva EV, del Río JA, Portero-Otín M, Ferrer I, Requena JR (2008) Increased oxidation, glycoxidation, and lipoxidation of brain proteins in prion disease. Free Radic Biol Med 45:1159–1166. doi:10.1016/j.freeradbiomed.2008.07.009
Article
CAS
PubMed
Google Scholar
Parchi P, De Boni L, Saverioni D, Cohen ML, Ferrer I, Gambetti P, Gelpi E, Giaccone G, Hauw JJ, Höftberger R, Ironside JW, Jansen C, Kovacs GG, Rozemuller A, Seilhean D, Tagliavini F, Giese A, Kretzschmar HA (2012) Consensus classification of human prion disease histotypes allows reliable identification of molecular subtypes: An inter-rater study among surveillance centres in Europe and USA. Acta Neuropathol 124:517–529. doi:10.1007/s00401-012-1002-8
Article
PubMed
PubMed Central
Google Scholar
Parchi P, Giese A, Capellari S, Brown P, Schulz-Schaeffer W, Windl O, Zerr I, Budka H, Kopp N, Piccardo P, Poser S, Rojiani A, Streichemberger N, Julien J, Vital C, Ghetti B, Gambetti P, Kretzschmar H (1999) Classification of sporadic Creutzfeldt-Jakob disease based on molecular and phenotypic analysis of 300 subjects. Ann Neurol 46:224–233
Article
CAS
PubMed
Google Scholar
Park K-W, Eun Kim G, Morales R, Moda F, Moreno-Gonzalez I, Concha-Marambio L, Lee AS, Hetz C, Soto C (2017) The endoplasmic reticulum chaperone GRP78/BiP modulates prion propagation in vitro and in vivo. Sci Rep 7:44723. doi:10.1038/srep44723
Article
PubMed
PubMed Central
Google Scholar
Polajnar M, Zerovnik E (2014) Impaired autophagy: A link between neurodegenerative and neuropsychiatric diseases. J Cell Mol Med 18:1705–1711. doi:10.1111/jcmm.12349
Article
CAS
PubMed
PubMed Central
Google Scholar
Popugaeva E, Bezprozvanny I (2013) Role of endoplasmic reticulum Ca2+ signaling in the pathogenesis of Alzheimer disease. Front Mol Neurosci 6:29. doi:10.3389/fnmol.2013.00029
Article
PubMed
PubMed Central
Google Scholar
Puoti G, Bizzi A, Forloni G, Safar JG, Tagliavini F, Gambetti P (2012) Sporadic human prion diseases: Molecular insights and diagnosis. Lancet Neurol 11:618–628. doi:10.1016/S1474-4422(12)70063-7
Article
CAS
PubMed
Google Scholar
Rintoul GL, Raymond LA, Baimbridge KG (2001) Calcium buffering and protection from excitotoxic cell death by exogenous calbindin-D28k in HEK 293 cells. Cell Calcium 29:277–87. doi:10.1054/ceca.2000.0190
Article
CAS
PubMed
Google Scholar
Saito K, Elce JS, Hamos JE, Nixon RA (1993) Widespread activation of calcium-activated neutral proteinase (calpain) in the brain in Alzheimer disease: a potential molecular basis for neuronal degeneration. Proc Natl Acad Sci U S A 90:2628–32. doi:10.1073/pnas.90.7.2628
Article
CAS
PubMed
PubMed Central
Google Scholar
Sandberg MK, Wallén P, Wikström MA, Kristensson K (2004) Scrapie-infected GT1-1 cells show impaired function of voltage-gated N-type calcium channels (Cav 2.2) which is ameliorated by quinacrine treatment. Neurobiol Dis 15:143–151. doi:10.1016/j.nbd.2003.09.006
Article
CAS
PubMed
Google Scholar
Schmitz M, Cramm M, Llorens F, Candelise N, Müller-Cramm D, Varges D, Schulz-Schaeffer WJ, Zafar S, Zerr I (2016) Application of an in vitro-amplification assay as a novel pre-screening test for compounds inhibiting the aggregation of prion protein scrapie. Sci Rep 6:28711. doi:10.1038/srep28711
Article
PubMed
PubMed Central
Google Scholar
Senft D, Ronai ZA (2015) UPR, autophagy, and mitochondria crosstalk underlies the ER stress response. Trends Biochem Sci 40:141–148. doi:10.1016/j.tibs.2015.01.002
Article
CAS
PubMed
PubMed Central
Google Scholar
Shimohama S, Suenaga T, Araki W, Yamaoaka Y, Shimizu K, Kimura J (1991) Presence of calpain II immunoreactivity in senile plaques in Alzheimer’s disease. Brain Res 558:105–108. doi:10.1016/0006-8993(91)90722-8
Article
CAS
PubMed
Google Scholar
Sikorska B, Liberski PP, Giraud P, Kopp N, Brown P (2004) Autophagy is a part of ultrastructural synaptic pathology in Creutzfeldt-Jakob disease: A brain biopsy study. Int J Biochem Cell Biol 36:2563–2573. doi:10.1016/j.biocel.2004.04.014
Article
CAS
PubMed
Google Scholar
Simoneau S, Rezaei H, Salès N, Kaiser-Schulz G, Lefebvre-Roque M, Vidal C, Fournier JG, Comte J, Wopfner F, Grosclaude J, Schätzl H, Lasmézas CI (2007) In vitro and in vivo neurotoxicity of prion protein oligomers. PLoS Pathog 3:1175–1186. doi:10.1371/journal.ppat.0030125
Article
CAS
Google Scholar
Sloane JA, Hinman JD, Lubonia M, Hollander W, Abraham CR (2003) Age-dependent myelin degeneration and proteolysis of oligodendrocyte proteins is associated with the activation of calpain-1 in the rhesus monkey. J Neurochem 84:157–168. doi:10.1046/j.1471-4159.2003.01541.x
Article
CAS
PubMed
Google Scholar
Small DH (2009) Dysregulation of calcium homeostasis in Alzheimer’s disease. Neurochem Res 34:1824–1829. doi:10.1007/s11064-009-9960-5
Article
CAS
PubMed
Google Scholar
Syntichaki P, Tavernarakis N (2003) The biochemistry of neuronal necrosis: rogue biology? Nat Rev Neurosci 4:672–684. doi:10.1038/nrn1174
Article
CAS
PubMed
Google Scholar
Thompson A, MacKay A, Rudge P, Lukic A, Porter MC, Lowe J, Collinge J, Mead Dr S (2014) Behavioral and psychiatric symptoms in prion disease. Am J Psychiatry 171:265–274. doi:10.1176/appi.ajp.2013.12111460
Article
PubMed
Google Scholar
Torres M, Castillo K, Armisén R, Stutzin A, Soto C, Hetz C (2010) Prion Protein Misfolding Affects Calcium Homeostasis and Sensitizes Cells to Endoplasmic Reticulum Stress. PLoS One. doi:10.1371/journal.pone.0015658
Torres M, Encina G, Soto C, Hetz C (2011) Abnormal calcium homeostasis and protein folding stress at the ER: A common factor in familial and infectious prion disorders. Commun Integr Biol 4:258–261. doi:10.4161/cib.4.3.15019
Article
CAS
PubMed
PubMed Central
Google Scholar
Torres M, Matamala JM, Duran-Aniotz C, Cornejo VH, Foley A, Hetz C (2015) ER stress signaling and neurodegeneration: At the intersection between Alzheimer’s disease and Prion-related disorders. Virus Res 207:69–75. doi:10.1016/j.virusres.2014.12.018
Article
CAS
PubMed
Google Scholar
Tsuji T, Shimohama S, Kimura J, Shimizu K (1998) m-calpain (calcium-activated neutral proteinase) in alzheimer’s disease brains. Neurosci Lett 248:109–112. doi:10.1016/S0304-3940(98)00348-6
Article
CAS
PubMed
Google Scholar
Unterberger U, Höftberger R, Gelpi E, Flicker H, Budka H, Voigtländer T (2006) Endoplasmic reticulum stress features are prominent in Alzheimer disease but not in prion diseases in vivo. J Neuropathol Exp Neurol 65:348–57. doi:10.1097/01.jnen.0000218445.30535.6f
Article
CAS
PubMed
Google Scholar
Van Everbroeck B, Dobbeleir I, De Waele M, De Leenheir E, Lübke U, Martin J-J, Cras P (2004) Extracellular protein deposition correlates with glial activation and oxidative stress in Creutzfeldt-Jakob and Alzheimer’s disease. Acta Neuropathol 108:194–200. doi:10.1007/s00401-004-0879-2
Article
PubMed
Google Scholar
Vanderklish PW, Bahr BA (2000) The pathogenic activation of calpain: A marker and mediator of cellular toxicity and disease states. Int J Exp Pathol 81:323–339. doi:10.1046/j.1365-2613.2000.00169.x
Article
CAS
PubMed
PubMed Central
Google Scholar
Villalpando Rodriguez GE, Torriglia A (2013) Calpain 1 induce lysosomal permeabilization by cleavage of lysosomal associated membrane protein 2. Biochim Biophys Acta - Mol Cell Res 1833:2244–2253. doi:10.1016/j.bbamcr.2013.05.019
Article
CAS
Google Scholar
Vosler PS, Brennan CS, Chen J (2008) Calpain-mediated signaling mechanisms in neuronal injury and neurodegeneration. Mol Neurobiol 38:78–100. doi:10.1007/s12035-008-8036-x
Article
CAS
PubMed
PubMed Central
Google Scholar
Woods NK, Padmanabhan J (2012) Neuronal calcium signaling and Alzheimer’s disease. Adv Exp Med Biol 740:1193–1217. doi:10.1007/978-94-007-2888-2_54
Article
CAS
PubMed
Google Scholar
Xiang W, Windl O, Wunsch G, Dugas M, Kohlmann A, Dierkes N, Westner IM, Kretzschmar HA (2004) Identification of differentially expressed genes in scrapie-infected mouse brains by using global gene expression technology. J Virol 78:11051–11060. doi:10.1128/jvi.78.20.11051-11060.2004
Article
CAS
PubMed
PubMed Central
Google Scholar
Yadavalli R, Guttmann RP, Seward T, Centers AP, Williamson RA, Telling GC (2004) Calpain-dependent endoproteolytic cleavage of PrPSc modulates scrapie prion propagation. J Biol Chem 279:21948–21956. doi:10.1074/jbc.M400793200
Article
CAS
PubMed
Google Scholar
Yamada J, Jinno S (2012) Upregulation of calcium binding protein, S100A6, in activated astrocytes is linked to glutamate toxicity. Neuroscience 226:119–129. doi:10.1016/j.neuroscience.2012.08.068
Article
CAS
PubMed
Google Scholar
Yamashima T (2013) Reconsider Alzheimer’s disease by the “calpain-cathepsin hypothesis”-A perspective review. Prog Neurobiol 105:1–23. doi:10.1016/j.pneurobio.2013.02.004
Article
CAS
PubMed
Google Scholar