Glabe CG. Common mechanisms of amyloid oligomer pathogenesis in degenerative disease. Neurobiol Aging. 2006;27(4):570–5. doi:10.1016/j.neurobiolaging.2005.04.017.
Article
CAS
PubMed
Google Scholar
Kayed R, Lasagna-Reeves CA. Molecular mechanisms of amyloid oligomers toxicity. J Alzheimers Dis. 2013;33 Suppl 1:S67–78. doi:10.3233/JAD-2012-129001.
PubMed
Google Scholar
Choi SH, Kim YH, Hebisch M, Sliwinski C, Lee S, D'Avanzo C, Chen H, Hooli B, Asselin C, Muffat J, Klee JB, Zhang C, Wainger BJ, Peitz M, Kovacs DM, Woolf CJ, Wagner SL, Tanzi RE, Kim DY. A three-dimensional human neural cell culture model of Alzheimer's disease. Nature. 2014;515(7526):274–8. doi:10.1038/nature13800.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pflanzner T, Janko MC, Andre-Dohmen B, Reuss S, Weggen S, Roebroek AJ, Kuhlmann CR, Pietrzik CU. LRP1 mediates bidirectional transcytosis of amyloid-beta across the blood-brain barrier. Neurobiol Aging. 2011;32(12):2323. 10.1016/j.neurobiolaging.2010.05.025.
Article
PubMed
Google Scholar
Krohn M, Lange C, Hofrichter J, Scheffler K, Stenzel J, Steffen J, Schumacher T, Bruning T, Plath AS, Alfen F, Schmidt A, Winter F, Rateitschak K, Wree A, Gsponer J, Walker LC, Pahnke J. Cerebral amyloid-beta proteostasis is regulated by the membrane transport protein ABCC1 in mice. J Clin Invest. 2011;121(10):3924–31. doi:10.1172/JCI57867.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pahnke J, Frohlich C, Paarmann K, Krohn M, Bogdanovic N, Arsland D, Winblad B. Cerebral ABC transporter-common mechanisms may modulate neurodegenerative diseases and depression in elderly subjects. Arch Med Res. 2014;45(8):738–43. doi:10.1016/j.arcmed.2014.10.010.
Article
CAS
PubMed
Google Scholar
Reitz C, Mayeux R. Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem Pharmacol. 2014;88(4):640–51. doi:10.1016/j.bcp.2013.12.024.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hollingworth P, Harold D, Sims R, Gerrish A, Lambert JC, Carrasquillo MM, Abraham R, Hamshere ML, Pahwa JS, Moskvina V, Dowzell K, Jones N, Stretton A, Thomas C, Richards A, Ivanov D, Widdowson C, Chapman J, Lovestone S, Powell J, Proitsi P, Lupton MK, Brayne C, Rubinsztein DC, Gill M, Lawlor B, Lynch A, Brown KS, Passmore PA, Craig D, McGuinness B, Todd S, Holmes C, Mann D, Smith AD, Beaumont H, Warden D, Wilcock G, Love S, Kehoe PG, Hooper NM, Vardy ER, Hardy J, Mead S, Fox NC, Rossor M, Collinge J, Maier W, Jessen F, Ruther E, Schurmann B, Heun R, Kolsch H, van den Bussche H, Heuser I, Kornhuber J, Wiltfang J, Dichgans M, Frolich L, Hampel H, Gallacher J, Hull M, Rujescu D, Giegling I, Goate AM, Kauwe JS, Cruchaga C, Nowotny P, Morris JC, Mayo K, Sleegers K, Bettens K, Engelborghs S, De Deyn PP, Van Broeckhoven C, Livingston G, Bass NJ, Gurling H, McQuillin A, Gwilliam R, Deloukas P, Al-Chalabi A, Shaw CE, Tsolaki M, Singleton AB, Guerreiro R, Muhleisen TW, Nothen MM, Moebus S, Jockel KH, Klopp N, Wichmann HE, Pankratz VS, Sando SB, Aasly JO, Barcikowska M, Wszolek ZK, Dickson DW, Graff-Radford NR, Petersen RC, Alzheimer's Disease Neuroimaging I, van Duijn CM, Breteler MM, Ikram MA, DeStefano AL, Fitzpatrick AL, Lopez O, Launer LJ, Seshadri S, Consortium C, Berr C, Campion D, Epelbaum J, Dartigues JF, Tzourio C, Alperovitch A, Lathrop M, Consortium E, Feulner TM, Friedrich P, Riehle C, Krawczak M, Schreiber S, Mayhaus M, Nicolhaus S, Wagenpfeil S, Steinberg S, Stefansson H, Stefansson K, Snaedal J, Bjornsson S, Jonsson PV, Chouraki V, Genier-Boley B, Hiltunen M, Soininen H, Combarros O, Zelenika D, Delepine M, Bullido MJ, Pasquier F, Mateo I, Frank-Garcia A, Porcellini E, Hanon O, Coto E, Alvarez V, Bosco P, Siciliano G, Mancuso M, Panza F, Solfrizzi V, Nacmias B, Sorbi S, Bossu P, Piccardi P, Arosio B, Annoni G, Seripa D, Pilotto A, Scarpini E, Galimberti D, Brice A, Hannequin D, Licastro F, Jones L, Holmans PA, Jonsson T, Riemenschneider M, Morgan K, Younkin SG, Owen MJ, O'Donovan M, Amouyel P, Williams J. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease. Nat Genet. 2011;43(5):429–35. doi:10.1038/ng.803.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schellenberg GD, Montine TJ. The genetics and neuropathology of Alzheimer's disease. Acta Neuropathol. 2012;124(3):305–23. doi:10.1007/s00401-012-0996-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Braidy N, Munoz P, Palacios AG, Castellano-Gonzalez G, Inestrosa NC, Chung RS, Sachdev P, Guillemin GJ. Recent rodent models for Alzheimer's disease: clinical implications and basic research. J Neural Transm (Vienna). 2012;119(2):173–95. doi:10.1007/s00702-011-0731-5.
Article
CAS
Google Scholar
Ebensperger LA, Tapia D, Ramirez-Estrada J, Leon C, Soto-Gamboa M, Hayes LD. Fecal cortisol levels predict breeding but not survival of females in the short-lived rodent, Octodon degus. Gen Comp Endocrinol. 2013;186:164–71. doi:10.1016/j.ygcen.2013.02.044.
Article
CAS
PubMed
Google Scholar
Inestrosa NC, Reyes AE, Chacon MA, Cerpa W, Villalon A, Montiel J, Merabachvili G, Aldunate R, Bozinovic F, Aboitiz F. Human-like rodent amyloid-beta-peptide determines Alzheimer pathology in aged wild-type Octodon degu. Neurobiol Aging. 2005;26(7):1023–8. doi:10.1016/j.neurobiolaging.2004.09.016.
Article
CAS
PubMed
Google Scholar
van Groen T, Kadish I, Popovic N, Popovic M, Caballero-Bleda M, Bano-Otalora B, Vivanco P, Rol MA, Madrid JA. Age-related brain pathology in Octodon degu: blood vessel, white matter and Alzheimer-like pathology. Neurobiol Aging. 2011;32(9):1651–61. doi:10.1016/j.neurobiolaging.2009.10.008.
Article
PubMed
Google Scholar
Ardiles AO, Tapia-Rojas CC, Mandal M, Alexandre F, Kirkwood A, Inestrosa NC, Palacios AG. Postsynaptic dysfunction is associated with spatial and object recognition memory loss in a natural model of Alzheimer's disease. Proc Natl Acad Sci U S A. 2012;109(34):13835–40. doi:10.1073/pnas.1201209109.
Article
CAS
PubMed
PubMed Central
Google Scholar
Inestrosa NC, Rios JA, Cisternas P, Tapia-Rojas C, Rivera DS, Braidy N, Zolezzi JM, Godoy JA, Carvajal FJ, Ardiles AO, Bozinovic F, Palacios AG, Sachdev PS. Age Progression of Neuropathological Markers in the Brain of the Chilean Rodent Octodon degus, a Natural Model of Alzheimer's Disease. Brain Pathol. 2015;25(6):679–91. doi:10.1111/bpa.12226.
Article
CAS
PubMed
Google Scholar
Ardiles AO, Ewer J, Acosta ML, Kirkwood A, Martinez AD, Ebensperger LA, Bozinovic F, Lee TM, Palacios AG. Octodon degus (Molina 1782): a model in comparative biology and biomedicine. Cold Spring Harb Protoc. 2013;2013(4):312–8. doi:10.1101/pdb.emo071357.
Article
PubMed
PubMed Central
Google Scholar
Tarragon E, Lopez D, Estrada C, Ana GC, Schenker E, Pifferi F, Bordet R, Richardson JC, Herrero MT. Octodon degus: a model for the cognitive impairment associated with Alzheimer's disease. CNS Neurosci Ther. 2013;19(9):643–8. doi:10.1111/cns.12125.
Article
CAS
PubMed
Google Scholar
Iqbal K, Bolognin S, Wang X, Basurto-Islas G, Blanchard J, Tung YC. Animal models of the sporadic form of Alzheimer's disease: focus on the disease and not just the lesions. J Alzheimers Dis. 2013;37(3):469–74. doi:10.3233/JAD-130827.
PubMed
Google Scholar
Rios JA, Cisternas P, Arrese M, Barja S, Inestrosa NC. Is Alzheimer's disease related to metabolic syndrome? A Wnt signaling conundrum. Prog Neurobiol. 2014;121:125–46. doi:10.1016/j.pneurobio.2014.07.004.
Article
CAS
PubMed
Google Scholar
Castro-Fuentes R, Socas-Perez R. Octodon degus: a strong attractor for Alzheimer research. Basic Clin Neurosci. 2013;4(1):91–6.
PubMed
PubMed Central
Google Scholar
Braidy N, Poljak A, Jayasena T, Mansour H, Inestrosa NC, Sachdev PS. Accelerating Alzheimer's research through 'natural' animal models. Curr Opin Psychiatry. 2015;28(2):155–64. doi:10.1097/YCO.0000000000000137.
PubMed
Google Scholar
Rivera DS, Inestrosa NC, Bozinovic F. On cognitive ecology and the environmental factors that promote Alzheimer disease: lessons from Octodon degus (Rodentia: Octodontidae). Biol Res. 2016;49:10. doi:10.1186/s40659-016-0074-7.
Article
PubMed
PubMed Central
Google Scholar
Radde R, Bolmont T, Kaeser SA, Coomaraswamy J, Lindau D, Stoltze L, Calhoun ME, Jaggi F, Wolburg H, Gengler S, Haass C, Ghetti B, Czech C, Holscher C, Mathews PM, Jucker M. Abeta42-driven cerebral amyloidosis in transgenic mice reveals early and robust pathology. EMBO Rep. 2006;7(9):940–6. doi:10.1038/sj.embor.7400784.
Article
CAS
PubMed
PubMed Central
Google Scholar
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389–402.
Article
CAS
PubMed
PubMed Central
Google Scholar
Altschul SF, Wootton JC, Gertz EM, Agarwala R, Morgulis A, Schaffer AA, Yu YK. Protein database searches using compositionally adjusted substitution matrices. FEBS J. 2005;272(20):5101–9. doi:10.1111/j.1742-4658.2005.04945.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Frohlich C, Paarmann K, Steffen J, Stenzel J, Krohn M, Heinze HJ, Pahnke J. Genomic background-related activation of microglia and reduced beta-amyloidosis in a mouse model of Alzheimer's disease. Eur J Microbiol Immunol (Bp). 2013;3(1):21–7. doi:10.1556/EuJMI.3.2013.1.3.
Article
Google Scholar
Schumacher T, Krohn M, Hofrichter J, Lange C, Stenzel J, Steffen J, Dunkelmann T, Paarmann K, Frohlich C, Uecker A, Plath AS, Sommer A, Bruning T, Heinze HJ, Pahnke J. ABC transporters B1, C1 and G2 differentially regulate neuroregeneration in mice. PLoS One. 2012;7(4):e35613. doi:10.1371/journal.pone.0035613.
Article
CAS
PubMed
PubMed Central
Google Scholar
Frohlich C, Zschiebsch K, Groger V, Paarmann K, Steffen J, Thurm C, Schropp EM, Bruning T, Gellerich F, Radloff M, Schwabe R, Lachmann I, Krohn M, Ibrahim S, Pahnke J. Activation of Mitochondrial Complex II-Dependent Respiration Is Beneficial for alpha-Synucleinopathies. Mol Neurobiol. 2016;53(7):4728–44. doi:10.1007/s12035-015-9399-4.
Article
PubMed
Google Scholar
Muller-Schiffmann A, Herring A, Abdel-Hafiz L, Chepkova AN, Schable S, Wedel D, Horn AH, Sticht H, de Souza Silva MA, Gottmann K, Sergeeva OA, Huston JP, Keyvani K, Korth C. Amyloid-beta dimers in the absence of plaque pathology impair learning and synaptic plasticity. Brain. 2016;139(Pt 2):509–25. doi:10.1093/brain/awv355.
Article
PubMed
Google Scholar
Oshima N, Morishima-Kawashima M, Yamaguchi H, Yoshimura M, Sugihara S, Khan K, Games D, Schenk D, Ihara Y. Accumulation of amyloid beta-protein in the low-density membrane domain accurately reflects the extent of beta-amyloid deposition in the brain. Am J Pathol. 2001;158(6):2209–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grundke-Iqbal I, Iqbal K, Quinlan M, Tung YC, Zaidi MS, Wisniewski HM. Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J Biol Chem. 1986;261(13):6084–9.
CAS
PubMed
Google Scholar
Whiteman IT, Minamide LS, de Goh L, Bamburg JR, Goldsbury C. Rapid changes in phospho-MAP/tau epitopes during neuronal stress: cofilin-actin rods primarily recruit microtubule binding domain epitopes. PLoS One. 2011;6(6):e20878. doi:10.1371/journal.pone.0020878.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aho L, Pikkarainen M, Hiltunen M, Leinonen V, Alafuzoff I. Immunohistochemical visualization of amyloid-beta protein precursor and amyloid-beta in extra- and intracellular compartments in the human brain. J Alzheimers Dis. 2010;20(4):1015–28. doi:10.3233/JAD-2010-091681.
CAS
PubMed
Google Scholar
Edrey YH, Medina DX, Gaczynska M, Osmulski PA, Oddo S, Caccamo A, Buffenstein R. Amyloid beta and the longest-lived rodent: the naked mole-rat as a model for natural protection from Alzheimer's disease. Neurobiol Aging. 2013;34(10):2352–60. doi:10.1016/j.neurobiolaging.2013.03.032.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dong X, Chen W, Mousseau N, Derreumaux P. Energy landscapes of the monomer and dimer of the Alzheimer's peptide Abeta(1-28). J Chem Phys. 2008;128(12):125108. doi:10.1063/1.2890033.
Article
PubMed
Google Scholar
Dai X, Sun Y, Gao Z, Jiang Z. Copper enhances amyloid-beta peptide neurotoxicity and non beta-aggregation: a series of experiments conducted upon copper-bound and copper-free amyloid-beta peptide. J Mol Neurosci. 2010;41(1):66–73. doi:10.1007/s12031-009-9282-8.
Article
CAS
PubMed
Google Scholar
Poduslo JF, Howell KG, Olson NC, Ramirez-Alvarado M, Kandimalla KK. Alzheimer's disease amyloid beta-protein mutations and deletions that define neuronal binding/internalization as early stage nonfibrillar/fibrillar aggregates and late stage fibrils. Biochemistry. 2012;51(19):3993–4003. doi:10.1021/bi300275g.
Article
CAS
PubMed
Google Scholar
Liu ST, Howlett G, Barrow CJ. Histidine-13 is a crucial residue in the zinc ion-induced aggregation of the A beta peptide of Alzheimer's disease. Biochemistry. 1999;38(29):9373–8. doi:10.1021/bi990205o.
Article
CAS
PubMed
Google Scholar
Huang J, Yao Y, Lin J, Ye YH, Sun WY, Tang Dagger WX. The solution structure of rat Abeta-(1-28) and its interaction with zinc ion: insights into the scarcity of amyloid deposition in aged rat brain. J Biol Inorg Chem. 2004;9(5):627–35. doi:10.1007/s00775-004-0556-x.
Article
CAS
PubMed
Google Scholar
Miura T, Suzuki K, Kohata N, Takeuchi H. Metal binding modes of Alzheimer's amyloid beta-peptide in insoluble aggregates and soluble complexes. Biochemistry. 2000;39(23):7024–31.
Article
CAS
PubMed
Google Scholar
Smith DP, Smith DG, Curtain CC, Boas JF, Pilbrow JR, Ciccotosto GD, Lau TL, Tew DJ, Perez K, Wade JD, Bush AI, Drew SC, Separovic F, Masters CL, Cappai R, Barnham KJ. Copper-mediated amyloid-beta toxicity is associated with an intermolecular histidine bridge. J Biol Chem. 2006;281(22):15145–54. doi:10.1074/jbc.M600417200.
Article
CAS
PubMed
Google Scholar
Tickler AK, Smith DG, Ciccotosto GD, Tew DJ, Curtain CC, Carrington D, Masters CL, Bush AI, Cherny RA, Cappai R, Wade JD, Barnham KJ. Methylation of the imidazole side chains of the Alzheimer disease amyloid-beta peptide results in abolition of superoxide dismutase-like structures and inhibition of neurotoxicity. J Biol Chem. 2005;280(14):13355–63. doi:10.1074/jbc.M414178200.
Article
CAS
PubMed
Google Scholar
Edrey YH, Oddo S, Cornelius C, Caccamo A, Calabrese V, Buffenstein R. Oxidative damage and amyloid-beta metabolism in brain regions of the longest-lived rodents. J Neurosci Res. 2014;92(2):195–205. doi:10.1002/jnr.23320.
Article
CAS
PubMed
Google Scholar
Orr ME, Garbarino VR, Salinas A, Buffenstein R. Sustained high levels of neuroprotective, high molecular weight, phosphorylated tau in the longest-lived rodent. Neurobiol Aging. 2015;36(3):1496–504. doi:10.1016/j.neurobiolaging.2014.12.004.
Article
CAS
PubMed
Google Scholar
Bates K, Vink R, Martins R, Harvey A. Aging, cortical injury and Alzheimer's disease-like pathology in the guinea pig brain. Neurobiol Aging. 2014;35(6):1345–51. doi:10.1016/j.neurobiolaging.2013.11.020.
Article
PubMed
Google Scholar
Beck M, Bruckner MK, Holzer M, Kaap S, Pannicke T, Arendt T, Bigl V. Guinea-pig primary cell cultures provide a model to study expression and amyloidogenic processing of endogenous amyloid precursor protein. Neuroscience. 2000;95(1):243–54.
Article
CAS
PubMed
Google Scholar
Beck M, Bigl V, Rossner S. Guinea pigs as a nontransgenic model for APP processing in vitro and in vivo. Neurochem Res. 2003;28(3-4):637–44.
Article
CAS
PubMed
Google Scholar
Palacios-Munoz A, Escobar MJ, Vielma A, Araya J, Astudillo A, Valdivia G, Garcia IE, Hurtado J, Schmachtenberg O, Martinez AD, Palacios AG. Role of connexin channels in the retinal light response of a diurnal rodent. Front Cell Neurosci. 2014;8:249. doi:10.3389/fncel.2014.00249.
PubMed Central
Google Scholar
Kumazawa-Manita N, Katayama M, Hashikawa T, Iriki A. Three-dimensional reconstruction of brain structures of the rodent Octodon degus: a brain atlas constructed by combining histological and magnetic resonance images. Exp Brain Res. 2013;231(1):65–74. doi:10.1007/s00221-013-3667-1.
Article
PubMed
PubMed Central
Google Scholar
Deacon RM, Altimiras FJ, Bazan-Leon EA, Pyarasani RD, Nachtigall FM, Santos LS, Tsolaki AG, Pednekar L, Kishore U, Biekofsky RR, Vasquez RA, Cogram P. Natural AD-Like Neuropathology in Octodon degus: Impaired Burrowing and Neuroinflammation. Curr Alzheimer Res. 2015;12(4):314–22.
Article
CAS
PubMed
Google Scholar
Li Q, Zhao HF, Zhang ZF, Liu ZG, Pei XR, Wang JB, Cai MY, Li Y. Long-term administration of green tea catechins prevents age-related spatial learning and memory decline in C57BL/6 J mice by regulating hippocampal cyclic amp-response element binding protein signaling cascade. Neuroscience. 2009;159(4):1208–15. doi:10.1016/j.neuroscience.2009.02.008.
Article
CAS
PubMed
Google Scholar
Palmeri A, Privitera L, Giunta S, Loreto C, Puzzo D. Inhibition of phosphodiesterase-5 rescues age-related impairment of synaptic plasticity and memory. Behav Brain Res. 2013;240:11–20. doi:10.1016/j.bbr.2012.10.060.
Article
CAS
PubMed
Google Scholar
Puzzo D, Bizzoca A, Loreto C, Guida CA, Gulisano W, Frasca G, Bellomo M, Castorina S, Gennarini G, Palmeri A. Role of F3/contactin expression profile in synaptic plasticity and memory in aged mice. Neurobiol Aging. 2015;36(4):1702–15. doi:10.1016/j.neurobiolaging.2015.01.004.
Article
CAS
PubMed
Google Scholar
He P, Cheng X, Staufenbiel M, Li R, Shen Y. Long-term treatment of thalidomide ameliorates amyloid-like pathology through inhibition of beta-secretase in a mouse model of Alzheimer's disease. PLoS One. 2013;8(2):e55091. doi:10.1371/journal.pone.0055091.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pype S, Moechars D, Dillen L, Mercken M. Characterization of amyloid beta peptides from brain extracts of transgenic mice overexpressing the London mutant of human amyloid precursor protein. J Neurochem. 2003;84(3):602–9.
Article
CAS
PubMed
Google Scholar
Toda T, Noda Y, Ito G, Maeda M, Shimizu T. Presenilin-2 mutation causes early amyloid accumulation and memory impairment in a transgenic mouse model of Alzheimer's disease. J Biomed Biotechnol. 2011;2011:617974. doi:10.1155/2011/617974.
Article
PubMed
Google Scholar
Parkinson J, Ploeger B, Appelkvist P, Bogstedt A, Dillner Bergstedt K, Eketjall S, Visser SA. Modeling of age-dependent amyloid accumulation and gamma-secretase inhibition of soluble and insoluble Abeta in a transgenic mouse model of amyloid deposition. Pharmacol Res Perspect. 2013;1(2):e00012. doi:10.1002/prp2.12.
Article
PubMed
PubMed Central
Google Scholar
Krauthausen M, Kummer MP, Zimmermann J, Reyes-Irisarri E, Terwel D, Bulic B, Heneka MT, Muller M. CXCR3 promotes plaque formation and behavioral deficits in an Alzheimer's disease model. J Clin Invest. 2015;125(1):365–78. doi:10.1172/JCI66771.
Article
PubMed
Google Scholar
Beach TG, Kuo YM, Schwab C, Walker DG, Roher AE. Reduction of cortical amyloid beta levels in guinea pig brain after systemic administration of physostigmine. Neurosci Lett. 2001;310(1):21–4.
Article
CAS
PubMed
Google Scholar