Kamm CP, Uitdehaag BM, Polman CH. Multiple sclerosis: current knowledge and future outlook. Eur Neurol. 2014;72:132–41. doi:10.1159/000360528.
Article
PubMed
CAS
Google Scholar
Richter-Landsberg C. Heat shock proteins in neural cells. New York: Springer; 2009.
Book
Google Scholar
Prins M, Schul E, Geurts J, van der Valk P, Drukarch B, van Dam A-M. Pathological differences between white and grey matter multiple sclerosis lesions. Ann N Y Acad Sci. 2015;1351:99–113. doi:10.1111/nyas.12841.
Article
PubMed
Google Scholar
Calabrese M, Favaretto A, Martini V, Gallo P. Grey matter lesions in MS: from histology to clinical implications. Prion. 2013;7:20–7. doi:10.4161/pri.22580.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lassmann H. Pathology and disease mechanisms in different stages of multiple sclerosis. J Neurol Sci. 2013;333:1–4. doi:10.1016/j.jns.2013.05.010.
Article
PubMed
CAS
Google Scholar
Van der Valk P, Amor S. Preactive lesions in multiple sclerosis. Curr Opin Neurol. 2009;22:207–13. doi:10.1097/WCO.0b013e32832b4c76.
PubMed
Google Scholar
Van Horssen J, Singh S, van der Pol S, Kipp M, Lim JL, Peferoen L, et al. Clusters of activated microglia in normal-appearing white matter show signs of innate immune activation. J Neuroinflammation. 2012;9:156. doi:10.1186/1742-2094-9-156.
Article
PubMed
PubMed Central
CAS
Google Scholar
Banati RB, Newcombe J, Gunn RN, Cagnin A, Turkheimer F, Heppner F, et al. The peripheral benzodiazepine binding site in the brain in multiple sclerosis: quantitative in vivo imaging of microglia as a measure of disease activity. Brain. 2000;123(Pt 11):2321–37.
Article
PubMed
Google Scholar
Miller DH, Thompson AJ, Filippi M. Magnetic resonance studies of abnormalities in the normal appearing white matter and grey matter in multiple sclerosis. J Neurol. 2003;250:1407–19. doi:10.1007/s00415-003-0243-9.
Article
PubMed
CAS
Google Scholar
Van Noort JM, Bsibsi M, Gerritsen WH, van der Valk P, Bajramovic JJ, Steinman L, et al. Alphab-crystallin is a target for adaptive immune responses and a trigger of innate responses in preactive multiple sclerosis lesions. J Neuropathol Exp Neurol. 2010;69:694–703. doi:10.1097/NEN.0b013e3181e4939c.
Article
PubMed
CAS
Google Scholar
Van Noort JM, van Sechel AC, Bajramovic JJ, el Ouagmiri M, Polman CH, Lassmann H, et al. The small heat-shock protein alpha B-crystallin as candidate autoantigen in multiple sclerosis. Nature. 1995;375:798–801. doi:10.1038/375798a0.
Article
PubMed
Google Scholar
Bajramović JJ, Lassmann H, van Noort JM. Expression of alphaB-crystallin in glia cells during lesional development in multiple sclerosis. J Neuroimmunol. 1997;78:143–51.
Article
PubMed
Google Scholar
Bajramović JJ, Bsibsi M, Geutskens SB, Hassankhan R, Verhulst KC, Stege GJ, et al. Differential expression of stress proteins in human adult astrocytes in response to cytokines. J Neuroimmunol. 2000;106:14–22.
Article
PubMed
Google Scholar
Bsibsi M, Holtman IR, Gerritsen WH, Eggen BJL, Boddeke E, van der Valk P, et al. Alpha-B-crystallin induces an immune-regulatory and antiviral microglial response in preactive multiple sclerosis lesions. J Neuropathol Exp Neurol. 2013;72:970–9. doi:10.1097/NEN.0b013e3182a776bf.
Article
PubMed
CAS
Google Scholar
Bsibsi M, Peferoen LAN, Holtman IR, Nacken PJ, Gerritsen WH, Witte ME, et al. Demyelination during multiple sclerosis is associated with combined activation of microglia/macrophages by IFN-γ and alpha B-crystallin. Acta Neuropathol. 2014;128:215–29. doi:10.1007/s00401-014-1317-8.
Article
PubMed
CAS
Google Scholar
Roelofs MF, Boelens WC, Joosten LAB, Abdollahi-Roodsaz S, Geurts J, Wunderink LU, et al. Identification of small heat shock protein B8 (HSP22) as a novel TLR4 ligand and potential involvement in the pathogenesis of rheumatoid arthritis. J Immunol. 2006;176:7021–7.
Article
PubMed
CAS
Google Scholar
Thuringer D, Jego G, Wettstein G, Terrier O, Cronier L, Yousfi N, et al. Extracellular HSP27 mediates angiogenesis through Toll-like receptor 3. FASEB J. 2013;27:4169–83. doi:10.1096/fj.12-226977.
Article
PubMed
CAS
Google Scholar
Jin C, Cleveland JC, Ao L, Li J, Zeng Q, Fullerton DA, et al. Human myocardium releases heat shock protein 27 (HSP27) after global ischemia: the proinflammatory effect of extracellular HSP27 through toll-like receptor (TLR)-2 and TLR4. Mol Med. 2014;20:280–9. doi:10.2119/molmed.2014.00058.
Article
PubMed
PubMed Central
CAS
Google Scholar
Garrido C, Paul C, Seigneuric R, Kampinga HH. The small heat shock proteins family: the long forgotten chaperones. Int J Biochem Cell Biol. 2012;44:1588–92. doi:10.1016/j.biocel.2012.02.022.
Article
PubMed
CAS
Google Scholar
Bellyei S, Szigeti A, Pozsgai E, Boronkai A, Gomori E, Hocsak E, et al. Preventing apoptotic cell death by a novel small heat shock protein. Eur J Cell Biol. 2007;86:161–71. doi:10.1016/j.ejcb.2006.12.004.
Article
PubMed
CAS
Google Scholar
Kappé G, Boelens WC, de Jong WW. Why proteins without an alpha-crystallin domain should not be included in the human small heat shock protein family HSPB. Cell Stress Chaperones. 2010;15:457–61. doi:10.1007/s12192-009-0155-4.
Article
PubMed
PubMed Central
CAS
Google Scholar
Quraishe S, Asuni A, Boelens WC, O’Connor V, Wyttenbach A. Expression of the small heat shock protein family in the mouse CNS: differential anatomical and biochemical compartmentalization. Neuroscience. 2008;153:483–91. doi:10.1016/j.neuroscience.2008.01.058.
Article
PubMed
CAS
Google Scholar
Kirbach BB, Golenhofen N. Differential expression and induction of small heat shock proteins in rat brain and cultured hippocampal neurons. J Neurosci Res. 2011;89:162–75. doi:10.1002/jnr.22536.
Article
PubMed
CAS
Google Scholar
Carra S, Rusmini P, Crippa V, Giorgetti E, Boncoraglio A, Cristofani R, et al. Different anti-aggregation and pro-degradative functions of the members of the mammalian sHSP family in neurological disorders. Philos Trans R Soc Lond B Biol Sci. 2013;368:20110409. doi:10.1098/rstb.2011.0409.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pozsgai E, Gomori E, Szigeti A, Boronkai A, Gallyas F, Sumegi B, et al. Correlation between the progressive cytoplasmic expression of a novel small heat shock protein (Hsp16.2) and malignancy in brain tumors. BMC Cancer. 2007;7:233. doi:10.1186/1471-2407-7-233.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bartelt-Kirbach B, Golenhofen N. Reaction of small heat-shock proteins to different kinds of cellular stress in cultured rat hippocampal neurons. Cell Stress Chaperones. 2014;19:145–53. doi:10.1007/s12192-013-0452-9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bö L, Geurts JJG, Mörk SJ, van der Valk P. Grey matter pathology in multiple sclerosis. Acta Neurol Scand Supplc. 2006;183:48–50. doi:10.1111/j.1600-0404.2006.00615.x.
Article
Google Scholar
Ruijter JM, Ramakers C, Hoogaars WMH, Karlen Y, Bakker O, van den Hoff MJB, et al. Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res. 2009;37, e45. doi:10.1093/nar/gkp045.
Article
PubMed
PubMed Central
CAS
Google Scholar
De Groot CJ, Bergers E, Kamphorst W, Ravid R, Polman CH, Barkhof F, et al. Post-mortem MRI-guided sampling of multiple sclerosis brain lesions: increased yield of active demyelinating and (p)reactive lesions. Brain. 2001;124:1635–45.
Article
PubMed
Google Scholar
Bø L, Vedeler CA, Nyland HI, Trapp BD, Mørk SJ. Subpial demyelination in the cerebral cortex of multiple sclerosis patients. J Neuropathol Exp Neurol. 2003;62:723–32.
PubMed
Google Scholar
Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–5.
Article
PubMed
CAS
Google Scholar
Ciccarelli O, Barkhof F, Bodini B, De Stefano N, Golay X, Nicolay K, et al. Pathogenesis of multiple sclerosis: insights from molecular and metabolic imaging. Lancet Neurol. 2014;13:807–22. doi:10.1016/S1474-4422(14)70101-2.
Article
PubMed
CAS
Google Scholar
Sinclair C, Mirakhur M, Kirk J, Farrell M, McQuaid S. Up-regulation of osteopontin and alphaBeta-crystallin in the normal-appearing white matter of multiple sclerosis: an immunohistochemical study utilizing tissue microarrays. Neuropathol Appl Neurobiol. 2005;31:292–303. doi:10.1111/j.1365-2990.2004.00638.x.
Article
PubMed
CAS
Google Scholar
Popescu BFG, Lucchinetti CF. Meningeal and cortical grey matter pathology in multiple sclerosis. BMC Neurol. 2012;12:11. doi:10.1186/1471-2377-12-11.
Article
PubMed
Google Scholar
Clarner T, Diederichs F, Berger K, Denecke B, Gan L, van der Valk P, et al. Myelin debris regulates inflammatory responses in an experimental demyelination animal model and multiple sclerosis lesions. Glia. 2012;60:1468–80. doi:10.1002/glia.22367.
Article
PubMed
Google Scholar
Muchowski PJ, Wacker JL. Modulation of neurodegeneration by molecular chaperones. Nat Rev Neurosci. 2005;6:11–22. doi:10.1038/nrn1587.
Article
PubMed
CAS
Google Scholar
Kampinga HH, Garrido C. HSPBs: small proteins with big implications in human disease. Int J Biochem Cell Biol. 2012;44:1706–10. doi:10.1016/j.biocel.2012.06.005.
Article
PubMed
CAS
Google Scholar
Crowe J, Aubareda A, McNamee K, Przybycien PM, Lu X, Williams RO, et al. Heat shock protein B1-deficient mice display impaired wound healing. PLoS ONE. 2013;8, e77383. doi:10.1371/journal.pone.0077383.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sanz O, Acarin L, González B, Castellano B. Expression of 27 kDa heat shock protein (Hsp27) in immature rat brain after a cortical aspiration lesion. Glia. 2001;36:259–70.
Article
PubMed
CAS
Google Scholar
Acarin L, Paris J, González B, Castellano B. Glial expression of small heat shock proteins following an excitotoxic lesion in the immature rat brain. Glia. 2002;38:1–14.
Article
PubMed
Google Scholar
Seidel K, Vinet J, den Dunnen WFA, Brunt ER, Meister M, Boncoraglio A, et al. The HSPB8-BAG3 chaperone complex is upregulated in astrocytes in the human brain affected by protein aggregation diseases. Neuropathol Appl Neurobiol. 2012;38:39–53. doi:10.1111/j.1365-2990.2011.01198.x.
Article
PubMed
CAS
Google Scholar
Ke K, Li L, Rui Y, Zheng H, Tan X, Xu W, et al. Increased expression of small heat shock protein αB-crystallin after intracerebral hemorrhage in adult rats. J Mol Neurosci. 2013;51:159–69. doi:10.1007/s12031-013-9970-2.
Article
PubMed
CAS
Google Scholar
Dulle JE, Fort PE. Crystallins and neuroinflammation: The glial side of the story. Biochim Biophys Acta. 2015. doi:10.1016/j.bbagen.2015.05.023.
PubMed
Google Scholar
López-González I, Carmona M, Arregui L, Kovacs GG, Ferrer I. αB-crystallin and HSP27 in glial cells in tauopathies. Neuropathology. 2014;34:517–26. doi:10.1111/neup.12134.
Article
PubMed
CAS
Google Scholar
Goldbaum O, Richter-Landsberg C. Stress proteins in oligodendrocytes: differential effects of heat shock and oxidative stress. J Neurochem. 2001;78:1233–42.
Article
PubMed
CAS
Google Scholar
Fonte V, Kipp DR, Yerg J, Merin D, Forrestal M, Wagner E, et al. Suppression of in vivo beta-amyloid peptide toxicity by overexpression of the HSP-16.2 small chaperone protein. J Biol Chem. 2008;283:784–91. doi:10.1074/jbc.M703339200.
Article
PubMed
CAS
Google Scholar
Turi Z, Hocsak E, Racz B, Szabo A, Balogh A, Sumegi B, et al. Role of mitochondrial network stabilisation by a human small heat shock protein in tumour malignancy. J Cancer. 2015;6:470–6. doi:10.7150/jca.11494.
Article
PubMed
PubMed Central
Google Scholar
Peferoen L, Kipp M, van der Valk P, van Noort JM, Amor S. Oligodendrocyte-microglia cross-talk in the central nervous system. Immunology. 2014;141:302–13. doi:10.1111/imm.12163.
Article
PubMed
PubMed Central
CAS
Google Scholar
Boven LA, Van Meurs M, Van Zwam M, Wierenga-Wolf A, Hintzen RQ, Boot RG, et al. Myelin-laden macrophages are anti-inflammatory, consistent with foam cells in multiple sclerosis. Brain. 2006;129:517–26. doi:10.1093/brain/awh707.
Article
PubMed
Google Scholar
Van Zwam M, Samsom JN, Nieuwenhuis EE, Melief M-J, Wierenga-Wolf AF, Dijke IE, et al. Myelin ingestion alters macrophage antigen-presenting function in vitro and in vivo. J Leukoc Biol. 2011;90:123–32. doi:10.1189/jlb.1209813.
Article
PubMed
CAS
Google Scholar
Limatola C, Ransohoff RM. Modulating neurotoxicity through CX3CL1/CX3CR1 signaling. Front Cell Neurosci. 2014;8:229. doi:10.3389/fncel.2014.00229.
Article
PubMed
PubMed Central
CAS
Google Scholar
Suzumura A. Neuron-microglia interaction in neuroinflammation. Curr Protein Pept Sci. 2013;14:16–20.
Article
PubMed
CAS
Google Scholar
Tsuda M, Inoue K. Neuron-microglia interaction by purinergic signaling in neuropathic pain following neurodegeneration. Neuropharmacology. 2015. doi:10.1016/j.neuropharm.2015.08.042.
PubMed
Google Scholar
Hewett JA. Determinants of regional and local diversity within the astroglial lineage of the normal central nervous system. J Neurochem. 2009;110:1717–36. doi:10.1111/j.1471-4159.2009.06288.x.
Article
PubMed
CAS
Google Scholar
Kozlova EN, Lukanidin E. Metastasis-associated mts1 (S100A4) protein is selectively expressed in white matter astrocytes and is up-regulated after peripheral nerve or dorsal root injury. Glia. 1999;27:249–58.
Article
PubMed
CAS
Google Scholar
Macnab LT, Pow DV. Expression of the exon 9-skipping form of EAAT2 in astrocytes of rats. Neuroscience. 2007;150:705–11. doi:10.1016/j.neuroscience.2007.09.049.
Article
PubMed
CAS
Google Scholar