Faul M, Xu L, Wald MM, Coronado V, Dellinger AM: Traumatic brain injury in the United States: National estimates of prevalence and incidence, 2002–2006. Inj Prev 2010, 16: A268-A268. 10.1136/ip.2010.029215.951
Article
Google Scholar
Tenuta JJ: From the battlefields to the states: the road to recovery. The role of Landstuhl Regional Medical Center in US military casualty care. J Am Acad Orthop Surg 2006, 14: S45-S47.
PubMed
Google Scholar
Kumar A, Loane DJ: Neuroinflammation after traumatic brain injury: opportunities for therapeutic intervention. Brain Behav Immun 2012, 26: 1191–1201. 10.1016/j.bbi.2012.06.008
Article
PubMed
Google Scholar
Woodcock T, Morganti-Kossmann MC: The role of markers of inflammation in traumatic brain injury. Front Neurol 2013, 4: 18. 10.3389/fneur.2013.00018
Article
PubMed Central
CAS
PubMed
Google Scholar
Ransohoff RM, Brown MA: Innate immunity in the central nervous system. J Clin Invest 2012, 122: 1164–1171. 10.1172/JCI58644
Article
PubMed Central
CAS
PubMed
Google Scholar
Bellander BM, Singhrao SK, Ohlsson M, Mattsson P, Svensson M: Complement activation in the human brain after traumatic head injury. J Neurotrauma 2001, 18: 773–781. 10.1089/08977150152725605
Article
Google Scholar
Kossmann T, Stahel PF, Morganti-Kossmann MC, Jones JL, Barnum SR: Elevated levels of the complement components C3 and factor B in ventricular cerebrospinal fluid of patients with traumatic brain injury. J Neuroimmunol 1997, 73: 63–69. 10.1016/S0165-5728(96)00164-6
Article
CAS
PubMed
Google Scholar
Stahel PF, Morganti-Kossmann MC, Kossmann T, Stahel PF, Morganti-Kossmann MC, Kossmann T: The role of the complement system in traumatic brain injury. Brain Res Brain Res Rev 1998, 27: 243–256. 10.1016/S0165-0173(98)00015-0
Article
CAS
PubMed
Google Scholar
Stahel PF, Morganti-Kossmann MC, Perez D, et al.: Intrathecal levels of complement-derived soluble membrane attack complex (sC5b-9) correlate with blood–brain barrier dysfunction in patients with traumatic brain injury. J Neurotrauma 2001, 18: 773–781. 10.1089/089771501316919139
Article
CAS
PubMed
Google Scholar
Bellander BM, Olafsson IH, Ghatan PH, et al.: Secondary insults following traumatic brain injury enhance complement activation in the human brain and release of the tissue damage marker S100B. Acta Neurochir (Wien) 2011, 153: 90–100. 10.1007/s00701-010-0737-z
Article
Google Scholar
Brennan FH, Anderson AJ, Taylor SM, Woodruff TM, Ruitenberg MJ: Complement activation in the injured central nervous system: another dual-edged sword? J Neuroinflammation 2012, 9: 137. 10.1186/1742-2094-9-137
Article
PubMed Central
PubMed
Google Scholar
Wang Y, Li Y, Dalle Lucca SL, Simovic M, Tsokos GC, Dalle Lucca JJ: Decay accelerating factor (CD55) protects neuronal cells from chemical hypoxia-induced injury. J Neuroinflammation 2010, 7: 24. 10.1186/1742-2094-7-24
Article
PubMed Central
CAS
PubMed
Google Scholar
Sewell DL, Nacewicz B, Liu F, et al.: Complement C3 and C5 play critical roles in traumatic brain cryoinjury: blocking effects on neutrophil extravasation by C5a receptor antagonist. J Neuroimmunol 2004, 155: 55–63. 10.1016/j.jneuroim.2004.06.003
Article
CAS
PubMed
Google Scholar
Yang S, Nakamura T, Hua Y, et al.: The role of complement C3 in intracerebral hemorrhage-induced brain injury. J Cereb Blood Flow Metab 2006, 26: 1490–1495. 10.1038/sj.jcbfm.9600305
Article
CAS
PubMed
Google Scholar
Leinhase I, Schmidt OI, Thurman JM, et al.: Pharmacological complement inhibition at the C3 convertase level promotes neuronal survival, neuroprotective intracerebral gene expression, and neurological outcome after traumatic brain injury. Exp Neurol 2006, 199: 454–464. 10.1016/j.expneurol.2006.01.033
Article
CAS
PubMed
Google Scholar
Rancan M, Morganti-Kossmann MC, Barnum SR, et al.: Central nervous system-targeted complement inhibition mediates neuroprotection after closed head injury in transgenic mice. J Cereb Blood Flow Metab 2003, 23: 1070–1074. 10.1097/01.WCB.0000084250.20114.2C
Article
CAS
PubMed
Google Scholar
Longhi L, Perego C, Ortolano F, et al.: C1-inhibitor attenuates neurobehavioral deficits and reduces contusion volume after controlled cortical impact brain injury in mice. Crit Care Med 2009, 37: 659–665. 10.1097/CCM.0b013e318195998a
Article
CAS
PubMed
Google Scholar
You Z, Yang J, Takahashi K, et al.: Reduced tissue damage and improved recovery of motor function after traumatic brain injury in mice deficient in complement component C4. J Cereb Blood Flow Metab 2007, 27: 1954–1964. 10.1038/sj.jcbfm.9600497
Article
CAS
PubMed
Google Scholar
Garrett MC, Otten ML, Starke RM, et al.: Synergistic neuroprotective effects of C3a and C5a receptor blockade following intracerebral hemorrhage. Brain Res 2009, 1298: 171–177. 10.1016/j.brainres.2009.04.047
Article
CAS
PubMed
Google Scholar
Leinhase I, Holers VM, Thurman JM, et al.: Reduced neuronal cell death after experimental brain injury in mice lacking a functional alternative pathway of complement activation. BMC Neurosci 2006, 7: 55. 10.1186/1471-2202-7-55
Article
PubMed Central
PubMed
Google Scholar
Leinhase I, Rozanski M, Harhausen D, et al.: Inhibition of the alternative complement activation pathway in traumatic brain injury by a monoclonal anti-factor B antibody: a randomized placebo-controlled study in mice. J Neuroinflammation 2007, 4: 13. 10.1186/1742-2094-4-13
Article
PubMed Central
PubMed
Google Scholar
Dalle Lucca JJ, Chavko M, Dubick MA, et al.: Blast-induced moderate neurotrauma (BINT) elicits early complement activation and tumor necrosis factor alpha (TNFalpha) release in a rat brain. J Neurol Sci 2012, 318: 146–154. 10.1016/j.jns.2012.02.002
Article
CAS
PubMed
Google Scholar
Weeks C, Moratz C, Zacharia A, et al.: Decay-accelerating factor attenuates remote ischemia-reperfusion-initiated organ damage. Clin Immunol 2007, 124: 311–327. 10.1016/j.clim.2007.05.010
Article
CAS
PubMed
Google Scholar
Lee G, Leugers CJ: Tau and tauopathies. Prog Mol Biol Transl Sci 2012, 107: 263–293. 10.1016/B978-0-12-385883-2.00004-7
Article
PubMed Central
CAS
PubMed
Google Scholar
Goldstein LE, Fisher AM, Tagge CA, et al.: Chronic traumatic encephalopathy in blast-exposed military veterans and a blast neurotrauma mouse model. Sci Transl Med 2012, 4: 134ra160. 10.1126/scitranslmed.3003716
Google Scholar
Saadoun S, Papadopoulos MC: Aquaporin-4 in brain and spinal cord oedema. Neuroscience 2010, 168: 1036–1046. 10.1016/j.neuroscience.2009.08.019
Article
CAS
PubMed
Google Scholar
Readnower RD, Chavko M, Adeeb S, et al.: Increase in blood–brain barrier permeability, oxidative stress, and activated microglia in a rat model of blast-induced traumatic brain injury. J Neurosci Res 2010, 88: 3530–3539. 10.1002/jnr.22510
Article
PubMed Central
CAS
PubMed
Google Scholar
Lu X, Li Y, Simovic MO, et al.: Decay-accelerating factor attenuates C-reactive protein-potentiated tissue injury after mesenteric ischemia/reperfusion. J Surg Res 2011, 167: e103-e115. 10.1016/j.jss.2009.10.021
Article
CAS
PubMed
Google Scholar
Harris CL, Spiller OB, Morgan BP: Human and rodent decay-accelerating factors (CD55) are not species restricted in their complement-inhibiting activities. Immunology 2000, 100: 462–470. 10.1046/j.1365-2567.2000.00066.x
Article
PubMed Central
CAS
PubMed
Google Scholar
Dalle Lucca JJ, Li Y, Simovic MO, et al.: Decay-accelerating factor limits hemorrhage-instigated tissue injury and improves resuscitation clinical parameters. J Surg Res 2013, 179: 153–167. 10.1016/j.jss.2012.10.017
Article
PubMed
Google Scholar
Dalle Lucca JJ, Simovic M, Li Y, Moratz C, Falabella M, Tsokos GC: Decay-accelerating factor mitigates controlled hemorrhage-instigated intestinal and lung tissue damage and hyperkalemia in swine. J Trauma 2011, 71: S151-S160. 10.1097/TA.0b013e318221aa4c
Article
PubMed Central
PubMed
Google Scholar
Davoust N, Jones J, Stahel PF, Ames RS, Barnum SR: Receptor for the C3a anaphylatoxin is expressed by neurons and glial cells. Glia 1999, 26: 201–211. 10.1002/(SICI)1098-1136(199905)26:3<201::AID-GLIA2>3.0.CO;2-M
Article
CAS
PubMed
Google Scholar
Barnum SR, Ames RS, Maycox PR, et al.: Expression of the complement C3a and C5a receptors after permanent focal ischemia: An alternative interpretation. Glia 2002, 38: 169–173. 10.1002/glia.10069
Article
PubMed
Google Scholar
Peng Q, Li K, Sacks SH, Zhou W: The role of anaphylatoxins C3a and C5a in regulating innate and adaptive immune responses. Inflamm Allergy Drug Targets 2009, 8: 236–246. 10.2174/187152809788681038
Article
CAS
PubMed
Google Scholar
Tanno H, Nockels RP, Pitts LH, Noble LJ: Breakdown of the blood–brain barrier after fluid percussive brain injury in the rat. Part 1: distribution and time course of protein extravasation. J Neurotrauma 1992, 9: 21–32. 10.1089/neu.1992.9.21
Article
CAS
PubMed
Google Scholar
Monsinjon T, Gasque P, Chan P, Ischenko A, Brady JJ, Fontaine MC: Regulation by complement C3a and C5a anaphylatoxins of cytokine production in human umbilical vein endothelial cells. FASEB J 2003, 17: 1003–1014. 10.1096/fj.02-0737com
Article
CAS
PubMed
Google Scholar
Monsinjon T, Gasque P, Ischenko A, Fontaine M: C3A binds to the seven transmembrane anaphylatoxin receptor expressed by epithelial cells and triggers the production of IL-8. FEBS Lett 2001, 487: 339–346. 10.1016/S0014-5793(00)02320-6
Article
CAS
PubMed
Google Scholar
Sarma JV, Ward PA: New developments in C5a receptor signaling. Cell Health Cytoskelet 2012, 4: 73–82. 10.2147/CHC.S27233
PubMed Central
PubMed
Google Scholar
Asai H, Kakita H, Aoyama M, Nagaya Y, Saitoh S, Asai K: Diclofenac enhances proinflammatory cytokine-induced aquaporin-4 expression in cultured astrocyte. Cell Mol Neurobiol 2013, 33: 393–400. 10.1007/s10571-013-9905-z
Article
CAS
PubMed
Google Scholar
Ito H, Yamamoto N, Arima H, et al.: Interleukin-1beta induces the expression of aquaporin-4 through a nuclear factor-kappaB pathway in rat astrocytes. J Neurochem 2006, 99: 107–118. 10.1111/j.1471-4159.2006.04036.x
Article
CAS
PubMed
Google Scholar
Tran HT, Sanchez L, Brody DL: Inhibition of JNK by a peptide inhibitor reduces traumatic brain injury-induced tauopathy in transgenic mice. J Neuropathol Exp Neurol 2012, 71: 116–129. 10.1097/NEN.0b013e3182456aed
Article
PubMed Central
CAS
PubMed
Google Scholar
Britschgi M, Takeda-Uchimura Y, Rockenstein E, Johns H, Masliah E, Wyss-Coray T: Deficiency of terminal complement pathway inhibitor promotes neuronal tau pathology and degeneration in mice. J Neuroinflammation 2012, 9: 220. 10.1186/1742-2094-9-220
Article
PubMed Central
CAS
PubMed
Google Scholar
Killick R, Hughes TR, Morgan BP, Lovestone S: Deletion of Crry, the murine ortholog of the sporadic Alzheimer’s disease risk gene CR1, impacts tau phosphorylation and brain CFH. Neurosci Lett 2013, 533: 96–99. 10.1016/j.neulet.2012.11.008
Article
PubMed Central
CAS
PubMed
Google Scholar
Fonseca MI, McGuire SO, Counts SE, Tenner AJ: Complement activation fragment C5a receptors, CD88 and C5L2, are associated with neurofibrillary pathology. J Neuroinflammation 2013, 10: 25. 10.1186/1742-2094-10-25
Article
PubMed Central
CAS
PubMed
Google Scholar
Fonseca MI, Ager RR, Chu SH, et al.: Treatment with a C5aR antagonist decreases pathology and enhances behavioral performance in murine models of Alzheimer’s disease. J Immunol 2009, 183: 1375–1383. 10.4049/jimmunol.0901005
Article
PubMed Central
CAS
PubMed
Google Scholar
Crehan H, Hardy J, Pocock J: Microglia, Alzheimer’s disease, and complement. Int J Alzheimers Dis 2012, 2012: 983640. 10.1155/2012/983640
PubMed Central
PubMed
Google Scholar
Shen Y, Lue L, Yang L, et al.: Complement activation by neurofibrillary tangles in Alzheimer’s disease. Neurosci Lett 2001, 305: 165–168. 10.1016/S0304-3940(01)01842-0
Article
CAS
PubMed
Google Scholar