Akerman CJ, Smyth D, Thompson ID (2002) Visual experience before eye-opening and the development of the retinogeniculate pathway. Neuron 36:869–879. https://doi.org/10.1016/s0896-6273(02)01010-3
Article
CAS
Google Scholar
Allen B, Ingram E, Takao M, Smith MJ, Jakes R, Virdee K, Yoshida H, Holzer M, Craxton M, Emson PC, Atzori C, Migheli A, Crowther RA, Ghetti B, Spillantini MG, Goedert M (2002) Abundant tau filaments and nonapoptotic neurodegeneration in transgenic mice expressing human P301S tau protein. J Neurosci 22:9340–9351. https://doi.org/10.1523/JNEUROSCI.22-21-09340.2002
Article
CAS
Google Scholar
Bakker A, Krauss GL, Albert MS, Speck CL, Jones LR, Stark CE, Yassa MA, Bassett SS, Shelton AL, Gallagher M (2012) Reduction of hippocampal hyperactivity improves cognition in amnestic mild cognitive impairment. Neuron 74:467–474. https://doi.org/10.1016/j.neuron.2012.03.023
Article
CAS
Google Scholar
Bellucci A, Westwood AJ, Ingram E, Casamenti F, Goedert M, Spillantini MG (2004) Induction of inflammatory mediators and microglial activation in mice transgenic for mutant human P301S tau protein. Am J Pathol 165:1643–1652
Article
CAS
Google Scholar
Benvenutto A, Guedj E, Felician O, Eusebio A, Azulay J-P, Ceccaldi M, Koric L (2020) Clinical phenotypes in corticobasal syndrome with or without amyloidosis biomarkers. J Alzheimers Dis JAD 74:331–343. https://doi.org/10.3233/JAD-190961
Article
Google Scholar
Berisha F, Feke GT, Trempe CL, McMeel JW, Schepens CL (2007) Retinal abnormalities in early Alzheimer’s disease. Investig Ophthalmol Vis Sci 48:2285–2289. https://doi.org/10.1167/iovs.06-1029
Article
Google Scholar
Brian TR, Francine B-C, Slavica K (2016) Seeing early signs of Alzheimer’s disease through the lens of the eye. Curr Alzheimer Res 14:6–17
Article
Google Scholar
Cavanagh C, Tse YC, Nguyen H-B, Krantic S, Breitner JCS, Quirion R, Wong TP (2016) Inhibiting tumor necrosis factor-α before amyloidosis prevents synaptic deficits in an Alzheimer’s disease model. Neurobiol Aging 47:41–49. https://doi.org/10.1016/j.neurobiolaging.2016.07.009
Article
CAS
Google Scholar
Chaffiol A, Caplette R, Jaillard C, Brazhnikova E, Desrosiers M, Dubus E, Duhamel L, Macé E, Marre O, Benoit P, Hantraye P, Bemelmans A-P, Bamberg E, Duebel J, Sahel J-A, Picaud S, Dalkara D (2017) A new promoter allows optogenetic vision restoration with enhanced sensitivity in macaque retina. Mol Ther J Am Soc Gene Ther 25:2546–2560. https://doi.org/10.1016/j.ymthe.2017.07.011
Article
CAS
Google Scholar
Criscuolo C, Cerri E, Fabiani C, Capsoni S, Cattaneo A, Domenici L (2018) The retina as a window to early dysfunctions of Alzheimer’s disease following studies with a 5xFAD mouse model. Neurobiol Aging 67:181–188. https://doi.org/10.1016/j.neurobiolaging.2018.03.017
Article
CAS
Google Scholar
Decker JM, Krüger L, Sydow A, Dennissen FJ, Siskova Z, Mandelkow E, Mandelkow E-M (2016) The Tau/A152T mutation, a risk factor for frontotemporal-spectrum disorders, leads to NR2B receptor-mediated excitotoxicity. EMBO Rep 17:552–569. https://doi.org/10.15252/embr.201541439
Article
CAS
Google Scholar
Decker JM, Mandelkow E-M (2019) Presynaptic pathophysiology encoded in different domains of tau–hyper-versus hypoexcitability? Adv Exp Med Biol 1184:97–103. https://doi.org/10.1007/978-981-32-9358-8_8
Article
CAS
Google Scholar
DeVos SL, Corjuc BT, Oakley DH, Nobuhara CK, Bannon RN, Chase A, Commins C, Gonzalez JA, Dooley PM, Frosch MP, Hyman BT (2018) Synaptic tau seeding precedes tau pathology in human Alzheimer’s disease brain. Front Neurosci 12:267. https://doi.org/10.3389/fnins.2018.00267
Article
Google Scholar
Dinet V, Arouche-Delaperche L, Dégardin J, Naud M-C, Picaud S, Krantic S (2022) Concomitant retinal alterations in neuronal activity and TNFα pathway are detectable during the pre-symptomatic stage in a mouse model of Alzheimer’s disease. Cells 11:1650. https://doi.org/10.3390/cells11101650
Article
CAS
Google Scholar
Douglas RM, Alam NM, Silver BD, McGill TJ, Tschetter WW, Prusky GT (2005) Independent visual threshold measurements in the two eyes of freely moving rats and mice using a virtual-reality optokinetic system. Vis Neurosci 22:677–684. https://doi.org/10.1017/S0952523805225166
Article
CAS
Google Scholar
Doustar J, Torbati T, Black KL, Koronyo Y, Koronyo-Hamaoui M (2017) Optical coherence tomography in Alzheimer’s disease and other neurodegenerative diseases. Front Neurol. https://doi.org/10.3389/fneur.2017.00701
Article
Google Scholar
Gaal L, Roska B, Picaud SA, Wu SM, Marc R, Werblin FS (1998) Postsynaptic response kinetics are controlled by a glutamate transporter at cone photoreceptors. J Neurophysiol 79:190–196. https://doi.org/10.1152/jn.1998.79.1.190
Article
CAS
Google Scholar
Gasparini L, Anthony Crowther R, Martin KR, Berg N, Coleman M, Goedert M, Spillantini MG (2011) Tau inclusions in retinal ganglion cells of human P301S tau transgenic mice: effects on axonal viability. Neurobiol Aging 32:419–433. https://doi.org/10.1016/j.neurobiolaging.2009.03.002
Article
CAS
Google Scholar
Gomez-Murcia V, Sandau U, Ferry B, Parrot S, Laurent C, Basquin M, Buée L, Boison D, Blum D (2020) Hyperexcitability and seizures in the THY-Tau22 mouse model of tauopathy. Neurobiol Aging 94:265–270. https://doi.org/10.1016/j.neurobiolaging.2020.06.004
Article
CAS
Google Scholar
Gong J, Jellali A, Mutterer J, Sahel JA, Rendon A, Picaud S (2006) Distribution of vesicular glutamate transporters in rat and human retina. Brain Res 1082:73–85. https://doi.org/10.1016/j.brainres.2006.01.111
Article
CAS
Google Scholar
Grimaldi A, Brighi C, Peruzzi G, Ragozzino D, Bonanni V, Limatola C, Ruocco G, Di Angelantonio S (2018) Inflammation, neurodegeneration and protein aggregation in the retina as ocular biomarkers for Alzheimer’s disease in the 3xTg-AD mouse model. Cell Death Dis. https://doi.org/10.1038/s41419-018-0740-5
Article
Google Scholar
den Haan J, Morrema THJ, Verbraak FD, de Boer JF, Scheltens P, Rozemuller AJ, Bergen AAB, Bouwman FH, Hoozemans JJ (2018) Amyloid-beta and phosphorylated tau in post-mortem Alzheimer’s disease retinas. Acta Neuropathol Commun. https://doi.org/10.1186/s40478-018-0650-x
Article
Google Scholar
Harrison IF, Whitaker R, Bertelli PM, O’Callaghan JM, Csincsik L, Bocchetta M, Ma D, Fisher A, Ahmed Z, Murray TK, O’Neill MJ, Rohrer JD, Lythgoe MF, Lengyel I (2019) Optic nerve thinning and neurosensory retinal degeneration in the rTg4510 mouse model of frontotemporal dementia. Acta Neuropathol Commun 7:4. https://doi.org/10.1186/s40478-018-0654-6
Article
CAS
Google Scholar
Holland N, Malpetti M, Rittman T, Mak EE, Passamonti L, Kaalund SS, Hezemans FH, Jones PS, Savulich G, Hong YT, Fryer TD, Aigbirhio FI, O’Brien JT, Rowe JB (2021) Molecular pathology and synaptic loss in primary tauopathies: [ 18 F]AV-1451 and [ 11 C]UCB-J PET study. Neurology
Hoover BR, Reed MN, Su J, Penrod RD, Kotilinek LA, Grant MK, Pitstick R, Carlson GA, Lanier LM, Yuan L-L, Ashe KH, Liao D (2010) Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration. Neuron 68:1067–1081. https://doi.org/10.1016/j.neuron.2010.11.030
Article
CAS
Google Scholar
Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, Yang F, Cole G (1996) Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 274:99–102. https://doi.org/10.1126/science.274.5284.99
Article
CAS
Google Scholar
Hunsberger HC, Rudy CC, Batten SR, Gerhardt GA, Reed MN (2015) P301L tau expression affects glutamate release and clearance in the hippocampal trisynaptic pathway. J Neurochem 132:169–182. https://doi.org/10.1111/jnc.12967
Article
CAS
Google Scholar
Kaneko M, Fu Y, Stryker MP (2017) Locomotion induces stimulus-specific response enhancement in adult visual cortex. J Neurosci Off J Soc Neurosci 37:3532–3543. https://doi.org/10.1523/JNEUROSCI.3760-16.2017
Article
CAS
Google Scholar
Katz B, Rimmer S, Iragui V, Katzman R (1989) Abnormal pattern electroretinogram in Alzheimer’s disease: evidence for retinal ganglion cell degeneration? Ann Neurol 26:221–225. https://doi.org/10.1002/ana.410260207
Article
CAS
Google Scholar
Kazim SF, Seo JH, Bianchi R, Larson CS, Sharma A, Wong RKS, Gorbachev KY, Pereira AC (2021) Neuronal network excitability in Alzheimer’s disease: the puzzle of similar versus divergent roles of amyloid β and tau. eNeuro. https://doi.org/10.1523/ENEURO.0418-20.2020
Article
Google Scholar
Koronyo Y, Biggs D, Barron E, Boyer DS, Pearlman JA, Au WJ, Kile SJ, Blanco A, Fuchs D-T, Ashfaq A, Frautschy S, Cole GM, Miller CA, Hinton DR, Verdooner SR, Black KL, Koronyo-Hamaoui M (2017) Retinal amyloid pathology and proof-of-concept imaging trial in Alzheimer’s disease. JCI Insight. https://doi.org/10.1172/jci.insight.93621
Article
Google Scholar
Krasodomska K, Lubiński W, Potemkowski A, Honczarenko K (2010) Pattern electroretinogram (PERG) and pattern visual evoked potential (PVEP) in the early stages of Alzheimer’s disease. Doc Ophthalmol Adv Ophthalmol 121:111–121. https://doi.org/10.1007/s10633-010-9238-x
Article
Google Scholar
Latina V, Giacovazzo G, Cordella F, Balzamino BO, Micera A, Varano M, Marchetti C, Malerba F, Florio R, Ercole BB, La Regina F, Atlante A, Coccurello R, Di Angelantonio S, Calissano P, Amadoro G (2021) Systemic delivery of a specific antibody targeting the pathological N-terminal truncated tau peptide reduces retinal degeneration in a mouse model of Alzheimer’s Disease. Acta Neuropathol Commun 9:38. https://doi.org/10.1186/s40478-021-01138-1
Article
CAS
Google Scholar
Lei M, Xu H, Li Z, Wang Z, O’Malley TT, Zhang D, Walsh DM, Xu P, Selkoe DJ, Li S (2016) Soluble Aβ oligomers impair hippocampal LTP by disrupting glutamatergic/GABAergic balance. Neurobiol Dis 85:111–121. https://doi.org/10.1016/j.nbd.2015.10.019
Article
CAS
Google Scholar
Liu D, Zhang L, Li Z, Zhang X, Wu Y, Yang H, Min B, Zhang X, Ma D, Lu Y (2015) Thinner changes of the retinal nerve fiber layer in patients with mild cognitive impairment and Alzheimer’s disease. BMC Neurol 15:14. https://doi.org/10.1186/s12883-015-0268-6
Article
Google Scholar
Liu X, Zhou Y, Gong H-Q, Liang P-J (2007) Contribution of the GABAergic pathway(s) to the correlated activities of chicken retinal ganglion cells. Brain Res 1177:37–46. https://doi.org/10.1016/j.brainres.2007.07.001
Article
CAS
Google Scholar
Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K (1985) Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci 82:4245–4249
Article
CAS
Google Scholar
Mazzaro N, Barini E, Spillantini MG, Goedert M, Medini P, Gasparini L (2016) Tau-driven neuronal and neurotrophic dysfunction in a mouse model of early tauopathy. J Neurosci Off J Soc Neurosci 36:2086–2100. https://doi.org/10.1523/JNEUROSCI.0774-15.2016
Article
CAS
Google Scholar
Ngoo QZ, Wan Hitam WH, Ab Razak A (2019) Evaluation of retinal nerve fiber layer thickness, electroretinogram and visual evoked potential in patients with Alzheimer’s disease. J Ophthalmol 2019:e6248185. https://doi.org/10.1155/2019/6248185
Article
CAS
Google Scholar
Nguyen D, Valet M, Dégardin J, Boucherit L, Illa X, de la Cruz J, Del Corro E, Bousquet J, Garrido JA, Hébert C, Picaud S (2021) Novel graphene electrode for retinal implants: an in vivo biocompatibility study. Front Neurosci 15:615256. https://doi.org/10.3389/fnins.2021.615256
Article
Google Scholar
Ossenkoppele R, Schonhaut DR, Schöll M, Lockhart SN, Ayakta N, Baker SL, O’Neil JP, Janabi M, Lazaris A, Cantwell A, Vogel J, Santos M, Miller ZA, Bettcher BM, Vossel KA, Kramer JH, Gorno-Tempini ML, Miller BL, Jagust WJ, Rabinovici GD (2016) Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer’s disease. Brain J Neurol 139:1551–1567. https://doi.org/10.1093/brain/aww027
Article
Google Scholar
Pagonabarraga J, Horta-Barba A, Busteed L, Bejr-kasem H, Illán-Gala I, Aracil-Bolaños I, Marín-Lahoz J, Pascual-Sedano B, Pérez J, Campolongo A, Izquierdo C, Martinez-Horta S, Sampedro F, Kulisevsky J (2021) Quantitative evaluation of oculomotor disturbances in progressive supranuclear palsy. Parkinsonism Relat Disord 85:63–68. https://doi.org/10.1016/j.parkreldis.2021.03.002
Article
CAS
Google Scholar
Palop JJ, Mucke L (2010) Amyloid-β–induced neuronal dysfunction in Alzheimer’s disease: from synapses toward neural networks. Nat Neurosci 13:812–818. https://doi.org/10.1038/nn.2583
Article
CAS
Google Scholar
Palop JJ, Mucke L (2016) Network abnormalities and interneuron dysfunction in Alzheimer disease. Nat Rev Neurosci 17:777–792. https://doi.org/10.1038/nrn.2016.141
Article
CAS
Google Scholar
Papanikolaou A, Rodrigues FR, Holeniewska J, Phillips KG, Saleem AB, Solomon SG (2022) Plasticity in visual cortex is disrupted in a mouse model of tauopathy. Commun Biol 5:77. https://doi.org/10.1038/s42003-022-03012-9
Article
CAS
Google Scholar
Parisi V, Restuccia R, Fattapposta F, Mina C, Bucci MG, Pierelli F (2001) Morphological and functional retinal impairment in Alzheimer’s disease patients. Clin Neurophysiol Off J Int Fed Clin Neurophysiol 112:1860–1867. https://doi.org/10.1016/s1388-2457(01)00620-4
Article
CAS
Google Scholar
Partanen J, Hartikainen P, Könönen M, Jousmäki V, Soininen H, Riekkinen P (1994) Prolonged latencies of pattern reversal visual evoked early potentials in Alzheimer disease. Alzheimer Dis Assoc Disord 8:250–258. https://doi.org/10.1097/00002093-199408040-00004
Article
CAS
Google Scholar
Perez SE, Lumayag S, Kovacs B, Mufson EJ, Xu S (2009) β-Amyloid deposition and functional impairment in the retina of the APPswe/PS1ΔE9 transgenic mouse model of Alzheimer’s disease. Investig Ophthalmol Vis Sci 50:793–800. https://doi.org/10.1167/iovs.08-2384
Article
Google Scholar
Picaud S, Larsson HP, Wellis DP, Lecar H, Werblin F (1995) Cone photoreceptors respond to their own glutamate release in the tiger salamander. Proc Natl Acad Sci 92:9417–9421. https://doi.org/10.1073/pnas.92.20.9417
Article
CAS
Google Scholar
Picillo M, Salerno G, Tepedino MF, Abate F, Cuoco S, Gioia M, Coppola A, Erro R, Pellecchia MT, Rosa N, Barone P, De Bernardo M (2022) Retinal thinning in progressive supranuclear palsy: differences with healthy controls and correlation with clinical variables. Neurol Sci Off J Ital Neurol Soc Ital Soc Clin Neurophysiol. https://doi.org/10.1007/s10072-022-06061-4
Article
Google Scholar
Prusky GT, Alam NM, Beekman S, Douglas RM (2004) Rapid quantification of adult and developing mouse spatial vision using a virtual optomotor system. Investig Ophthalmol Vis Sci 45:4611–4616. https://doi.org/10.1167/iovs.04-0541
Article
Google Scholar
Przybyla M, van Eersel J, van Hummel A, van der Hoven J, Sabale M, Harasta A, Müller J, Gajwani M, Prikas E, Mueller T, Stevens CH, Power J, Housley GD, Karl T, Kassiou M, Ke YD, Ittner A, Ittner LM (2020) Onset of hippocampal network aberration and memory deficits in P301S tau mice are associated with an early gene signature. Brain 143:1889–1904. https://doi.org/10.1093/brain/awaa133
Article
Google Scholar
Roberson ED, Halabisky B, Yoo JW, Yao J, Chin J, Yan F, Wu T, Hamto P, Devidze N, Yu G-Q, Palop JJ, Noebels JL, Mucke L (2011) Amyloid-β/Fyn–induced synaptic, network, and cognitive impairments depend on tau levels in multiple mouse models of Alzheimer’s disease. J Neurosci 31:700–711. https://doi.org/10.1523/JNEUROSCI.4152-10.2011
Article
CAS
Google Scholar
Rowan MJM, Ripps H, Shen W (2010) Fast glutamate uptake via EAAT2 shapes the cone-mediated light offset response in bipolar cells. J Physiol 588:3943–3956. https://doi.org/10.1113/jphysiol.2010.191437
Article
CAS
Google Scholar
Sahel J-A, Grieve K, Pagot C, Authié C, Mohand-Said S, Paques M, Audo I, Becker K, Chaumet-Riffaud A-E, Azoulay L, Gutman E, Léveillard T, Zeitz C, Picaud S, Dalkara D, Marazova K (2021) Assessing photoreceptor status in retinal dystrophies: from high-resolution imaging to functional vision. Am J Ophthalmol 230:12–47. https://doi.org/10.1016/j.ajo.2021.04.013
Article
CAS
Google Scholar
Schön C, Hoffmann NA, Ochs SM, Burgold S, Filser S, Steinbach S, Seeliger MW, Arzberger T, Goedert M, Kretzschmar HA, Schmidt B, Herms J (2012) Long-term in vivo imaging of fibrillar tau in the retina of P301S transgenic mice. PLoS ONE 7:e53547. https://doi.org/10.1371/journal.pone.0053547
Article
CAS
Google Scholar
Sergeant N, Bretteville A, Hamdane M, Caillet-Boudin M-L, Grognet P, Bombois S, Blum D, Delacourte A, Pasquier F, Vanmechelen E, Schraen-Maschke S, Buée L (2008) Biochemistry of Tau in Alzheimer’s disease and related neurological disorders. Expert Rev Proteom 5:207–224. https://doi.org/10.1586/14789450.5.2.207
Article
CAS
Google Scholar
Shimojo M, Takuwa H, Takado Y, Tokunaga M, Tsukamoto S, Minatohara K, Ono M, Seki C, Maeda J, Urushihata T, Minamihisamatsu T, Aoki I, Kawamura K, Zhang M-R, Suhara T, Sahara N, Higuchi M (2020) Selective disruption of inhibitory synapses leading to neuronal hyperexcitability at an early stage of tau pathogenesis in a mouse model. J Neurosci 40:3491–3501
Article
CAS
Google Scholar
Szmajda BA, DeVries SH (2011) Glutamate spillover between mammalian cone photoreceptors. J Neurosci 31:13431–13441. https://doi.org/10.1523/JNEUROSCI.2105-11.2011
Article
CAS
Google Scholar
Teunissen CE, Verberk IMW, Thijssen EH, Vermunt L, Hansson O, Zetterberg H, van der Flier WM, Mielke MM, Del Campo M (2022) Blood-based biomarkers for Alzheimer’s disease: towards clinical implementation. Lancet Neurol 21:66–77. https://doi.org/10.1016/S1474-4422(21)00361-6
Article
CAS
Google Scholar
Tian N, Copenhagen DR (2003) Visual stimulation is required for refinement of ON and OFF pathways in postnatal retina. Neuron 39:85–96. https://doi.org/10.1016/s0896-6273(03)00389-1
Article
CAS
Google Scholar
Trouillet A, Dubus E, Dégardin J, Estivalet A, Ivkovic I, Godefroy D, García-Ayuso D, Simonutti M, Sahly I, Sahel JA, El-Amraoui A, Petit C, Picaud S (2018) Cone degeneration is triggered by the absence of USH1 proteins but prevented by antioxidant treatments. Sci Rep 8:1968. https://doi.org/10.1038/s41598-018-20171-0
Article
CAS
Google Scholar
Wang P, Zhang H, Han L, Zhou Y (2016) Cortical function in Alzheimer’s disease and frontotemporal dementia. Transl Neurosci 7:116–125. https://doi.org/10.1515/tnsci-2016-0018
Article
Google Scholar
Whitwell JL, Tosakulwong N, Weigand SD, Graff-Radford J, Duffy JR, Clark HM, Machulda MM, Botha H, Utianski RL, Schwarz CG, Senjem ML, Strand EA, Ertekin-Taner N, Jack CR, Lowe VJ, Josephs KA (2020) Longitudinal amyloid-β PET in atypical Alzheimer’s disease and frontotemporal lobar degeneration. J Alzheimers Dis JAD 74:377–389. https://doi.org/10.3233/JAD-190699
Article
CAS
Google Scholar
Xia F, Ha Y, Shi S, Li Y, Li S, Luisi J, Kayed R, Motamedi M, Liu H, Zhang W (2021) Early alterations of neurovascular unit in the retina in mouse models of tauopathy. Acta Neuropathol Commun. https://doi.org/10.1186/s40478-021-01149-y
Article
Google Scholar
Yger P, Spampinato GL, Esposito E, Lefebvre B, Deny S, Gardella C, Stimberg M, Jetter F, Zeck G, Picaud S, Duebel J, Marre O (2018) A spike sorting toolbox for up to thousands of electrodes validated with ground truth recordings in vitro and in vivo. Elife. https://doi.org/10.7554/eLife.34518
Article
Google Scholar
Yoshikawa M, Soeda Y, Michikawa M, Almeida OFX, Takashima A (2018) Tau depletion in APP transgenic mice attenuates task-related hyperactivation of the hippocampus and differentially influences locomotor activity and spatial memory. Front Neurosci. https://doi.org/10.3389/fnins.2018.00124
Article
Google Scholar
Yoshiyama Y, Higuchi M, Zhang B, Huang S-M, Iwata N, Saido TC, Maeda J, Suhara T, Trojanowski JQ, Lee VM-Y (2007) Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 53:337–351. https://doi.org/10.1016/j.neuron.2007.01.010
Article
CAS
Google Scholar
Zhou L, McInnes J, Wierda K, Holt M, Herrmann AG, Jackson RJ, Wang Y-C, Swerts J, Beyens J, Miskiewicz K, Vilain S, Dewachter I, Moechars D, De Strooper B, Spires-Jones TL, De Wit J, Verstreken P (2017) Tau association with synaptic vesicles causes presynaptic dysfunction. Nat Commun 8:15295. https://doi.org/10.1038/ncomms15295
Article
Google Scholar