The Huntington's Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 72:971–983. https://doi.org/10.1016/0092-8674(93)90585-e
Al-Dalahmah O, Sosunov AA, Shaik A, Ofori K, Liu Y, Vonsattel JP, Adorjan I, Menon V, Goldman JE (2020) Single-nucleus RNA-seq identifies Huntington disease astrocyte states. Acta Neuropathol Commun 8:19. https://doi.org/10.1186/s40478-020-0880-6
Article
CAS
PubMed
PubMed Central
Google Scholar
Arlotta P, Molyneaux BJ, Jabaudon D, Yoshida Y, Macklis JD (2008) Ctip2 controls the differentiation of medium spiny neurons and the establishment of the cellular architecture of the striatum. J Neurosci 28:622–632. https://doi.org/10.1523/JNEUROSCI.2986-07.2008
Article
CAS
PubMed
PubMed Central
Google Scholar
Atwal RS, Desmond CR, Caron N, Maiuri T, Xia J, Sipione S, Truant R (2011) Kinase inhibitors modulate huntingtin cell localization and toxicity. Nat Chem Biol 7:453–460. https://doi.org/10.1038/nchembio.582
Article
CAS
PubMed
Google Scholar
Bendor JT, Logan TP, Edwards RH (2013) The function of α-synuclein. Neuron 79:1044–1066. https://doi.org/10.1016/j.neuron.2013.09.004
Article
CAS
PubMed
Google Scholar
Bian Y, Ye M, Wang C, Cheng K, Song C, Dong M, Pan Y, Qin H, Zou H (2013) Global screening of CK2 kinase substrates by an integrated phosphoproteomics workflow. SciRep 3:3460. https://doi.org/10.1038/srep03460
Article
Google Scholar
Borgo C, D’Amore C, Sarno S, Salvi M, Ruzzene M (2021) Protein kinase CK2: a potential therapeutic target for diverse human diseases. Signal Transduct Target Ther 6:183. https://doi.org/10.1038/s41392-021-00567-7
Article
CAS
PubMed
PubMed Central
Google Scholar
Bowie LE, Maiuri T, Alpaugh M, Gabriel M, Arbez N, Galleguillos D, Hung CLK, Patel S, Xia J, Hertz NT, Ross CA, Litchfield DW, Sipione S, Truant R (2018) N6-Furfuryladenine is protective in Huntington’s disease models by signaling huntingtin phosphorylation. Proc Natl Acad Sci U S A 115:E7081–E7090. https://doi.org/10.1073/pnas.1801772115
Article
CAS
PubMed
PubMed Central
Google Scholar
Breza M, Emmanouilidou E, Leandrou E, Kartanou C, Bougea A, Panas M, Stefanis L, Karadima G, Vekrellis K, Koutsis G (2020) Elevated serum α-synuclein levels in huntington’s disease patients. Neuroscience 431:34–39. https://doi.org/10.1016/j.neuroscience.2020.01.037
Article
CAS
PubMed
Google Scholar
Carty N, Berson N, Tillack K, Thiede C, Scholz D, Kottig K, Sedaghat Y, Gabrysiak C, Yohrling G, von der Kammer H, Ebneth A, Mack V, Munoz-Sanjuan I, Kwak S (2015) Characterization of HTT inclusion size, location, and timing in the zQ175 mouse model of Huntington’s disease: an in vivo high-content imaging study. PLoS ONE. https://doi.org/10.1371/journal.pone.0123527
Article
PubMed
PubMed Central
Google Scholar
Castello J, Ragnauth A, Friedman E, Rebholz H (2017) CK2-an emerging target for neurological and psychiatric disorders. Pharmaceuticals (Basel). https://doi.org/10.3390/ph10010007
Article
Google Scholar
Cavaccini A, Durkee C, Kofuji P, Tonini R, Araque A (2020) Astrocyte signaling gates long-term depression at corticostriatal synapses of the direct pathway. J Neurosci 40:5757–5768. https://doi.org/10.1523/JNEUROSCI.2369-19.2020
Article
CAS
PubMed
PubMed Central
Google Scholar
Ceglia I, Flajolet M, Rebholz H (2011) Predominance of CK2α over CK2α’ in the mammalian brain. Mol Cell Biochem 356:169–175. https://doi.org/10.1007/s11010-011-0963-6
Article
CAS
PubMed
Google Scholar
Charles V, Mezey E, Reddy PH, Dehejia A, Young TA, Polymeropoulos MH, Brownstein MJ, Tagle DA (2000) Alpha-synuclein immunoreactivity of huntingtin polyglutamine aggregates in striatum and cortex of Huntington’s disease patients and transgenic mouse models. Neurosci Lett 289:29–32. https://doi.org/10.1016/s0304-3940(00)01247-7
Article
CAS
PubMed
Google Scholar
Chung HJ, Huang YH, Lau LF, Huganir RL (2004) Regulation of the NMDA receptor complex and trafficking by activity-dependent phosphorylation of the NR2B subunit PDZ ligand. J Neurosci 24:10248–10259. https://doi.org/10.1523/JNEUROSCI.0546-04.2004
Article
CAS
PubMed
PubMed Central
Google Scholar
Consortium GMoHsDG-H 2015 Identification of Genetic Factors that Modify Clinical Onset of Huntington's Disease. Cell 162:516-526, https://doi.org/10.1016/j.cell.2015.07.003
Corrochano S, Renna M, Carter S, Chrobot N, Kent R, Stewart M, Cooper J, Brown SD, Rubinsztein DC, Acevedo-Arozena A (2012) α-Synuclein levels modulate Huntington’s disease in mice. Hum Mol Genet 21:485–494. https://doi.org/10.1093/hmg/ddr477
Article
CAS
PubMed
Google Scholar
Corrochano S, Renna M, Tomas-Zapico C, Brown SD, Lucas JJ, Rubinsztein DC, Acevedo-Arozena A (2012) α-Synuclein levels affect autophagosome numbers in vivo and modulate Huntington disease pathology. Autophagy 8:431–432. https://doi.org/10.4161/auto.19259
Article
CAS
PubMed
Google Scholar
Crotti A, Glass CK (2015) The choreography of neuroinflammation in Huntington’s disease. Trends Immunol 36:364–373. https://doi.org/10.1016/j.it.2015.04.007
Article
CAS
PubMed
PubMed Central
Google Scholar
Curtin PC, Farrar AM, Oakeshott S, Sutphen J, Berger J, Mazzella M, Cox K, He D, Alosio W, Park LC, Howland D, Brunner D (2015) Cognitive training at a young age attenuates deficits in the zQ175 mouse model of HD. Front Behav Neurosci 9:361. https://doi.org/10.3389/fnbeh.2015.00361
Article
CAS
PubMed
Google Scholar
Craufurd D, Snowden J (2002) Neuropsychological and neuropsychiatric aspects of huntington’s disease. In: Bates G, Harper PS, Jones L (eds) Huntington’s disease. Oxford University Press, Oxford, pp 62–94
Google Scholar
Davidi D, Schechter M, Elhadi SA, Matatov A, Nathanson L, Sharon R (2020) α-synuclein translocates to the nucleus to activate retinoic-acid-dependent gene transcription. iScience. https://doi.org/10.1016/j.isci.2020.100910
Article
PubMed
PubMed Central
Google Scholar
Decressac M, Kadkhodaei B, Mattsson B, Laguna A, Perlmann T, Björklund A (2012) α-Synuclein-induced down-regulation of Nurr1 disrupts GDNF signaling in nigral dopamine neurons. Sci Transl Med. https://doi.org/10.1126/scitranslmed.3004676
Article
PubMed
Google Scholar
Diaz-Castro B, Gangwani MR, Yu X, Coppola G, Khakh BS (2019) Astrocyte molecular signatures in Huntington’s disease. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aaw8546
Article
PubMed
Google Scholar
DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsattel JP, Aronin N (1997) Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277:1990–1993. https://doi.org/10.1126/science.277.5334.1990
Article
CAS
PubMed
Google Scholar
Dominguez I, Sonenshein GE, Seldin DC (2009) Protein kinase CK2 in health and disease: CK2 and its role in Wnt and NF-kappaB signaling: linking development and cancer. Cell Mol Life Sci 66:1850–1857. https://doi.org/10.1007/s00018-009-9153-z
Article
CAS
PubMed
PubMed Central
Google Scholar
Dorst MC, Díaz-Moreno M, Dias DO, Guimarães EL, Holl D, Kalkitsas J, Silberberg G, Göritz C (2021) Astrocyte-derived neurons provide excitatory input to the adult striatal circuitry. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.2104119118
Article
PubMed
PubMed Central
Google Scholar
Fan MM, Zhang H, Hayden MR, Pelech SL, Raymond LA (2008) Protective up-regulation of CK2 by mutant huntingtin in cells co-expressing NMDA receptors. J Neurochem 104:790–805. https://doi.org/10.1111/j.1471-4159.2007.05016.x
Article
CAS
PubMed
Google Scholar
Fernández-Nogales M, Cabrera JR, Santos-Galindo M, Hoozemans JJ, Ferrer I, Rozemuller AJ, Hernández F, Avila J, Lucas JJ (2014) Huntington’s disease is a four-repeat tauopathy with tau nuclear rods. Nat Med 20:881–885. https://doi.org/10.1038/nm.3617
Article
CAS
PubMed
Google Scholar
Ferrante RJ, Kowall NW, Richardson EP (1991) Proliferative and degenerative changes in striatal spiny neurons in Huntington’s disease: a combined study using the section-Golgi method and calbindin D28k immunocytochemistry. J Neurosci 11:3877–3887. https://doi.org/10.1523/JNEUROSCI.11-12-03877.1991
Article
CAS
PubMed
PubMed Central
Google Scholar
Fienberg AA, Hiroi N, Mermelstein PG, Song W, Snyder GL, Nishi A, Cheramy A, O’Callaghan JP, Miller DB, Cole DG, Corbett R, Haile CN, Cooper DC, Onn SP, Grace AA, Ouimet CC, White FJ, Hyman SE, Surmeier DJ, Girault J, Nestler EJ, Greengard P (1998) DARPP-32: regulator of the efficacy of dopaminergic neurotransmission. Science 281:838–842. https://doi.org/10.1126/science.281.5378.838
Article
CAS
PubMed
Google Scholar
Franchin C, Borgo C, Cesaro L, Zaramella S, Vilardell J, Salvi M, Arrigoni G, Pinna LA (2018) Re-evaluation of protein kinase CK2 pleiotropy: new insights provided by a phosphoproteomics analysis of CK2 knockout cells. Cell Mol Life Sci 75:2011–2026. https://doi.org/10.1007/s00018-017-2705-8
Article
CAS
PubMed
Google Scholar
Fujiwara H, Hasegawa M, Dohmae N, Kawashima A, Masliah E, Goldberg MS, Shen J, Takio K, Iwatsubo T (2002) alpha-Synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol 4:160–164. https://doi.org/10.1038/ncb748
Article
CAS
PubMed
Google Scholar
Gallardo-Orihuela A, Hervás-Corpión I, Hierro-Bujalance C, Sanchez-Sotano D, Jiménez-Gómez G, Mora-López F, Campos-Caro A, Garcia-Alloza M, Valor LM (2019) Transcriptional correlates of the pathological phenotype in a Huntington’s disease mouse model. Sci Rep 9:18696. https://doi.org/10.1038/s41598-019-55177-9
Article
CAS
PubMed
PubMed Central
Google Scholar
Geertsma HM, Suk TR, Ricke KM, Horsthuis K, Parmasad JA, Fisk ZA, Callaghan SM, Rousseaux MWC (2022) Constitutive nuclear accumulation of endogenous alpha-synuclein in mice causes motor impairment and cortical dysfunction, independent of protein aggregation. Hum Mol Genet. https://doi.org/10.1093/hmg/ddac035
Article
PubMed
Google Scholar
Gibson SA, Benveniste EN (2018) Protein kinase CK2: an emerging regulator of immunity. Trends Immunol 39:82–85. https://doi.org/10.1016/j.it.2017.12.002
Article
CAS
PubMed
PubMed Central
Google Scholar
Gomez-Pastor R, Burchfiel ET, Neef DW, Jaeger AM, Cabiscol E, McKinstry SU, Doss A, Aballay A, Lo DC, Akimov SS, Ross CA, Eroglu C, Thiele DJ (2017) Abnormal degradation of the neuronal stress-protective transcription factor HSF1 in Huntington’s disease. Nat Commun 8:14405. https://doi.org/10.1038/ncomms14405
Article
CAS
PubMed
PubMed Central
Google Scholar
Gomez-Pastor R, Burchfiel ET, Thiele DJ (2018) Regulation of heat shock transcription factors and their roles in physiology and disease. Nat Rev Mol Cell Biol. https://doi.org/10.1038/nrm.2017.73
Article
PubMed
Google Scholar
Greenwood JA, Scott CW, Spreen RC, Caputo CB, Johnson GV (1994) Casein kinase II preferentially phosphorylates human tau isoforms containing an amino-terminal insert. Identification of threonine 39 as the primary phosphate acceptor. J Biol Chem 269:4373–4380. https://doi.org/10.1016/S0021-9258(17)41790-X
Article
CAS
PubMed
Google Scholar
Heikkinen T, Lehtimäki K, Vartiainen N, Puoliväli J, Hendricks SJ, Glaser JR, Bradaia A, Wadel K, Touller C, Kontkanen O, Yrjänheikki JM, Buisson B, Howland D, Beaumont V, Munoz-Sanjuan I, Park LC (2012) Characterization of neurophysiological and behavioral changes, MRI brain volumetry and 1H MRS in zQ175 knock-in mouse model of Huntington’s disease. PLoS ONE 7:e50717. https://doi.org/10.1371/journal.pone.0050717
Article
CAS
PubMed
PubMed Central
Google Scholar
Herrera F, Outeiro TF (2012) α-Synuclein modifies huntingtin aggregation in living cells. FEBS Lett 586:7–12. https://doi.org/10.1016/j.febslet.2011.11.019
Article
CAS
PubMed
Google Scholar
Hirschberg S, Dvorzhak A, Rasooli-Nejad SMA, Angelov S, Kirchner M, Mertins P, Lättig-Tünnemann G, Harms C, Schmitz D, Grantyn R (2021) Uncoupling the excitatory amino acid transporter 2 from its C-terminal interactome restores synaptic glutamate clearance at corticostriatal synapses and alleviates mutant huntingtin-induced hypokinesia. Front Cell Neurosci 15:792652. https://doi.org/10.3389/fncel.2021.792652
Article
CAS
PubMed
Google Scholar
Hsiao HY, Chiu FL, Chen CM, Wu YR, Chen HM, Chen YC, Kuo HC, Chern Y (2014) Inhibition of soluble tumor necrosis factor is therapeutic in Huntington’s disease. Hum Mol Genet 23:4328–4344. https://doi.org/10.1093/hmg/ddu151
Article
CAS
PubMed
Google Scholar
Indersmitten T, Tran CH, Cepeda CT, Levine MS (2015) Altered excitatory and inhibitory inputs to striatal medium-sized spiny neurons and cortical pyramidal neurons in the q175 mouse model of huntington’s disease. J Neurophysiol 113:2953–2966. https://doi.org/10.1152/jn.01056.2014
Article
CAS
PubMed
PubMed Central
Google Scholar
Inglis KJ, Chereau D, Brigham EF, Chiou SS, Schöbel S, Frigon NL, Yu M, Caccavello RJ, Nelson S, Motter R, Wright S, Chian D, Santiago P, Soriano F, Ramos C, Powell K, Goldstein JM, Babcock M, Yednock T, Bard F, Basi GS, Sham H, Chilcote TJ, McConlogue L, Griswold-Prenner I, Anderson JP (2009) Polo-like kinase 2 (PLK2) phosphorylates alpha-synuclein at serine 129 in central nervous system. J Biol Chem 284:2598–2602. https://doi.org/10.1074/jbc.C800206200
Article
CAS
PubMed
PubMed Central
Google Scholar
Ising C, Venegas C, Zhang S, Scheiblich H, Schmidt SV, Vieira-Saecker A, Schwartz S, Albasset S, McManus RM, Tejera D, Griep A, Santarelli F, Brosseron F, Opitz S, Stunden J, Merten M, Kayed R, Golenbock DT, Blum D, Latz E, Buée L, Heneka MT (2019) NLRP3 inflammasome activation drives tau pathology. Nature 575:669–673. https://doi.org/10.1038/s41586-019-1769-z
Article
CAS
PubMed
PubMed Central
Google Scholar
Kalia LV, Lang AE (2015) Parkinson’s disease. Lancet 386:896–912. https://doi.org/10.1016/S0140-6736(14)61393-3
Article
CAS
PubMed
Google Scholar
Khakh BS, Beaumont V, Cachope R, Munoz-Sanjuan I, Goldman SA, Grantyn R (2017) Unravelling and exploiting astrocyte dysfunction in huntington’s disease. Trends Neurosci 40:422–437. https://doi.org/10.1016/j.tins.2017.05.002
Article
CAS
PubMed
PubMed Central
Google Scholar
Langfelder P, Cantle JP, Chatzopoulou D, Wang N, Gao F, Al-Ramahi I, Lu XH, Ramos EM, El-Zein K, Zhao Y, Deverasetty S, Tebbe A, Schaab C, Lavery DJ, Howland D, Kwak S, Botas J, Aaronson JS, Rosinski J, Coppola G, Horvath S, Yang XW (2016) Integrated genomics and proteomics define huntingtin CAG length-dependent networks in mice. Nat Neurosci 19:623–633. https://doi.org/10.1038/nn.4256
Article
CAS
PubMed
PubMed Central
Google Scholar
Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinfo 9:559. https://doi.org/10.1186/1471-2105-9-559
Article
CAS
Google Scholar
Lee G, Tanaka M, Park K, Lee SS, Kim YM, Junn E, Lee SH, Mouradian MM (2004) Casein kinase II-mediated phosphorylation regulates alpha-synuclein/synphilin-1 interaction and inclusion body formation. J Biol Chem 279:6834–6839. https://doi.org/10.1074/jbc.M312760200
Article
CAS
PubMed
Google Scholar
Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Münch AE, Chung WS, Peterson TC, Wilton DK, Frouin A, Napier BA, Panicker N, Kumar M, Buckwalter MS, Rowitch DH, Dawson VL, Dawson TM, Stevens B, Barres BA (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541:481–487. https://doi.org/10.1038/nature21029
Article
CAS
PubMed
PubMed Central
Google Scholar
Litchfield DW (2003) Protein kinase CK2: structure, regulation and role in cellular decisions of life and death. Biochem J 369:1–15. https://doi.org/10.1042/BJ20021469
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu P, Smith BR, Montonye ML, Kemper LJ, Leinonen-Wright K, Nelson KM, Higgins L, Guerrero CR, Markowski TW, Zhao X, Petersen AJ, Knopman DS, Petersen RC, Ashe KH (2020) A soluble truncated tau species related to cognitive dysfunction is elevated in the brain of cognitively impaired human individuals. Sci Rep 10:3869. https://doi.org/10.1038/s41598-020-60777-x
Article
CAS
PubMed
PubMed Central
Google Scholar
Masliah E, Rockenstein E, Veinbergs I, Mallory M, Hashimoto M, Takeda A, Sagara Y, Sisk A, Mucke L (2000) Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science 287:1265–1269. https://doi.org/10.1126/science.287.5456.1265
Article
CAS
PubMed
Google Scholar
Menalled LB, Kudwa AE, Miller S, Fitzpatrick J, Watson-Johnson J, Keating N, Ruiz M, Mushlin R, Alosio W, McConnell K, Connor D, Murphy C, Oakeshott S, Kwan M, Beltran J, Ghavami A, Brunner D, Park LC, Ramboz S, Howland D (2012) Comprehensive behavioral and molecular characterization of a new knock-in mouse model of Huntington’s disease: zQ175. PLoS ONE 7:e49838. https://doi.org/10.1371/journal.pone.0049838
Article
CAS
PubMed
PubMed Central
Google Scholar
Oakeshott S, Farrar A, Port R, Cummins-Sutphen J, Berger J, Watson-Johnson J, Ramboz S, Howland D, Brunner D (2013) Deficits in a simple visual Go/no-go discrimination task in two mouse models of huntington’s disease. PLoS Curr. https://doi.org/10.1371/currents.hd.fe74c94bdd446a0470f6f905a30b5dd1
Article
PubMed
PubMed Central
Google Scholar
Oueslati A (2016) Implication of alpha-synuclein phosphorylation at S129 in synucleinopathies: what have we learned in the last decade? J Parkinsons Dis 6:39–51. https://doi.org/10.3233/JPD-160779
Article
CAS
PubMed
PubMed Central
Google Scholar
Peng Q, Wu B, Jiang M, Jin J, Hou Z, Zheng J, Zhang J, Duan W (2016) Characterization of Behavioral, neuropathological, brain metabolic and key molecular changes in Zq175 knock-in mouse model Of huntington’s disease. PLoS ONE 11:e0148839. https://doi.org/10.1371/journal.pone.0148839
Article
CAS
PubMed
PubMed Central
Google Scholar
Pinna LA (2002) Protein kinase CK2: a challenge to canons. J Cell Sci 115:3873–3878. https://doi.org/10.1242/jcs.00074
Article
CAS
PubMed
Google Scholar
Riessland M, Kaczmarek A, Schneider S, Swoboda KJ, Löhr H, Bradler C, Grysko V, Dimitriadi M, Hosseinibarkooie S, Torres-Benito L, Peters M, Upadhyay A, Biglari N, Kröber S, Hölker I, Garbes L, Gilissen C, Hoischen A, Nürnberg G, Nürnberg P, Walter M, Rigo F, Bennett CF, Kye MJ, Hart AC, Hammerschmidt M, Kloppenburg P, Wirth B (2017) Neurocalcin delta suppression protects against spinal muscular atrophy in humans and across species by restoring impaired endocytosis. Am J Hum Genet 100:297–315. https://doi.org/10.1016/j.ajhg.2017.01.005
Article
CAS
PubMed
PubMed Central
Google Scholar
Rosenberger AF, Morrema TH, Gerritsen WH, van Haastert ES, Snkhchyan H, Hilhorst R, Rozemuller AJ, Scheltens P, van der Veries SM, Hoozemans JJ (2016) Increased occurrence of protein kinase CK2 in astrocytes in Alzheimer’s disease pathology. J Neuroinflam. https://doi.org/10.1186/s12974-015-0470-x
Article
Google Scholar
Rousseaux MW, de Haro M, Lasagna-Reeves CA, De Maio A, Park J, Jafar-Nejad P, Al-Ramahi I, Sharma A, See L, Lu N, Vilanova-Velez L, Klisch TJ, Westbrook TF, Troncoso JC, Botas J, Zoghbi HY (2016) TRIM28 regulates the nuclear accumulation and toxicity of both alpha-synuclein and tau. Elife. https://doi.org/10.7554/eLife.19809
Article
PubMed
PubMed Central
Google Scholar
Schaffner SL, Wassouf Z, Lazaro DF, Xylaki M, Gladish N, Lin DT, MacIsaac J, Ramadori K, Schulze-Hentrich JM, Outeiro TF, Kobor MS (2021) Alpha-synuclein induces epigenomic dysregulation of glutamate signaling and locomotor pathways. bioRxiv. doi:https://doi.org/10.1101/2021.06.12.448150
Sanz-Clemente A, Matta JA, Isaac JT, Roche KW (2010) Casein kinase 2 regulates the NR2 subunit composition of synaptic NMDA receptors. Neuron 67:984–996. https://doi.org/10.1016/j.neuron.2010.08.011
Article
CAS
PubMed
PubMed Central
Google Scholar
Singh NN, Ramji DP (2008) Protein kinase CK2, an important regulator of the inflammatory response? J Mol Med (Berl) 86:887–897. https://doi.org/10.1007/s00109-008-0352-0
Article
CAS
Google Scholar
Smith-Dijak AI, Sepers MD, Raymond LA (2019) Alterations in synaptic function and plasticity in Huntington disease. J Neurochem 150:346–365. https://doi.org/10.1111/jnc.14723
Article
CAS
PubMed
Google Scholar
Takahashi K, Ohsawa I, Shirasawa T, Takahashi M (2016) Early-onset motor impairment and increased accumulation of phosphorylated α-synuclein in the motor cortex of normal aging mice are ameliorated by coenzyme Q. Exp Gerontol 81:65–75. https://doi.org/10.1016/j.exger.2016.04.023
Article
CAS
PubMed
Google Scholar
Tkac I, Henry PG, Zacharoff L, Wedel M, Gong W, Deelchand DK, Li T, Dubinsky JM (2012) Homeostatic adaptations in brain energy metabolism in mouse models of Huntington disease. J Cereb Blood Flow Metab 32:1977–1988. https://doi.org/10.1038/jcbfm.2012.104
Article
CAS
PubMed
PubMed Central
Google Scholar
Tomás-Zapico C, Díez-Zaera M, Ferrer I, Gómez-Ramos P, Morán MA, Miras-Portugal MT, Díaz-Hernández M, Lucas JJ (2012) α-Synuclein accumulates in huntingtin inclusions but forms independent filaments and its deficiency attenuates early phenotype in a mouse model of Huntington’s disease. Hum Mol Genet 21:495–510. https://doi.org/10.1093/hmg/ddr507
Article
CAS
PubMed
Google Scholar
Vezzoli E, Caron I, Talpo F, Besusso D, Conforti P, Battaglia E, Sogne E, Falqui A, Petricca L, Verani M, Martufi P, Caricasole A, Bresciani A, Cecchetti O, di Val R, Cervo P, Sancini G, Riess O, Nguyen H, Seipold L, Saftig P, Biella G, Cattaneo E, Zuccato C (2019) Inhibiting pathologically active ADAM10 rescues synaptic and cognitive decline in Huntington’s disease. J Clin Invest 129:2390–2403. https://doi.org/10.1172/JCI120616
Article
PubMed
PubMed Central
Google Scholar
Walker FO (2007) Huntington’s disease. Lancet 369:218–228. https://doi.org/10.1016/S0140-6736(07)60111-1
Article
CAS
PubMed
Google Scholar
Waxman EA, Giasson BI (2008) Specificity and regulation of casein kinase-mediated phosphorylation of alpha-synuclein. J Neuropathol Exp Neurol 67:402–416. https://doi.org/10.1097/NEN.0b013e31816fc995
Article
CAS
PubMed
Google Scholar
Wood TE, Barry J, Yang Z, Cepeda C, Levine MS, Gray M (2019) Mutant huntingtin reduction in astrocytes slows disease progression in the BACHD conditional Huntington’s disease mouse model. Hum Mol Genet 28:487–500. https://doi.org/10.1093/hmg/ddy363
Article
CAS
PubMed
Google Scholar
Xu X, Toselli PA, Russell LD, Seldin DC (1999) Globozoospermia in mice lacking the casein kinase II alpha’ catalytic subunit. Nat Genet 23:118–121. https://doi.org/10.1038/12729
Article
CAS
PubMed
Google Scholar
Zarate N, Gundry K, Yu D, Casby J, Eberly LE, Öz G, Gomez-Pastor R (2021) In vivo MR spectroscopy reflects synapse density in a Huntington’s disease mouse model. bioRxiv:2021.2010.2026.465951. doi:https://doi.org/10.1101/2021.10.26.465951