Albertsson AM, Zhang X, Leavenworth J, Bi D, Nair S, Qiao L, Hagberg H, Mallard C, Cantor H, Wang X (2014) The effect of osteopontin and osteopontin-derived peptides on preterm brain injury. J Neuroinflammation 11:197. https://doi.org/10.1186/s12974-014-0197-0
Article
CAS
PubMed
PubMed Central
Google Scholar
Armstrong DL, Sauls CD, Goddard-Finegold J (1987) Neuropathologic findings in short-term survivors of intraventricular hemorrhage. Am J Dis Child 141:617–621. https://doi.org/10.1001/archpedi.1987.04460060035027
Article
CAS
PubMed
Google Scholar
Atienza-Navarro I, Alves-Martinez P, Lubian-Lopez S, Garcia-Alloza M (2020) Germinal matrix-intraventricular hemorrhage of the preterm newborn and preclinical models: inflammatory considerations. Int J Mol Sci. https://doi.org/10.3390/ijms21218343
Article
PubMed
PubMed Central
Google Scholar
Baburamani AA, Supramaniam VG, Hagberg H, Mallard C (2014) Microglia toxicity in preterm brain injury. Reprod Toxicol 48:106–112. https://doi.org/10.1016/j.reprotox.2014.04.002
Article
CAS
PubMed
PubMed Central
Google Scholar
Back SA (2017) White matter injury in the preterm infant: pathology and mechanisms. Acta Neuropathol 134:331–349. https://doi.org/10.1007/s00401-017-1718-6
Article
CAS
PubMed
PubMed Central
Google Scholar
Back SA, Craig A, Kayton RJ, Luo NL, Meshul CK, Allcock N, Fern R (2007) Hypoxia-ischemia preferentially triggers glutamate depletion from oligodendroglia and axons in perinatal cerebral white matter. J Cerebral Blood Flow metabol Offic J Int Soc Cerebral Blood Flow Metabol 27:334–347. https://doi.org/10.1038/sj.jcbfm.9600344
Article
CAS
Google Scholar
Ballabh P (2010) Intraventricular Hemorrhage in premature infants: mechanism of disease. Pediatr Res 67:1–8
Article
PubMed
PubMed Central
Google Scholar
Ballabh P (2014) Pathogenesis and prevention of intraventricular hemorrhage. Clin Perinatol 41:47–67. https://doi.org/10.1016/j.clp.2013.09.007
Article
PubMed
Google Scholar
Ballabh P, de Vries LS (2021) White matter injury in infants with intraventricular haemorrhage: mechanisms and therapies. Nat Rev Neurol 17:199–214. https://doi.org/10.1038/s41582-020-00447-8
Article
PubMed
PubMed Central
Google Scholar
Billiards SS, Haynes RL, Folkerth RD, Trachtenberg FL, Liu LG, Volpe JJ, Kinney HC (2006) Development of microglia in the cerebral white matter of the human fetus and infant. J Comp Neurol 497:199–208. https://doi.org/10.1002/cne.20991
Article
PubMed
Google Scholar
Boche D, Perry VH, Nicoll JAR (2013) Review: Activation patterns of microglia and their identification in the human brain. Neuropath Appl Neuro 39:3–18. https://doi.org/10.1111/nan.12011
Article
CAS
Google Scholar
Braitch M, Constantinescu CS (2010) The role of osteopontin in experimental autoimmune encephalomyelitis (EAE) and multiple sclerosis (MS). Inflamm Allergy Drug Targets 9:249–256. https://doi.org/10.2174/187152810793358778
Article
CAS
PubMed
Google Scholar
Cantor H, Shinohara ML (2009) Regulation of T-helper-cell lineage development by osteopontin: the inside story. Nat Rev Immunol 9:137–141. https://doi.org/10.1038/nri2460
Article
CAS
PubMed
PubMed Central
Google Scholar
Cappellano G, Vecchio D, Magistrelli L, Clemente N, Raineri D, Barbero Mazzucca C, Virgilio E, Dianzani U, Chiocchetti A, Comi C (2021) The Yin-Yang of osteopontin in nervous system diseases: damage versus repair. Neural Regen Res 16:1131–1137. https://doi.org/10.4103/1673-5374.300328
Article
PubMed
Google Scholar
Chabas D, Baranzini SE, Mitchell D, Bernard CC, Rittling SR, Denhardt DT, Sobel RA, Lock C, Karpuj M, Pedotti R et al (2001) The influence of the proinflammatory cytokine, osteopontin, on autoimmune demyelinating disease. Science 294:1731–1735. https://doi.org/10.1126/science.1062960
Article
CAS
PubMed
Google Scholar
Chen W, Ma Q, Suzuki H, Hartman R, Tang J, Zhang JH (2011) Osteopontin reduced hypoxia-ischemia neonatal brain injury by suppression of apoptosis in a rat pup model. Stroke 42:764–769. https://doi.org/10.1161/STROKEAHA.110.599118
Article
CAS
PubMed
PubMed Central
Google Scholar
Clemente N, Comi C, Raineri D, Cappellano G, Vecchio D, Orilieri E, Gigliotti CL, Boggio E, Dianzani C, Sorosina M et al (2017) Role of anti-osteopontin antibodies in multiple sclerosis and experimental Autoimmune Encephalomyelitis. Front Immunol 8:321. https://doi.org/10.3389/fimmu.2017.00321
Article
CAS
PubMed
PubMed Central
Google Scholar
Comi C, Carecchio M, Chiocchetti A, Nicola S, Galimberti D, Fenoglio C, Cappellano G, Monaco F, Scarpini E, Dianzani U (2010) Osteopontin is increased in the cerebrospinal fluid of patients with Alzheimer’s disease and its levels correlate with cognitive decline. J Alzheimers Dis 19:1143–1148. https://doi.org/10.3233/JAD-2010-1309
Article
CAS
PubMed
Google Scholar
Counsell SJ, Allsop JM, Harrison MC, Larkman DJ, Kennea NL, Kapellou O, Cowan FM, Hajnal JV, Edwards AD, Rutherford MA (2003) Diffusion-weighted imaging of the brain in preterm infants with focal and diffuse white matter abnormality. Pediatrics 112:1–7. https://doi.org/10.1542/peds.112.1.1
Article
PubMed
Google Scholar
Denhardt DT, Noda M, O’Regan AW, Pavlin D, Berman JS (2001) Osteopontin as a means to cope with environmental insults: regulation of inflammation, tissue remodeling, and cell survival. J Clin Investig 107:1055–1061. https://doi.org/10.1172/JCI12980
Article
CAS
PubMed
PubMed Central
Google Scholar
Ellison JA, Velier JJ, Spera P, Jonak ZL, Wang X, Barone FC, Feuerstein GZ (1998) Osteopontin and its integrin receptor alpha(v)beta3 are upregulated during formation of the glial scar after focal stroke. Stroke 29: 1698–1706; discussion 1707 Doi https://doi.org/10.1161/01.str.29.8.1698
Gliem M, Krammes K, Liaw L, van Rooijen N, Hartung HP, Jander S (2015) Macrophage-derived osteopontin induces reactive astrocyte polarization and promotes re-establishment of the blood brain barrier after ischemic stroke. Glia 63:2198–2207. https://doi.org/10.1002/glia.22885
Article
PubMed
Google Scholar
Hammond TR, Dufort C, Dissing-Olesen L, Giera S, Young A, Wysoker A, Walker AJ, Gergits F, Segel M, Nemesh J et al (2019) Single-Cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes. Immunity 50(253–271):e256. https://doi.org/10.1016/j.immuni.2018.11.004
Article
CAS
Google Scholar
Haynes RL, Folkerth RD, Keefe RJ, Sung I, Swzeda LI, Rosenberg PA, Volpe JJ, Kinney HC (2003) Nitrosative and oxidative injury to premyelinating oligodendrocytes in periventricular leukomalacia. J Neuropath Exp Neur 62:441–450. https://doi.org/10.1093/jnen/62.5.441
Article
PubMed
Google Scholar
Hedtjarn M, Leverin AL, Eriksson K, Blomgren K, Mallard C, Hagberg H (2002) Interleukin-18 involvement in hypoxic-ischemic brain injury. J Neurosci 22:5910–5919
Article
CAS
PubMed
PubMed Central
Google Scholar
Hedtjarn M, Mallard C, Hagberg H (2004) Inflammatory gene profiling in the developing mouse brain after hypoxia-ischemia. J Cerebral Blood Flow metabol Offic J Int Soc Cerebral Blood Flow Metabol 24:1333–1351. https://doi.org/10.1097/01.WCB.0000141559.17620.36
Article
Google Scholar
Hirayama A, Okoshi Y, Hachiya Y, Ozawa Y, Ito M, Kida Y, Imai Y, Kohsaka S, Takashima S (2001) Early immunohistochemical detection of axonal damage and glial activation in extremely immature brains with periventricular leukomalacia. Clin Neuropathol 20:87–91
CAS
PubMed
Google Scholar
Hyvarinen T, Hagman S, Ristola M, Sukki L, Veijula K, Kreutzer J, Kallio P, Narkilahti S (2019) Co-stimulation with IL-1 beta and TNF-alpha induces an inflammatory reactive astrocyte phenotype with neurosupportive characteristics in a human pluripotent stem cell model system. Sci Rep-Uk. https://doi.org/10.1038/s41598-019-53414-9
Article
Google Scholar
Ikeshima-Kataoka H, Matsui Y, Uede T (2018) Osteopontin is indispensable for activation of astrocytes in injured mouse brain and primary culture. Neurol Res 40:1071–1079. https://doi.org/10.1080/01616412.2018.1517995
Article
CAS
PubMed
Google Scholar
Inder TE, Warfield SK, Wang H, Huppi PS, Volpe JJ (2005) Abnormal cerebral structure is present at term in premature infants. Pediatrics 115:286–294. https://doi.org/10.1542/peds.2004-0326
Article
PubMed
Google Scholar
Jansson M, Panoutsakopoulou V, Baker J, Klein L, Cantor H (2002) Cutting edge: Attenuated experimental autoimmune encephalomyelitis in eta-1/osteopontin-deficient mice. J Immunol 168:2096–2099. https://doi.org/10.4049/jimmunol.168.5.2096
Article
CAS
PubMed
Google Scholar
Jinnai M, Koning G, Singh-Mallah G, Jonsdotter A, Leverin AL, Svedin P, Nair S, Takeda S, Wang X, Mallard C et al (2020) A model of germinal matrix hemorrhage in preterm rat pups. Front Cell Neurosci 14:535320. https://doi.org/10.3389/fncel.2020.535320
Article
CAS
PubMed
PubMed Central
Google Scholar
Jurga AM, Paleczna M, Kuter KZ (2020) Overview of general and discriminating markers of differential microglia phenotypes. Front Cell Neurosci 14:198. https://doi.org/10.3389/fncel.2020.00198
Article
PubMed
PubMed Central
Google Scholar
Klebe D, McBride D, Flores JJ, Zhang JH, Tang J (2015) Modulating the immune response towards a neuroregenerative peri-injury milieu after cerebral hemorrhage. J Neuroimmune Pharmacol 10:576–586. https://doi.org/10.1007/s11481-015-9613-1
Article
PubMed
PubMed Central
Google Scholar
Klebermass-Schrehof K, Czaba C, Olischar M, Fuiko R, Waldhoer T, Rona Z, Pollak A, Weninger M (2012) Impact of low-grade intraventricular hemorrhage on long-term neurodevelopmental outcome in preterm infants. Childs Nerv Syst 28:2085–2092. https://doi.org/10.1007/s00381-012-1897-3
Article
CAS
PubMed
Google Scholar
Kuan CY, Roth KA, Flavell RA, Rakic P (2000) Mechanisms of programmed cell death in the developing brain. Trends Neurosci 23:291–297. https://doi.org/10.1016/s0166-2236(00)01581-2
Article
CAS
PubMed
Google Scholar
Kuban K, Sanocka U, Leviton A, Allred EN, Pagano M, Dammann O, Share J, Rosenfeld D, Abiri M, DiSalvo D et al (1999) White matter disorders of prematurity: association with intraventricular hemorrhage and ventriculomegaly. The Developmental Epidemiology Network. J Pediatr 134:539–546. https://doi.org/10.1016/s0022-3476(99)70237-4
Article
CAS
PubMed
Google Scholar
Lekic T, Manaenko A, Rolland W, Krafft PR, Peters R, Hartman RE, Altay O, Tang J, Zhang JH (2012) Rodent neonatal germinal matrix hemorrhage mimics the human brain injury, neurological consequences, and post-hemorrhagic hydrocephalus. Exp Neurol 236:69–78. https://doi.org/10.1016/j.expneurol.2012.04.003
Article
PubMed
PubMed Central
Google Scholar
Ley D, Romantsik O, Vallius S, Sveinsdottir K, Sveinsdottir S, Agyemang AA, Baumgarten M, Morgelin M, Lutay N, Bruschettini M et al (2016) High presence of extracellular hemoglobin in the periventricular white matter following preterm intraventricular hemorrhage. Front Physiol. https://doi.org/10.3389/fphys.2016.00330
Article
PubMed
PubMed Central
Google Scholar
Li Q, Cheng Z, Zhou L, Darmanis S, Neff NF, Okamoto J, Gulati G, Bennett ML, Sun LO, Clarke LE et al (2019) Developmental heterogeneity of microglia and brain myeloid cells revealed by deep single-Cell RNA sequencing. Neuron 101(207–223):e210. https://doi.org/10.1016/j.neuron.2018.12.006
Article
CAS
Google Scholar
Lund SA, Giachelli CM, Scatena M (2009) The role of osteopontin in inflammatory processes. J Cell Commun Signal 3:311–322. https://doi.org/10.1007/s12079-009-0068-0
Article
PubMed
PubMed Central
Google Scholar
Martinez-Biarge M, Groenendaal F, Kersbergen KJ, Benders MJ, Foti F, Cowan FM, de Vries LS (2016) MRI based preterm white matter injury classification: the importance of sequential imaging in determining severity of injury. PLoS ONE 11:e0156245. https://doi.org/10.1371/journal.pone.0156245
Article
CAS
PubMed
PubMed Central
Google Scholar
McNamara NB, Miron VE (2020) Microglia in developing white matter and perinatal brain injury. Neurosci Lett 714:134539. https://doi.org/10.1016/j.neulet.2019.134539
Article
CAS
PubMed
Google Scholar
Melero-Jerez C, Fernandez-Gomez B, Lebron-Galan R, Ortega MC, Sanchez-de Lara I, Ojalvo AC, Clemente D, de Castro F (2021) Myeloid-derived suppressor cells support remyelination in a murine model of multiple sclerosis by promoting oligodendrocyte precursor cell survival, proliferation, and differentiation. Glia 69:905–924. https://doi.org/10.1002/glia.23936
Article
CAS
PubMed
Google Scholar
Meller R, Stevens SL, Minami M, Cameron JA, King S, Rosenzweig H, Doyle K, Lessov NS, Simon RP, Stenzel-Poore MP (2005) Neuroprotection by osteopontin in stroke. J Cerebral Blood Flow metabol Offic J Int Soc Cerebral Blood Flow Metabol 25:217–225. https://doi.org/10.1038/sj.jcbfm.9600022
Article
CAS
Google Scholar
Oka A, Belliveau MJ, Rosenberg PA, Volpe JJ (1993) Vulnerability of oligodendroglia to glutamate: pharmacology, mechanisms, and prevention. J Neurosci 13:1441–1453
Article
CAS
PubMed
PubMed Central
Google Scholar
Parodi A, Govaert P, Horsch S, Bravo MC, Ramenghi LA, eur USbg, (2020) Cranial ultrasound findings in preterm germinal matrix haemorrhage, sequelae and outcome. Pediatr Res 87:13–24. https://doi.org/10.1038/s41390-020-0780-2
Article
PubMed
PubMed Central
Google Scholar
Rabenstein M, Vay SU, Flitsch LJ, Fink GR, Schroeter M, Rueger MA (2016) Osteopontin directly modulates cytokine expression of primary microglia and increases their survival. J Neuroimmunol 299:130–138. https://doi.org/10.1016/j.jneuroim.2016.09.009
Article
CAS
PubMed
Google Scholar
Riew TR, Kim S, Jin X, Kim HL, Lee JH, Lee MY (2019) Osteopontin and its spatiotemporal relationship with glial cells in the striatum of rats treated with mitochondrial toxin 3-nitropropionic acid: possible involvement in phagocytosis. J Neuroinflammation 16:99. https://doi.org/10.1186/s12974-019-1489-1
Article
PubMed
PubMed Central
Google Scholar
Roessmann U, Gambetti P (1986) Pathological reaction of astrocytes in perinatal brain injury - immunohistochemical study. Acta Neuropathol 70:302–307. https://doi.org/10.1007/Bf00686088
Article
CAS
PubMed
Google Scholar
Rushton DI, Preston PR, Durbin GM (1985) Structure and evolution of echo dense lesions in the neonatal brain. A combined ultrasound and necropsy study. Arch Dis Child 60:798–808. https://doi.org/10.1136/adc.60.9.798
Article
CAS
PubMed
PubMed Central
Google Scholar
Salmaso N, Jablonska B, Scafidi J, Vaccarino FM, Gallo V (2014) Neurobiology of premature brain injury. Nat Neurosci 17:341–346. https://doi.org/10.1038/nn.3604
Article
CAS
PubMed
PubMed Central
Google Scholar
Schack L, Stapulionis R, Christensen B, Kofod-Olsen E, Sorensen UBS, Vorup-Jensen T, Sorensen ES, Hollsberg P (2009) Osteopontin enhances phagocytosis through a novel osteopontin receptor, the alpha(x)beta(2) Integrin. J Immunol 182:6943–6950. https://doi.org/10.4049/jimmunol.0900065
Article
CAS
PubMed
Google Scholar
Scott JA, Weir ML, Wilson SM, Xuan JW, Chambers AF, McCormack DG (1998) Osteopontin inhibits inducible nitric oxide synthase activity in rat vascular tissue. Am J Physiol 275:H2258-2265. https://doi.org/10.1152/ajpheart.1998.275.6.H2258
Article
CAS
PubMed
Google Scholar
Selvaraju R, Bernasconi L, Losberger C, Graber P, Kadi L, Avellana-Adalid V, Picard-Riera N, Baron Van Evercooren A, Cirillo R, Kosco-Vilbois M et al (2004) Osteopontin is upregulated during in vivo demyelination and remyelination and enhances myelin formation in vitro. Mol Cell Neurosci 25:707–721. https://doi.org/10.1016/j.mcn.2003.12.014
Article
CAS
PubMed
Google Scholar
Shi L, Sun Z, Su W, Xu F, Xie D, Zhang Q, Dai X, Iyer K, Hitchens TK, Foley LM et al. (2021) Treg cell-derived osteopontin promotes microglia-mediated white matter repair after ischemic stroke. Immunity, https://doi.org/10.1016/j.immuni.2021.04.022
Shin YJ, Kim HL, Choi JS, Choi JY, Cha JH, Lee MY (2011) Osteopontin: correlation with phagocytosis by brain macrophages in a rat model of stroke. Glia 59:413–423. https://doi.org/10.1002/glia.21110
Article
PubMed
Google Scholar
Skullerud K, Westre B (1986) Frequency and prognostic significance of germinal matrix hemorrhage, periventricular leukomalacia, and pontosubicular necrosis in preterm neonates. Acta Neuropathol 70:257–261. https://doi.org/10.1007/BF00686080
Article
CAS
PubMed
Google Scholar
Sofroniew MV (2009) Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 32:638–647. https://doi.org/10.1016/j.tins.2009.08.002
Article
CAS
PubMed
PubMed Central
Google Scholar
Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:7–35. https://doi.org/10.1007/s00401-009-0619-8
Article
PubMed
Google Scholar
Stoll BJ, Hansen NI, Bell EF, Walsh MC, Carlo WA, Shankaran S, Laptook AR, Sanchez PJ, Van Meurs KP, Wyckoff M et al (2015) Trends in care practices, morbidity, and mortality of extremely preterm neonates, 1993–2012. JAMA 314:1039–1051. https://doi.org/10.1001/jama.2015.10244
Article
CAS
PubMed
PubMed Central
Google Scholar
Supramaniam V, Vontell R, Srinivasan L, Wyatt-Ashmead J, Hagberg H, Rutherford M (2013) Microglia activation in the extremely preterm human brain. Pediatr Res 73:301–309. https://doi.org/10.1038/pr.2012.186
Article
CAS
PubMed
Google Scholar
Tahraoui SL, Marret S, Bodenant C, Leroux P, Dommergues MA, Evrard P, Gressens P (2001) Central role of microglia in neonatal excitotoxic lesions ef the murine periventricular white matter. Brain Pathol 11:56–71
Article
CAS
PubMed
Google Scholar
Tambuyzer BR, Casteleyn C, Vergauwen H, Van Cruchten S, Van Ginneken C (2012) Osteopontin alters the functional profile of porcine microglia in vitro. Cell Biol Int 36:1233–1238. https://doi.org/10.1042/Cbi20120172
Article
CAS
PubMed
Google Scholar
Tanaka F, Ozawa Y, Inage Y, Deguchi K, Itoh M, Imai Y, Kohsaka S, Takashima S (2000) Association of osteopontin with ischemic axonal death in periventricular leukomalacia. Acta Neuropathol 100:69–74. https://doi.org/10.1007/s004010051194
Article
CAS
PubMed
Google Scholar
Torres-Platas SG, Comeau S, Rachalski A, Dal Bo G, Cruceanu C, Turecki G, Giros B, Mechawar N (2014) Morphometric characterization of microglial phenotypes in human cerebral cortex. J Neuroinflammation. https://doi.org/10.1186/1742-2094-11-12
Article
PubMed
PubMed Central
Google Scholar
van Tilborg E, de Theije CGM, van Hal M, Wagenaar N, de Vries LS, Benders MJ, Rowitch DH, Nijboer CH (2018) Origin and dynamics of oligodendrocytes in the developing brain: Implications for perinatal white matter injury. Glia 66:221–238. https://doi.org/10.1002/glia.23256
Article
PubMed
Google Scholar
van Velthoven CT, Heijnen CJ, van Bel F, Kavelaars A (2011) Osteopontin enhances endogenous repair after neonatal hypoxic-ischemic brain injury. Stroke 42:2294–2301. https://doi.org/10.1161/STROKEAHA.110.608315
Article
CAS
PubMed
Google Scholar
Wang J, Huang J, Zhu M, Chen S, Chen C, Miao C, He H, Song Y (2019) Osteopontin potentiates PM-induced IL-1alpha and IL-1beta production via the ERK/JNK signaling pathway. Ecotoxicol Environ Saf 171:467–474. https://doi.org/10.1016/j.ecoenv.2019.01.005
Article
CAS
PubMed
Google Scholar
Wang KX, Denhardt DT (2008) Osteopontin: role in immune regulation and stress responses. Cytokine Growth Factor Rev 19:333–345. https://doi.org/10.1016/j.cytogfr.2008.08.001
Article
CAS
PubMed
Google Scholar
Verney C, Pogledic I, Biran V, Adle-Biassette H, Fallet-Bianco C, Gressens P (2012) Microglial reaction in axonal crossroads is a hallmark of noncystic periventricular white matter injury in very preterm infants. J Neuropath Exp Neur 71:251–264. https://doi.org/10.1097/NEN.0b013e3182496429
Article
CAS
PubMed
Google Scholar
Volpe JJ (2019) Dysmaturation of premature brain: importance, cellular mechanisms, and potential interventions. Pediatr Neurol 95:42–66. https://doi.org/10.1016/j.pediatrneurol.2019.02.016
Article
PubMed
Google Scholar
Vontell R, Supramaniam V, Thornton C, Wyatt-Ashmead J, Mallard C, Gressens P, Rutherford M, Hagberg H (2013) Toll-like receptor 3 expression in glia and neurons alters in response to white matter injury in preterm infants. Dev Neurosci 35:130–139. https://doi.org/10.1159/000346158
Article
CAS
PubMed
PubMed Central
Google Scholar
Vontell R, Supramaniam V, Wyatt-Ashmead J, Gressens P, Rutherford M, Hagberg H, Thornton C (2015) Cellular mechanisms of toll-like receptor-3 activation in the thalamus are associated with white matter injury in the developing brain. J Neuropathol Exp Neurol 74:273–285. https://doi.org/10.1097/NEN.0000000000000172
Article
CAS
PubMed
Google Scholar
Yu H, Liu XH, Zhong YS (2017) The effect of osteopontin on microglia. Biomed Res Int. https://doi.org/10.1155/2017/1879437
Article
PubMed
PubMed Central
Google Scholar
Zhao C, Fancy SP, Ffrench-Constant C, Franklin RJ (2008) Osteopontin is extensively expressed by macrophages following CNS demyelination but has a redundant role in remyelination. Neurobiol Dis 31: 209-217 https://doi.org/10.1016/j.nbd.2008.04.