Daneman R, Prat A (2015) The blood-brain barrier. Cold Spring Harb Perspect Biol 7:a020412. https://doi.org/10.1101/cshperspect.a020412
Article
PubMed
PubMed Central
Google Scholar
Muldoon LL, Soussain C, Jahnke K, Johanson C, Siegal T, Smith QR, Hall WA, Hynynen K, Senter PD, Peereboom DM et al (2007) Chemotherapy delivery issues in central nervous system malignancy: a reality check. J Clin Oncol 25:2295–2305. https://doi.org/10.1200/JCO.2006.09.9861
Article
CAS
PubMed
Google Scholar
Heffron TP (2016) Small molecule kinase inhibitors for the treatment of brain cancer. J Med Chem. https://doi.org/10.1021/acs.jmedchem.6b00618
Article
PubMed
Google Scholar
Sarkaria JN, Hu LS, Parney IF, Pafundi DH, Brinkmann DH, Laack NN, Giannini C, Burns TC, Kizilbash SH, Laramy JK et al (2018) Is the blood-brain barrier really disrupted in all glioblastomas? A critical assessment of existing clinical data. Neuro Oncol 20:184–191. https://doi.org/10.1093/neuonc/nox175
Article
CAS
PubMed
Google Scholar
Jones C, Baker SJ (2014) Unique genetic and epigenetic mechanisms driving paediatric diffuse high-grade glioma. Nat Rev Cancer. https://doi.org/10.1038/nrc381
Article
PubMed
PubMed Central
Google Scholar
Ostrom QT, de Blank PM, Kruchko C, Petersen CM, Liao P, Finlay JL, Stearns DS, Wolff JE, Wolinsky Y, Letterio JJ et al (2015) Alex’s Lemonade stand foundation infant and childhood primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro Oncol 16(Suppl 10):x1–x36. https://doi.org/10.1093/neuonc/nou327
Article
PubMed
Google Scholar
Schwartzentruber J, Korshunov A, Liu XY, Jones DT, Pfaff E, Jacob K, Sturm D, Fontebasso AM, Quang DA, Tonjes M et al (2012) Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482:226–231. https://doi.org/10.1038/nature10833
Article
CAS
PubMed
Google Scholar
Jones C, Karajannis MA, Jones DT, Kieran MW, Monje M, Baker SJ, Becher OJ, Cho YJ, Gupta N, Hawkins C et al (2016) Pediatric high-grade glioma: biologically and clinically in need of new thinking. Neuro Oncol. https://doi.org/10.1093/neuonc/now101
Article
PubMed
PubMed Central
Google Scholar
Wu G, Broniscer A, McEachron TA, Lu C, Paugh BS, Becksfort J, Qu C, Ding L, Huether R, Parker M et al (2012) Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet 44:251–253. https://doi.org/10.1038/ng.1102
Article
CAS
PubMed
PubMed Central
Google Scholar
Hennika T, Becher OJ (2016) Diffuse intrinsic pontine glioma: time for cautious optimism. J Child Neurol 31:1377–1385. https://doi.org/10.1177/0883073815601495
Article
PubMed
Google Scholar
Warren KE (2012) Diffuse intrinsic pontine glioma: poised for progress. Front Oncol 2:205. https://doi.org/10.3389/fonc.2012.00205
Article
PubMed
PubMed Central
Google Scholar
Warren KE (2018) Beyond the blood: brain barrier: the importance of central nervous system (CNS) pharmacokinetics for the treatment of CNS tumors, including diffuse intrinsic pontine glioma. Front Oncol 8:239. https://doi.org/10.3389/fonc.2018.00239
Article
PubMed
PubMed Central
Google Scholar
Jain RK, di Tomaso E, Duda DG, Loeffler JS, Sorensen AG, Batchelor TT (2007) Angiogenesis in brain tumours. Nat Rev Neurosci 8:610–622. https://doi.org/10.1038/nrn2175
Article
CAS
PubMed
Google Scholar
Phoenix TN, Patmore DM, Boop S, Boulos N, Jacus MO, Patel YT, Roussel MF, Finkelstein D, Goumnerova L, Perreault S et al (2016) Medulloblastoma genotype dictates blood brain barrier phenotype. Cancer Cell 29:508–522. https://doi.org/10.1016/j.ccell.2016.03.002
Article
CAS
PubMed
PubMed Central
Google Scholar
Bassett EA, Tokarew N, Allemano EA, Mazerolle C, Morin K, Mears AJ, McNeill B, Ringuette R, Campbell C, Smiley S et al (2016) Norrin/Frizzled4 signalling in the preneoplastic niche blocks medulloblastoma initiation. Elife. https://doi.org/10.7554/eLife.16764
Article
PubMed
PubMed Central
Google Scholar
Reis M, Czupalla CJ, Ziegler N, Devraj K, Zinke J, Seidel S, Heck R, Thom S, Macas J, Bockamp E et al (2012) Endothelial Wnt/beta-catenin signaling inhibits glioma angiogenesis and normalizes tumor blood vessels by inducing PDGF-B expression. J Exp Med 209:1611–1627. https://doi.org/10.1084/jem.20111580
Article
CAS
PubMed
PubMed Central
Google Scholar
Chang J, Mancuso MR, Maier C, Liang X, Yuki K, Yang L, Kwong JW, Wang J, Rao V, Vallon M et al (2017) Gpr124 is essential for blood-brain barrier integrity in central nervous system disease. Nat Med 23:450–460. https://doi.org/10.1038/nm.4309
Article
CAS
PubMed
PubMed Central
Google Scholar
Patel SK, Hartley RM, Wei X, Furnish R, Escobar-Riquelme F, Bear H, Choi K, Fuller C, Phoenix TN (2020) Generation of diffuse intrinsic pontine glioma mouse models by brainstem-targeted in utero electroporation. Neuro Oncol 22:381–392. https://doi.org/10.1093/neuonc/noz197
Article
CAS
PubMed
Google Scholar
Meel MH, de Gooijer MC, Guillen Navarro M, Waranecki P, Breur M, Buil LCM, Wedekind LE, Twisk JWR, Koster J, Hashizume R et al (2018) MELK inhibition in diffuse intrinsic pontine glioma. Clin Cancer Res 24:5645–5657. https://doi.org/10.1158/1078-0432.CCR-18-0924
Article
CAS
PubMed
Google Scholar
Meel MH, Metselaar DS, Waranecki P, Kaspers GJL, Hulleman E (2018) An efficient method for the transduction of primary pediatric glioma neurospheres. MethodsX 5:173–183. https://doi.org/10.1016/j.mex.2018.02.006
Article
PubMed
PubMed Central
Google Scholar
Metselaar DS, Meel MH, Benedict B, Waranecki P, Koster J, Kaspers GJL, Hulleman E (2019) Celastrol-induced degradation of FANCD2 sensitizes pediatric high-grade gliomas to the DNA-crosslinking agent carboplatin. EBioMedicine 50:81–92. https://doi.org/10.1016/j.ebiom.2019.10.062
Article
PubMed
PubMed Central
Google Scholar
Chow BW, Gu C (2017) Gradual Suppression of Transcytosis Governs Functional Blood-Retinal Barrier Formation. Neuron 93(1325–1333):e1323. https://doi.org/10.1016/j.neuron.2017.02.043
Article
CAS
Google Scholar
Choi K, Ratner N (2019) iGEAK: an interactive gene expression analysis kit for seamless workflow using the R/shiny platform. BMC Genomics 20:177. https://doi.org/10.1186/s12864-019-5548-x
Article
PubMed
PubMed Central
Google Scholar
Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, Vilo J (2019) g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res 47:W191–W198. https://doi.org/10.1093/nar/gkz369
Article
CAS
PubMed
PubMed Central
Google Scholar
Xie Z, Bailey A, Kuleshov MV, Clarke DJB, Evangelista JE, Jenkins SL, Lachmann A, Wojciechowicz ML, Kropiwnicki E, Jagodnik KM et al (2021) Gene set knowledge discovery with enrichr. Curr Protoc 1:e90. https://doi.org/10.1002/cpz1.90
Article
CAS
PubMed
Google Scholar
Hoffman LM, Veldhuijzen van Zanten SEM, Colditz N, Baugh J, Chaney B, Hoffmann M, Lane A, Fuller C, Miles L, Hawkins C et al (2018) Clinical, radiologic, pathologic, and molecular characteristics of long-term survivors of diffuse intrinsic pontine glioma (DIPG): a collaborative report from the international and european society for pediatric oncology DIPG registries. J Clin Oncol 36:1963–1972. https://doi.org/10.1200/JCO.2017.75.9308
Article
CAS
PubMed
PubMed Central
Google Scholar
Macheda ML, Rogers S, Best JD (2005) Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J Cell Physiol 202:654–662. https://doi.org/10.1002/jcp.20166
Article
CAS
PubMed
Google Scholar
Meel MH, de Gooijer MC, Metselaar DS, Sewing ACP, Zwaan K, Waranecki P, Breur M, Buil LCM, Lagerweij T, Wedekind LE et al (2020) Combined therapy of AXL and HDAC inhibition reverses mesenchymal transition in diffuse intrinsic pontine glioma. Clin Cancer Res 26:3319–3332. https://doi.org/10.1158/1078-0432.CCR-19-3538
Article
CAS
PubMed
Google Scholar
Pathania M, De Jay N, Maestro N, Harutyunyan AS, Nitarska J, Pahlavan P, Henderson S, Mikael LG, Richard-Londt A, Zhang Y et al (2017) H3.3(K27M) Cooperates with Trp53 loss and PDGFRA gain in mouse embryonic neural progenitor cells to induce invasive high-grade gliomas. Cancer Cell 32:684-700.e689. https://doi.org/10.1016/j.ccell.2017.09.014
Article
CAS
PubMed
PubMed Central
Google Scholar
Funato K, Major T, Lewis PW, Allis CD, Tabar V (2014) Use of human embryonic stem cells to model pediatric gliomas with H3.3K27M histone mutation. Science 346:1529–1533. https://doi.org/10.1126/science.1253799
Article
CAS
PubMed
PubMed Central
Google Scholar
Cordero FJ, Huang Z, Grenier C, He X, Hu G, McLendon RE, Murphy SK, Hashizume R, Becher OJ (2017) Histone H3.3K27M represses p16 to accelerate gliomagenesis in a murine model of DIPG. Mol Cancer Res 15:1243–1254. https://doi.org/10.1158/1541-7786.MCR-16-0389
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen CCL, Deshmukh S, Jessa S, Hadjadj D, Lisi V, Andrade AF, Faury D, Jawhar W, Dali R, Suzuki H et al (2020) Histone H3.3G34-mutant interneuron progenitors co-opt PDGFRA for gliomagenesis. Cell 183:1617-1633.e1622. https://doi.org/10.1016/j.cell.2020.11.012
Article
CAS
PubMed
Google Scholar
Stan RV (2007) Endothelial stomatal and fenestral diaphragms in normal vessels and angiogenesis. J Cell Mol Med 11:621–643. https://doi.org/10.1111/j.1582-4934.2007.00075.x
Article
CAS
PubMed
PubMed Central
Google Scholar
Stan RV, Kubitza M, Palade GE (1999) PV-1 is a component of the fenestral and stomatal diaphragms in fenestrated endothelia. Proc Natl Acad Sci U S A 96:13203–13207. https://doi.org/10.1073/pnas.96.23.13203
Article
CAS
PubMed
PubMed Central
Google Scholar
Stan RV, Tkachenko E, Niesman IR (2004) PV1 is a key structural component for the formation of the stomatal and fenestral diaphragms. Mol Biol Cell 15:3615–3630. https://doi.org/10.1091/mbc.e03-08-0593
Article
CAS
PubMed
PubMed Central
Google Scholar
Stenman JM, Rajagopal J, Carroll TJ, Ishibashi M, McMahon J, McMahon AP (2008) Canonical Wnt signaling regulates organ-specific assembly and differentiation of CNS vasculature. Science 322:1247–1250. https://doi.org/10.1126/science.1164594
Article
CAS
PubMed
Google Scholar
Daneman R, Agalliu D, Zhou L, Kuhnert F, Kuo CJ, Barres BA (2009) Wnt/beta-catenin signaling is required for CNS, but not non-CNS, angiogenesis. Proc Natl Acad Sci U S A 106:641–646. https://doi.org/10.1073/pnas.0805165106
Article
PubMed
PubMed Central
Google Scholar
Kim J, Kim YH, Kim J, Park DY, Bae H, Lee DH, Kim KH, Hong SP, Jang SP, Kubota Y et al (2017) YAP/TAZ regulates sprouting angiogenesis and vascular barrier maturation. J Clin Invest 127:3441–3461. https://doi.org/10.1172/JCI93825
Article
PubMed
PubMed Central
Google Scholar
Gong P, Zhang Z, Zou C, Tian Q, Chen X, Hong M, Liu X, Chen Q, Xu Z, Li M et al (2019) Hippo/YAP signaling pathway mitigates blood-brain barrier disruption after cerebral ischemia/reperfusion injury. Behav Brain Res 356:8–17. https://doi.org/10.1016/j.bbr.2018.08.003
Article
CAS
PubMed
Google Scholar
Sabbagh MF, Heng JS, Luo C, Castanon RG, Nery JR, Rattner A, Goff LA, Ecker JR, Nathans J (2018) Transcriptional and epigenomic landscapes of CNS and non-CNS vascular endothelial cells. Elife. https://doi.org/10.7554/eLife.36187
Article
PubMed
PubMed Central
Google Scholar
Zhao Q, Eichten A, Parveen A, Adler C, Huang Y, Wang W, Ding Y, Adler A, Nevins T, Ni M et al (2018) Single-cell transcriptome analyses reveal endothelial cell heterogeneity in tumors and changes following antiangiogenic treatment. Cancer Res 78:2370–2382. https://doi.org/10.1158/0008-5472.CAN-17-2728
Article
CAS
PubMed
Google Scholar
Corada M, Orsenigo F, Bhat GP, Conze LL, Breviario F, Cunha SI, Claesson-Welsh L, Beznoussenko GV, Mironov AA, Bacigaluppi M et al (2019) Fine-tuning of Sox17 and canonical WNT coordinates the permeability properties of the blood-brain barrier. Circ Res 124:511–525. https://doi.org/10.1161/CIRCRESAHA.118.313316
Article
CAS
PubMed
Google Scholar
Semenov MV, Tamai K, Brott BK, Kuhl M, Sokol S, He X (2001) Head inducer Dickkopf-1 is a ligand for Wnt coreceptor LRP6. Curr Biol 11:951–961. https://doi.org/10.1016/s0960-9822(01)00290-1
Article
CAS
PubMed
Google Scholar
Subashi E, Cordero FJ, Halvorson KG, Qi Y, Nouls JC, Becher OJ, Johnson GA (2016) Tumor location, but not H3.3K27M, significantly influences the blood-brain-barrier permeability in a genetic mouse model of pediatric high-grade glioma. J Neurooncol 126:243–251. https://doi.org/10.1007/s11060-015-1969-9
Article
CAS
PubMed
Google Scholar
Jain RK (2001) Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 7:987–989. https://doi.org/10.1038/nm0901-987
Article
CAS
PubMed
Google Scholar
Zhou Y, Nathans J (2014) Gpr124 controls CNS angiogenesis and blood-brain barrier integrity by promoting ligand-specific canonical wnt signaling. Dev Cell 31:248–256. https://doi.org/10.1016/j.devcel.2014.08.018
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou Y, Wang Y, Tischfield M, Williams J, Smallwood PM, Rattner A, Taketo MM, Nathans J (2014) Canonical WNT signaling components in vascular development and barrier formation. J Clin Invest 124:3825–3846. https://doi.org/10.1172/JCI76431
Article
CAS
PubMed
PubMed Central
Google Scholar
Anderson KD, Pan L, Yang XM, Hughes VC, Walls JR, Dominguez MG, Simmons MV, Burfeind P, Xue Y, Wei Y et al (2011) Angiogenic sprouting into neural tissue requires Gpr124, an orphan G protein-coupled receptor. Proc Natl Acad Sci U S A 108:2807–2812. https://doi.org/10.1073/pnas.1019761108
Article
PubMed
PubMed Central
Google Scholar
Cullen M, Elzarrad MK, Seaman S, Zudaire E, Stevens J, Yang MY, Li X, Chaudhary A, Xu L, Hilton MB et al (2011) GPR124, an orphan G protein-coupled receptor, is required for CNS-specific vascularization and establishment of the blood-brain barrier. Proc Natl Acad Sci U S A 108:5759–5764. https://doi.org/10.1073/pnas.1017192108
Article
PubMed
PubMed Central
Google Scholar
Yuen TJ, Silbereis JC, Griveau A, Chang SM, Daneman R, Fancy SP, Zahed H, Maltepe E, Rowitch DH (2014) Oligodendrocyte-encoded HIF function couples postnatal myelination and white matter angiogenesis. Cell 158:383–396. https://doi.org/10.1016/j.cell.2014.04.052
Article
CAS
PubMed
PubMed Central
Google Scholar
Guerit S, Fidan E, Macas J, Czupalla CJ, Figueiredo R, Vijikumar A, Yalcin BH, Thom S, Winter P, Gerhardt H et al (2021) Astrocyte-derived Wnt growth factors are required for endothelial blood-brain barrier maintenance. Prog Neurobiol 199:101937. https://doi.org/10.1016/j.pneurobio.2020.101937
Article
CAS
PubMed
Google Scholar
Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S, Phatnani HP, Guarnieri P, Caneda C, Ruderisch N et al (2014) An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci 34:11929–11947. https://doi.org/10.1523/JNEUROSCI.1860-14.2014
Article
CAS
PubMed
PubMed Central
Google Scholar
Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, Xing Y, Lubischer JL, Krieg PA, Krupenko SA et al (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28:264–278. https://doi.org/10.1523/JNEUROSCI.4178-07.2008
Article
CAS
PubMed
PubMed Central
Google Scholar
Parab S, Quick RE, Matsuoka RL (2021) Endothelial cell-type-specific molecular requirements for angiogenesis drive fenestrated vessel development in the brain. Elife. https://doi.org/10.7554/eLife.64295
Article
PubMed
PubMed Central
Google Scholar
Armulik A, Genove G, Mae M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K et al (2010) Pericytes regulate the blood-brain barrier. Nature 468:557–561. https://doi.org/10.1038/nature09522
Article
CAS
PubMed
Google Scholar
Daneman R, Zhou L, Kebede AA, Barres BA (2010) Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature 468:562–566. https://doi.org/10.1038/nature09513
Article
CAS
PubMed
PubMed Central
Google Scholar
Ben-Zvi A, Lacoste B, Kur E, Andreone BJ, Mayshar Y, Yan H, Gu C (2014) Mfsd2a is critical for the formation and function of the blood-brain barrier. Nature 509:507–511. https://doi.org/10.1038/nature13324
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang AC, Stevens MY, Chen MB, Lee DP, Stahli D, Gate D, Contrepois K, Chen W, Iram T, Zhang L et al (2020) Physiological blood-brain transport is impaired with age by a shift in transcytosis. Nature 583:425–430. https://doi.org/10.1038/s41586-020-2453-z
Article
CAS
PubMed
PubMed Central
Google Scholar
See AP, Han JE, Phallen J, Binder Z, Gallia G, Pan F, Jinasena D, Jackson C, Belcaid Z, Jeong SJ et al (2012) The role of STAT3 activation in modulating the immune microenvironment of GBM. J Neurooncol 110:359–368. https://doi.org/10.1007/s11060-012-0981-6
Article
CAS
PubMed
PubMed Central
Google Scholar
Carro MS, Lim WK, Alvarez MJ, Bollo RJ, Zhao X, Snyder EY, Sulman EP, Anne SL, Doetsch F, Colman H et al (2010) The transcriptional network for mesenchymal transformation of brain tumours. Nature 463:318–325. https://doi.org/10.1038/nature08712
Article
CAS
PubMed
Google Scholar
Hara T, Chanoch-Myers R, Mathewson ND, Myskiw C, Atta L, Bussema L, Eichhorn SW, Greenwald AC, Kinker GS, Rodman C et al (2021) Interactions between cancer cells and immune cells drive transitions to mesenchymal-like states in glioblastoma. Cancer Cell 39:779-792.e711. https://doi.org/10.1016/j.ccell.2021.05.002
Article
CAS
PubMed
Google Scholar
Couto M, Coelho-Santos V, Santos L, Fontes-Ribeiro C, Silva AP, Gomes CMF (2019) The interplay between glioblastoma and microglia cells leads to endothelial cell monolayer dysfunction via the interleukin-6-induced JAK2/STAT3 pathway. J Cell Physiol 234:19750–19760. https://doi.org/10.1002/jcp.28575
Article
CAS
PubMed
Google Scholar
Daneman R (2012) The blood-brain barrier in health and disease. Ann Neurol 72:648–672. https://doi.org/10.1002/ana.23648
Article
CAS
PubMed
Google Scholar
Liebner S, Dijkhuizen RM, Reiss Y, Plate KH, Agalliu D, Constantin G (2018) Functional morphology of the blood-brain barrier in health and disease. Acta Neuropathol 135:311–336. https://doi.org/10.1007/s00401-018-1815-1
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin GL, Nagaraja S, Filbin MG, Suva ML, Vogel H, Monje M (2018) Non-inflammatory tumor microenvironment of diffuse intrinsic pontine glioma. Acta Neuropathol Commun 6:51. https://doi.org/10.1186/s40478-018-0553-x
Article
CAS
PubMed
PubMed Central
Google Scholar
Cho C, Smallwood PM, Nathans J (2017) Reck and Gpr124 Are essential receptor cofactors for Wnt7a/Wnt7b-specific signaling in mammalian CNS angiogenesis and blood-brain barrier regulation. Neuron 95:1056-1073.e1055. https://doi.org/10.1016/j.neuron.2017.07.031
Article
CAS
PubMed
PubMed Central
Google Scholar
Vanhollebeke B, Stone OA, Bostaille N, Cho C, Zhou Y, Maquet E, Gauquier A, Cabochette P, Fukuhara S, Mochizuki N et al (2015) Tip cell-specific requirement for an atypical Gpr124- and Reck-dependent Wnt/beta-catenin pathway during brain angiogenesis. Elife. https://doi.org/10.7554/eLife.06489
Article
PubMed
PubMed Central
Google Scholar
Wang Y, Rattner A, Zhou Y, Williams J, Smallwood PM, Nathans J (2012) Norrin/Frizzled4 signaling in retinal vascular development and blood brain barrier plasticity. Cell 151:1332–1344. https://doi.org/10.1016/j.cell.2012.10.042
Article
CAS
PubMed
PubMed Central
Google Scholar
Ye X, Wang Y, Cahill H, Yu M, Badea TC, Smallwood PM, Peachey NS, Nathans J (2009) Norrin, frizzled-4, and Lrp5 signaling in endothelial cells controls a genetic program for retinal vascularization. Cell 139:285–298. https://doi.org/10.1016/j.cell.2009.07.047
Article
CAS
PubMed
PubMed Central
Google Scholar
Liebner S, Corada M, Bangsow T, Babbage J, Taddei A, Czupalla CJ, Reis M, Felici A, Wolburg H, Fruttiger M et al (2008) Wnt/beta-catenin signaling controls development of the blood-brain barrier. J Cell Biol 183:409–417. https://doi.org/10.1083/jcb.200806024
Article
CAS
PubMed
PubMed Central
Google Scholar
Mazzoni J, Smith JR, Shahriar S, Cutforth T, Ceja B, Agalliu D (2017) The Wnt inhibitor apcdd1 coordinates vascular remodeling and barrier maturation of retinal blood vessels. Neuron 96:1055-1069.e1056. https://doi.org/10.1016/j.neuron.2017.10.025
Article
CAS
PubMed
PubMed Central
Google Scholar
Kariolis MS, Wells RC, Getz JA, Kwan W, Mahon CS, Tong R, Kim DJ, Srivastava A, Bedard C, Henne KR et al (2020) Brain delivery of therapeutic proteins using an Fc fragment blood-brain barrier transport vehicle in mice and monkeys. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aay1359
Article
PubMed
Google Scholar
Ullman JC, Arguello A, Getz JA, Bhalla A, Mahon CS, Wang J, Giese T, Bedard C, Kim DJ, Blumenfeld JR et al (2020) Brain delivery and activity of a lysosomal enzyme using a blood-brain barrier transport vehicle in mice. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aay1163
Article
PubMed
Google Scholar
Burgess A, Shah K, Hough O, Hynynen K (2015) Focused ultrasound-mediated drug delivery through the blood-brain barrier. Expert Rev Neurother 15:477–491. https://doi.org/10.1586/14737175.2015.1028369
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou Z, Singh R, Souweidane MM (2017) Convection-enhanced delivery for diffuse intrinsic pontine glioma treatment. Curr Neuropharmacol 15:116–128. https://doi.org/10.2174/1570159x14666160614093615
Article
CAS
PubMed
PubMed Central
Google Scholar
Haumann R, Videira JC, Kaspers GJL, van Vuurden DG, Hulleman E (2020) Overview of current drug delivery methods across the blood-brain barrier for the treatment of primary brain tumors. CNS Drugs 34:1121–1131. https://doi.org/10.1007/s40263-020-00766-w
Article
PubMed
PubMed Central
Google Scholar