Tan CS, Koralnik IJ (2010) Progressive multifocal leukoencephalopathy and other disorders caused by JC virus: clinical features and pathogenesis. Lancet Neurol 9(4):425–437
CAS
PubMed
PubMed Central
Google Scholar
Wollebo HS, White MK, Gordon J, Berger JR, Khalili K (2015) Persistence and pathogenesis of the neurotropic polyomavirus JC. Ann Neurol 77(4):560–570
PubMed
PubMed Central
Google Scholar
Knowles WA (2006) Discovery and epidemiology of the human polyomaviruses BK virus (BKV) and JC virus (JCV). Adv Exp Med Biol 577:19–45
CAS
PubMed
Google Scholar
Pietropaolo V, Prezioso C, Bagnato F, Antonelli G (2018) John Cunningham virus: an overview on biology and disease of the etiological agent of the progressive multifocal leukoencephalopathy. New Microbiol 41(3):179–186
CAS
PubMed
Google Scholar
Jelcic I, Faigle W, Sospedra M, Martin R (2015) Immunology of progressive multifocal leukoencephalopathy. J Neuro-Oncol 21(6):614–622
CAS
Google Scholar
Filippi M, Bar-Or A, Piehl F, Preziosa P, Solari A, Vukusic S et al (2018) Multiple sclerosis. Nat Rev Dis Primers 4(1):43
PubMed
Google Scholar
Ho PR, Koendgen H, Campbell N, Haddock B, Richman S, Chang I (2017) Risk of natalizumab-associated progressive multifocal leukoencephalopathy in patients with multiple sclerosis: a retrospective analysis of data from four clinical studies. Lancet Neurol 16(11):925–933
CAS
PubMed
Google Scholar
Gieselbach RJ, Muller-Hansma AH, Wijburg MT, de Bruin-Weller MS, van Oosten BW, Nieuwkamp DJ et al (2017) Progressive multifocal leukoencephalopathy in patients treated with fumaric acid esters: a review of 19 cases. J Neurol 264(6):1155–1164
CAS
PubMed
Google Scholar
Rudick R, Polman C, Clifford D, Miller D, Steinman L (2013) Natalizumab: bench to bedside and beyond. JAMA Neurol 70(2):172–182
PubMed
Google Scholar
Major EO, Yousry TA, Clifford DB (2018) Pathogenesis of progressive multifocal leukoencephalopathy and risks associated with treatments for multiple sclerosis: a decade of lessons learned. Lancet Neurol 17(5):467–480
CAS
PubMed
Google Scholar
Villar LM, Costa-Frossard L, Masterman T, Fernandez O, Montalban X, Casanova B et al (2015) Lipid-specific immunoglobulin M bands in cerebrospinal fluid are associated with a reduced risk of developing progressive multifocal leukoencephalopathy during treatment with natalizumab. Ann Neurol 77(3):447–457
CAS
PubMed
Google Scholar
Ronnblom L, Alm GV, Eloranta ML (2009) Type I interferon and lupus. Curr Opin Rheumatol 21(5):471–477
PubMed
Google Scholar
Shi X, van Mierlo JT, French A, Elliott RM (2010) Visualizing the replication cycle of bunyamwera orthobunyavirus expressing fluorescent protein-tagged Gc glycoprotein. J Virol 84(17):8460–8469
CAS
PubMed
PubMed Central
Google Scholar
Ulper L, Sarand I, Rausalu K, Merits A (2008) Construction, properties, and potential application of infectious plasmids containing Semliki Forest virus full-length cDNA with an inserted intron. J Virol Methods 148(1–2):265–270
CAS
PubMed
Google Scholar
Rusinova I, Forster S, Yu S, Kannan A, Masse M, Cumming H et al (2013) Interferome v2.0: an updated database of annotated interferon-regulated genes. Nucleic Acids Res 41(Database issue):D1040–D1046
CAS
PubMed
Google Scholar
Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386
CAS
PubMed
Google Scholar
Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O et al (2006) CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7(10):R100
PubMed
PubMed Central
Google Scholar
Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675
CAS
PubMed
PubMed Central
Google Scholar
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682
CAS
PubMed
Google Scholar
Brennan KM, Galban-Horcajo F, Rinaldi S, O'Leary CP, Goodyear CS, Kalna G et al (2011) Lipid arrays identify myelin-derived lipids and lipid complexes as prominent targets for oligoclonal band antibodies in multiple sclerosis. J Neuroimmunol 238(1–2):87–95
CAS
PubMed
PubMed Central
Google Scholar
Bijland S, Thomson G, Euston M, Michail K, Thummler K, Mucklisch S et al (2019) An in vitro model for studying CNS white matter: functional properties and experimental approaches. F1000Res 8:117
CAS
PubMed
PubMed Central
Google Scholar
Hughes HR, Adkins S, Alkhovskiy S, Beer M, Blair C, Calisher CH et al (2020) ICTV virus taxonomy profile: Peribunyaviridae. J Gen Virol 101(1):1–2
CAS
PubMed
Google Scholar
Tauro LB, Rivarola ME, Lucca E, Marino B, Mazzini R, Cardoso JF et al (2015) First isolation of Bunyamwera virus (Bunyaviridae family) from horses with neurological disease and an abortion in Argentina. Vet J 206(1):111–114
PubMed
Google Scholar
Fragkoudis R, Tamberg N, Siu R, Kiiver K, Kohl A, Merits A et al (2009) Neurons and oligodendrocytes in the mouse brain differ in their ability to replicate Semliki Forest virus. J Neuro-Oncol 15(1):57–70
CAS
Google Scholar
Michlmayr D, McKimmie CS, Pingen M, Haxton B, Mansfield K, Johnson N et al (2014) Defining the chemokine basis for leukocyte recruitment during viral encephalitis. J Virol 88(17):9553–9567
PubMed
PubMed Central
Google Scholar
Schoggins JW, Rice CM (2011) Interferon-stimulated genes and their antiviral effector functions. Curr Opin Virol 1(6):519–525
CAS
PubMed
PubMed Central
Google Scholar
Roth-Cross JK, Bender SJ, Weiss SR (2008) Murine coronavirus mouse hepatitis virus is recognized by MDA5 and induces type I interferon in brain macrophages/microglia. J Virol 82(20):9829–9838
CAS
PubMed
PubMed Central
Google Scholar
Kocur M, Schneider R, Pulm AK, Bauer J, Kropp S, Gliem M et al (2015) IFNbeta secreted by microglia mediates clearance of myelin debris in CNS autoimmunity. Acta Neuropathol Commun 3:20
PubMed
PubMed Central
Google Scholar
Elmore MR, Najafi AR, Koike MA, Dagher NN, Spangenberg EE, Rice RA et al (2014) Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron 82(2):380–397
CAS
PubMed
PubMed Central
Google Scholar
Bansal R, Warrington AE, Gard AL, Ranscht B, Pfeiffer SE (1989) Multiple and novel specificities of monoclonal antibodies O1, O4, and R-mAb used in the analysis of oligodendrocyte development. J Neurosci Res 24(4):548–557
CAS
PubMed
Google Scholar
Honke K, Hirahara Y, Dupree J, Suzuki K, Popko B, Fukushima K et al (2002) Paranodal junction formation and spermatogenesis require sulfoglycolipids. Proc Natl Acad Sci U S A 99(7):4227–4232
CAS
PubMed
PubMed Central
Google Scholar
Sommer I, Schachner M (1981) Monoclonal antibodies (O1 to O4) to oligodendrocyte cell surfaces: an immunocytological study in the central nervous system. Dev Biol 83(2):311–327
CAS
PubMed
Google Scholar
Saito M, Kitamura H, Sugiyama K (2001) The specificity of monoclonal antibody A2B5 to c-series gangliosides. J Neurochem 78(1):64–74
CAS
PubMed
Google Scholar
Warrington AE, Asakura K, Bieber AJ, Ciric B, Van Keulen V, Kaveri SV et al (2000) Human monoclonal antibodies reactive to oligodendrocytes promote remyelination in a model of multiple sclerosis. Proc Natl Acad Sci U S A 97(12):6820–6825
CAS
PubMed
PubMed Central
Google Scholar
Stangel M, Fredrikson S, Meinl E, Petzold A, Stuve O, Tumani H (2013) The utility of cerebrospinal fluid analysis in patients with multiple sclerosis. Nat Rev Neurol 9(5):267–276
CAS
PubMed
Google Scholar
Kanter JL, Narayana S, Ho PP, Catz I, Warren KG, Sobel RA et al (2006) Lipid microarrays identify key mediators of autoimmune brain inflammation. Nat Med 12(1):138–143
CAS
PubMed
Google Scholar
Ilyas AA, Chen ZW, Cook SD (2003) Antibodies to sulfatide in cerebrospinal fluid of patients with multiple sclerosis. J Neuroimmunol 139(1–2):76–80
CAS
PubMed
Google Scholar
Villar LM, Sadaba MC, Roldan E, Masjuan J, Gonzalez-Porque P, Villarrubia N et al (2005) Intrathecal synthesis of oligoclonal IgM against myelin lipids predicts an aggressive disease course in MS. J Clin Invest 115(1):187–194
CAS
PubMed
PubMed Central
Google Scholar
Thomson CE, McCulloch M, Sorenson A, Barnett SC, Seed BV, Griffiths IR et al (2008) Myelinated, synapsing cultures of murine spinal cord--validation as an in vitro model of the central nervous system. Eur J Neurosci 28(8):1518–1535
CAS
PubMed
PubMed Central
Google Scholar
Pfefferkorn C, Kallfass C, Lienenklaus S, Spanier J, Kalinke U, Rieder M et al (2016) Abortively infected astrocytes appear to represent the Main source of interferon Beta in the virus-infected brain. J Virol 90(4):2031–2038
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O'Keeffe S et al (2014) An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci 34(36):11929–11947
CAS
PubMed
PubMed Central
Google Scholar
Cavanaugh SE, Holmgren AM, Rall GF (2015) Homeostatic interferon expression in neurons is sufficient for early control of viral infection. J Neuroimmunol 279:11–19
CAS
PubMed
Google Scholar
Kapil P, Butchi NB, Stohlman SA, Bergmann CC (2012) Oligodendroglia are limited in type I interferon induction and responsiveness in vivo. Glia 60(10):1555–1566
PubMed
PubMed Central
Google Scholar
Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ (2010) Structure and function of the blood-brain barrier. Neurobiol Dis 37(1):13–25
CAS
PubMed
Google Scholar
Daniels BP, Jujjavarapu H, Durrant DM, Williams JL, Green RR, White JP et al (2017) Regional astrocyte IFN signaling restricts pathogenesis during neurotropic viral infection. J Clin Invest 127(3):843–856
PubMed
PubMed Central
Google Scholar
Hwang M, Bergmann CC (2018) Alpha/Beta Interferon (IFN-alpha/beta) Signaling in astrocytes mediates protection against viral encephalomyelitis and regulates IFN-gamma-dependent responses. J Virol 92(10):e01901-17
Wuthrich C, Batson S, Anderson MP, White LR, Koralnik IJ (2016) JC virus infects neurons and glial cells in the hippocampus. J Neuropathol Exp Neurol 75(8):712–717
PubMed
PubMed Central
Google Scholar
Darbinyan A, Kaminski R, White MK, Darbinian-Sarkissian N, Khalili K (2013) Polyomavirus JC infection inhibits differentiation of oligodendrocyte progenitor cells. J Neurosci Res 91(1):116–127
CAS
PubMed
Google Scholar
O'Hara BA, Atwood WJ (2008) Interferon beta1-a and selective anti-5HT(2a) receptor antagonists inhibit infection of human glial cells by JC virus. Virus Res 132(1–2):97–103
CAS
PubMed
PubMed Central
Google Scholar
Co JK, Verma S, Gurjav U, Sumibcay L, Nerurkar VR (2007) Interferon- alpha and - beta restrict polyomavirus JC replication in primary human fetal glial cells: implications for progressive multifocal leukoencephalopathy therapy. J Infect Dis 196(5):712–718
CAS
PubMed
PubMed Central
Google Scholar
Holman DW, Klein RS, Ransohoff RM (2011) The blood-brain barrier, chemokines and multiple sclerosis. Biochim Biophys Acta 1812(2):220–230
CAS
PubMed
Google Scholar
McManus C, Berman JW, Brett FM, Staunton H, Farrell M, Brosnan CF (1998) MCP-1, MCP-2 and MCP-3 expression in multiple sclerosis lesions: an immunohistochemical and in situ hybridization study. J Neuroimmunol 86(1):20–29
CAS
PubMed
Google Scholar
Glass WG, Hickey MJ, Hardison JL, Liu MT, Manning JE, Lane TE (2004) Antibody targeting of the CC chemokine ligand 5 results in diminished leukocyte infiltration into the central nervous system and reduced neurologic disease in a viral model of multiple sclerosis. J Immunol 172(7):4018–4025
CAS
PubMed
Google Scholar
Mahad DJ, Ransohoff RM (2003) The role of MCP-1 (CCL2) and CCR2 in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE). Semin Immunol 15(1):23–32
CAS
PubMed
Google Scholar
Renner NA, Ivey NS, Redmann RK, Lackner AA, MacLean AG (2011) MCP-3/CCL7 production by astrocytes: implications for SIV neuroinvasion and AIDS encephalitis. J Neuro-Oncol 17(2):146–152
CAS
Google Scholar
Trujillo JA, Fleming EL, Perlman S (2013) Transgenic CCL2 expression in the central nervous system results in a dysregulated immune response and enhanced lethality after coronavirus infection. J Virol 87(5):2376–2389
CAS
PubMed
PubMed Central
Google Scholar
Metcalf TU, Baxter VK, Nilaratanakul V, Griffin DE (2013) Recruitment and retention of B cells in the central nervous system in response to alphavirus encephalomyelitis. J Virol 87(5):2420–2429
CAS
PubMed
PubMed Central
Google Scholar
Kraus J, Voigt K, Schuller AM, Scholz M, Kim KS, Schilling M et al (2008) Interferon-beta stabilizes barrier characteristics of the blood-brain barrier in four different species in vitro. Mult Scler 14(6):843–852
CAS
PubMed
Google Scholar
Veldhuis WB, Floris S, van der Meide PH, Vos IM, de Vries HE, Dijkstra CD et al (2003) Interferon-beta prevents cytokine-induced neutrophil infiltration and attenuates blood-brain barrier disruption. J Cereb Blood Flow Metab 23(9):1060–1069
CAS
PubMed
Google Scholar
Daniels BP, Klein RS (2015) Knocking on closed doors: host Interferons dynamically regulate blood-brain barrier function during viral infections of the central nervous system. PLoS Pathog 11(9):e1005096
PubMed
PubMed Central
Google Scholar
Langer-Gould A, Atlas SW, Green AJ, Bollen AW, Pelletier D (2005) Progressive multifocal leukoencephalopathy in a patient treated with natalizumab. N Engl J Med 353(4):375–381
CAS
PubMed
Google Scholar
Kleinschmidt-DeMasters BK, Tyler KL (2005) Progressive multifocal leukoencephalopathy complicating treatment with natalizumab and interferon beta-1a for multiple sclerosis. N Engl J Med 353(4):369–374
CAS
PubMed
Google Scholar
Kadambari S, Okike I, Ribeiro S, Ramsay ME, Heath PT, Sharland M et al (2014) Seven-fold increase in viral meningo-encephalitis reports in England and Wales during 2004-2013. J Inf Secur 69(4):326–332
Google Scholar
Munoz LS, Garcia MA, Gordon-Lipkin E, Parra B, Pardo CA (2018) Emerging viral infections and their impact on the global burden of neurological disease. Semin Neurol 38(2):163–175
PubMed
Google Scholar
Kennedy PGE, Quan PL, Lipkin WI (2017) Viral Encephalitis of unknown cause: current perspective and recent advances. Viruses 9(6):138
PubMed Central
Google Scholar
Tyler KL (2018) Acute viral encephalitis. N Engl J Med 379(6):557–566
PubMed
Google Scholar
Bryden SR, Pingen M, Lefteri DA, Miltenburg J, Delang L, Jacobs S et al (2020) Pan-viral protection against arboviruses by activating skin macrophages at the inoculation site. Sci Transl Med 12(527):eaax2421
CAS
PubMed
Google Scholar
Rosenbluth J, Schiff R, Liang WL, Dou W (2003) Antibody-mediated CNS demyelination II. Focal spinal cord lesions induced by implantation of an IgM antisulfatide-secreting hybridoma. J Neurocytol 32(3):265–276
CAS
PubMed
Google Scholar
Neuwelt EA, Minna J, Frenkel E, Barnett PA, McCormick CI (1986) Osmotic blood-brain barrier opening to IgM monoclonal antibody in the rat. Am J Phys 250(5 Pt 2):R875–R883
CAS
Google Scholar
Eisen A, Greenberg BM, Bowen JD, Arnold DL, Caggiano AO (2017) A double-blind, placebo-controlled, single ascending-dose study of remyelinating antibody rHIgM22 in people with multiple sclerosis. Mult Scler J Exp Transl Clin 3(4):2055217317743097
PubMed
PubMed Central
Google Scholar
Leslie M (2015) Cleanup crew. Science (New York, NY) 347(6226):1058–1059, 61
CAS
Google Scholar
Kundu SK, Pleatman MA, Redwine WA, Boyd AE, Marcus DM (1983) Binding of monoclonal antibody A2B5 to gangliosides. Biochem Biophys Res Commun 116(3):836–842
CAS
PubMed
Google Scholar
Wright BR, Warrington AE, Edberg DD, Rodriguez M (2009) Cellular mechanisms of central nervous system repair by natural autoreactive monoclonal antibodies. Arch Neurol 66(12):1456–1459
PubMed
PubMed Central
Google Scholar
Båve U, Magnusson M, Eloranta ML, Perers A, Alm GV, Rönnblom L (2003) Fc gamma RIIa is expressed on natural IFN-alpha-producing cells (plasmacytoid dendritic cells) and is required for the IFN-alpha production induced by apoptotic cells combined with lupus IgG. J Immunol 171(6):3296–3302
PubMed
Google Scholar
Lövgren T, Eloranta ML, Kastner B, Wahren-Herlenius M, Alm GV, Rönnblom L (2006) Induction of interferon-alpha by immune complexes or liposomes containing systemic lupus erythematosus autoantigen- and Sjögren's syndrome autoantigen-associated RNA. Arthritis Rheum 54(6):1917–1927
PubMed
Google Scholar