Briese M, Saal-Bauernschubert L, Ji C, Moradi M, Ghanawi H, Uhl M et al (2018) hnRNP R and its main interactor, the noncoding RNA 7SK, coregulate the axonal transcriptome of motoneurons. Proc Natl Acad Sci U S A 115:E2859–E2868. https://doi.org/10.1073/pnas.1721670115
Article
CAS
PubMed
PubMed Central
Google Scholar
Cestra G, Rossi S, Di SM, Cozzolino M (2017) Control of mRNA translation in ALS Proteinopathy. Front Mol Neurosci 10:85. https://doi.org/10.3389/fnmol.2017.00085
Article
CAS
PubMed
PubMed Central
Google Scholar
Lehmkuhl EM, Zarnescu DC (2018) Lost in translation: evidence for protein synthesis deficits in ALS/FTD and related neurodegenerative diseases. Adv Neurobiol 20:283–301. https://doi.org/10.1007/978-3-319-89689-2_11
Article
PubMed
PubMed Central
Google Scholar
Alami NH, Smith RB, Carrasco MA, Williams LA, Winborn CS, Han SS et al (2014) Axonal transport of TDP-43 mRNA granules is impaired by ALS-causing mutations. Neuron 81:536–543. https://doi.org/10.1016/j.neuron.2013.12.018
Article
CAS
PubMed
PubMed Central
Google Scholar
Barmada SJ (2015) Linking RNA dysfunction and neurodegeneration in amyotrophic lateral sclerosis. Neurotherapeutics 12:340–351. https://doi.org/10.1007/s13311-015-0340-3
Article
CAS
PubMed
PubMed Central
Google Scholar
Gershoni-Emek N, Chein M, Gluska S, Perlson E (2015) Amyotrophic lateral sclerosis as a spatiotemporal mislocalization disease: location, location, location. Int Rev Cell Mol Biol 315:23–71. https://doi.org/10.1016/bs.ircmb.2014.11.003
Article
CAS
PubMed
Google Scholar
Saal L, Briese M, Kneitz S, Glinka M, Sendtner M (2014) Subcellular transcriptome alterations in a cell culture model of spinal muscular atrophy point to widespread defects in axonal growth and presynaptic differentiation. RNA 20:1789–1802. https://doi.org/10.1261/rna.047373.114
Article
CAS
PubMed
PubMed Central
Google Scholar
Ou SH, Wu F, Harrich D, Garcia-Martinez LF, Gaynor RB (1995) Cloning and characterization of a novel cellular protein, TDP-43, that binds to human immunodeficiency virus type 1 TAR DNA sequence motifs. J Virol 69:3584–3596 https://jvi.asm.org/content/69/6/3584.long
Article
CAS
PubMed
PubMed Central
Google Scholar
Buratti E, Baralle FE (2010) The multiple roles of TDP-43 in pre-mRNA processing and gene expression regulation. RNA Biol 7:420–429. https://doi.org/10.4161/rna.7.4.12205
Article
CAS
PubMed
Google Scholar
Cohen TJ, Lee VM, Trojanowski JQ (2011) TDP-43 functions and pathogenic mechanisms implicated in TDP-43 proteinopathies. Trends Mol Med 17:659–667. https://doi.org/10.1016/j.molmed.2011.06.004
Article
CAS
PubMed
PubMed Central
Google Scholar
Ratti A, Buratti E (2016) Physiological functions and pathobiology of TDP-43 and FUS/TLS proteins. J Neurochem 138(Suppl 1):95–111. https://doi.org/10.1111/jnc.13625
Article
CAS
PubMed
Google Scholar
Ayala YM, Zago P, D'Ambrogio A, Xu YF, Petrucelli L, Buratti E et al (2008) Structural determinants of the cellular localization and shuttling of TDP-43. J Cell Sci 121:3778–3785. https://doi.org/10.1242/jcs.038950
Article
CAS
PubMed
Google Scholar
Brown RH, Al-Chalabi A (2017) Amyotrophic lateral sclerosis. N Engl J Med 377:162–172. https://doi.org/10.1056/NEJMra1603471
Article
CAS
PubMed
Google Scholar
Yasuda K, Mili S (2016) Dysregulated axonal RNA translation in amyotrophic lateral sclerosis. Wiley Interdiscip Rev RNA 7:589–603. https://doi.org/10.1002/wrna.1352
Article
CAS
PubMed
PubMed Central
Google Scholar
Baldwin KR, Godena VK, Hewitt VL, Whitworth AJ (2016) Axonal transport defects are a common phenotype in Drosophila models of ALS. Hum Mol Genet 25:2378–2392. https://doi.org/10.1093/hmg/ddw105
Article
CAS
PubMed
PubMed Central
Google Scholar
Polymenidou M, Lagier-Tourenne C, Hutt KR, Huelga SC, Moran J, Liang TY et al (2011) Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat Neurosci 14:459–468. https://doi.org/10.1038/nn.2779
Article
CAS
PubMed
PubMed Central
Google Scholar
Sephton CF, Cenik C, Kucukural A, Dammer EB, Cenik B, Han Y et al (2011) Identification of neuronal RNA targets of TDP-43-containing ribonucleoprotein complexes. J Biol Chem 286:1204–1215. https://doi.org/10.1074/jbc.M110.190884
Article
CAS
PubMed
Google Scholar
Tollervey JR, Curk T, Rogelj B, Briese M, Cereda M, Kayikci M et al (2011) Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nat Neurosci 14:452–458. https://doi.org/10.1038/nn.2778
Article
CAS
PubMed
PubMed Central
Google Scholar
Wiese S, Herrmann T, Drepper C, Jablonka S, Funk N, Klausmeyer A et al (2010) Isolation and enrichment of embryonic mouse motoneurons from the lumbar spinal cord of individual mouse embryos. Nat Protoc 5:31–38. https://doi.org/10.1038/nprot.2009.193
Article
CAS
PubMed
Google Scholar
Subramanian N, Wetzel A, Dombert B, Yadav P, Havlicek S, Jablonka S et al (2012) Role of Na(v)1.9 in activity-dependent axon growth in motoneurons. Hum Mol Genet 21:3655–3667. https://doi.org/10.1093/hmg/dds195
Article
CAS
PubMed
Google Scholar
Luningschror P, Binotti B, Dombert B, Heimann P, Perez-Lara A, Slotta C et al (2017) Plekhg5-regulated autophagy of synaptic vesicles reveals a pathogenic mechanism in motoneuron disease. Nat Commun 8:678. https://doi.org/10.1038/s41467-017-00689-z
Article
CAS
PubMed
PubMed Central
Google Scholar
Briese M, Saal L, Appenzeller S, Moradi M, Baluapuri A, Sendtner M (2016) Whole transcriptome profiling reveals the RNA content of motor axons. Nucleic Acids Res 44:e33. https://doi.org/10.1093/nar/gkv1027
Article
PubMed
Google Scholar
Edgar R, Domrachev M, Lash AE (2002) Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30:207–210 https://doi.org/10.1093/nar/30.1.207
Huang dW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57. https://doi.org/10.1038/nprot.2008.211
Article
CAS
Google Scholar
Fallini C, Bassell GJ, Rossoll W (2012) The ALS disease protein TDP-43 is actively transported in motor neuron axons and regulates axon outgrowth. Hum Mol Genet 21:3703–3718. https://doi.org/10.1093/hmg/dds205
Article
CAS
PubMed
PubMed Central
Google Scholar
Davis SA, Itaman S, Khalid-Janney CM, Sherard JA, Dowell JA, Cairns NJ et al (2018) TDP-43 interacts with mitochondrial proteins critical for mitophagy and mitochondrial dynamics. Neurosci Lett 678:8–15. https://doi.org/10.1016/j.neulet.2018.04.053
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang W, Wang L, Lu J, Siedlak SL, Fujioka H, Liang J et al (2016) The inhibition of TDP-43 mitochondrial localization blocks its neuronal toxicity. Nat Med 22:869–878. https://doi.org/10.1038/nm.4130
Article
CAS
PubMed
PubMed Central
Google Scholar
Strong MJ, Volkening K, Hammond R, Yang W, Strong W, Leystra-Lantz C et al (2007) TDP43 is a human low molecular weight neurofilament (hNFL) mRNA-binding protein. Mol Cell Neurosci 35:320–327. https://doi.org/10.1016/j.mcn.2007.03.007
Article
CAS
PubMed
Google Scholar
Bergeron C, Beric-Maskarel K, Muntasser S, Weyer L, Somerville MJ, Percy ME (1994) Neurofilament light and polyadenylated mRNA levels are decreased in amyotrophic lateral sclerosis motor neurons. J Neuropathol Exp Neurol 53:221–230. https://doi.org/10.1097/00005072-199405000-00002
Article
CAS
PubMed
Google Scholar
Oberstadt M, Classen J, Arendt T, Holzer M (2018) TDP-43 and cytoskeletal proteins in ALS. Mol Neurobiol 55:3143–3151. https://doi.org/10.1007/s12035-017-0543-1
Article
CAS
PubMed
Google Scholar
Andreassi C, Riccio A (2009) To localize or not to localize: mRNA fate is in 3’UTR ends. Trends Cell Biol 19:465–474. https://doi.org/10.1016/j.tcb.2009.06.001
Article
CAS
PubMed
Google Scholar
Rabinovich-Toidman P, Rabinovich-Nikitin I, Ezra A, Barbiro B, Fogel H, Slutsky I et al (2015) Mutant SOD1 increases APP expression and phosphorylation in cellular and animal models of ALS. PLoS One 10:e0143420. https://doi.org/10.1371/journal.pone.0143420
Article
CAS
PubMed
PubMed Central
Google Scholar
Bryson JB, Hobbs C, Parsons MJ, Bosch KD, Pandraud A, Walsh FS et al (2012) Amyloid precursor protein (APP) contributes to pathology in the SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Hum Mol Genet 21:3871–3882. https://doi.org/10.1093/hmg/dds215
Article
CAS
PubMed
Google Scholar
Nasoohi S, Ismael S, Ishrat T (2018) Thioredoxin-interacting protein (TXNIP) in cerebrovascular and neurodegenerative diseases: regulation and implication. Mol Neurobiol 55:7900–7920. https://doi.org/10.1007/s12035-018-0917-z
Article
CAS
PubMed
PubMed Central
Google Scholar
Wilczak N, de Vos RA, De KJ (2003) Free insulin-like growth factor (IGF)-I and IGF binding proteins 2, 5, and 6 in spinal motor neurons in amyotrophic lateral sclerosis. Lancet 361:1007–1011. https://doi.org/10.1016/S0140-6736(03)12828-0
Article
CAS
PubMed
Google Scholar
Adem A, Ekblom J, Gillberg PG, Jossan SS, Hoog A, Winblad B et al (1994) Insulin-like growth factor-1 receptors in human spinal cord: changes in amyotrophic lateral sclerosis. J Neural Transm Gen Sect 97:73–84. https://doi.org/10.1007/BF01277964
Article
CAS
PubMed
Google Scholar
Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A et al (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362:59–62. https://doi.org/10.1038/362059a0
Article
CAS
PubMed
Google Scholar
Kim HJ, Kim NC, Wang YD, Scarborough EA, Moore J, Diaz Z et al (2013) Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 495:467–473. https://doi.org/10.1038/nature11922
Article
CAS
PubMed
PubMed Central
Google Scholar
Johnson JO, Pioro EP, Boehringer A, Chia R, Feit H, Renton AE et al (2014) Mutations in the Matrin 3 gene cause familial amyotrophic lateral sclerosis. Nat Neurosci 17:664–666. https://doi.org/10.1038/nn.3688
Article
CAS
PubMed
PubMed Central
Google Scholar
Twelvetrees AE, Pernigo S, Sanger A, Guedes-Dias P, Schiavo G, Steiner RA et al (2016) The dynamic localization of cytoplasmic dynein in neurons is driven by kinesin-1. Neuron 90:1000–1015. https://doi.org/10.1016/j.neuron.2016.04.046
Article
CAS
PubMed
PubMed Central
Google Scholar
Deng J, Wang P, Chen X, Cheng H, Liu J, Fushimi K et al (2018) FUS interacts with ATP synthase beta subunit and induces mitochondrial unfolded protein response in cellular and animal models. Proc Natl Acad Sci U S A 115:E9678–E9686. https://doi.org/10.1073/pnas.1806655115
Article
CAS
PubMed
PubMed Central
Google Scholar
Katsyuba E, Auwerx J (2017) Modulating NAD(+) metabolism, from bench to bedside. EMBO J 36:2670–2683. https://doi.org/10.15252/embj.201797135
Article
CAS
PubMed
PubMed Central
Google Scholar
Rotem N, Magen I, Ionescu A, Gershoni-Emek N, Altman T, Costa CJ et al (2017) ALS along the axons - expression of coding and noncoding RNA differs in axons of ALS models. Sci Rep 7:44500. https://doi.org/10.1038/srep44500
Article
CAS
PubMed
PubMed Central
Google Scholar
Nijssen J, Aguila J, Hoogstraaten R, Kee N, Hedlund E (2018) Axon-Seq decodes the motor axon transcriptome and its modulation in response to ALS. Stem Cell Rep 11:1565–1578. https://doi.org/10.1016/j.stemcr.2018.11.005
Article
CAS
Google Scholar
McGoldrick P, Joyce PI, Fisher EM, Greensmith L (2013) Rodent models of amyotrophic lateral sclerosis. Biochim Biophys Acta 1832:1421–1436. https://doi.org/10.1016/j.bbadis.2013.03.012
Article
CAS
PubMed
Google Scholar
Lee EB, Lee VM, Trojanowski JQ (2011) Gains or losses: molecular mechanisms of TDP43-mediated neurodegeneration. Nat Rev Neurosci 13:38–50. https://doi.org/10.1038/nrn3121
Article
CAS
PubMed
PubMed Central
Google Scholar
Fischer LR, Culver DG, Tennant P, Davis AA, Wang M, Castellano-Sanchez A et al (2004) Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man. Exp Neurol 185:232–240. https://doi.org/10.1016/j.expneurol.2003.10.004
Article
PubMed
Google Scholar
Ebstein SY, Yagudayeva I, Shneider NA (2019) Mutant TDP-43 causes early-stage dose-dependent motor neuron degeneration in a TARDBP Knockin mouse model of ALS. Cell Rep 26:364–373. https://doi.org/10.1016/j.celrep.2018.12.045
Article
CAS
PubMed
Google Scholar
Morrison RS, Kinoshita Y, Johnson MD, Ghatan S, Ho JT, Garden G (2002) Neuronal survival and cell death signaling pathways. Adv Exp Med Biol 513:41–86. https://doi.org/10.1007/978-1-4615-0123-7_2
Article
CAS
PubMed
Google Scholar
Kim S, Koh H (2017) Role of FOXO transcription factors in crosstalk between mitochondria and the nucleus. J Bioenerg Biomembr 49:335–341. https://doi.org/10.1007/s10863-017-9705-0
Article
CAS
PubMed
Google Scholar
Papadia S, Soriano FX, Leveille F, Martel MA, Dakin KA, Hansen HH et al (2008) Synaptic NMDA receptor activity boosts intrinsic antioxidant defenses. Nat Neurosci 11:476–487. https://doi.org/10.1038/nn2071
Article
PubMed
PubMed Central
Google Scholar
de Candia P, Blekhman R, Chabot AE, Oshlack A, Gilad Y (2008) A combination of genomic approaches reveals the role of FOXO1a in regulating an oxidative stress response pathway. PLoS One 3:e1670. https://doi.org/10.1371/journal.pone.0001670
Article
CAS
PubMed
PubMed Central
Google Scholar
Kibbe C, Chen J, Xu G, Jing G, Shalev A (2013) FOXO1 competes with carbohydrate response element-binding protein (ChREBP) and inhibits thioredoxin-interacting protein (TXNIP) transcription in pancreatic beta cells. J Biol Chem 288:23194–23202. https://doi.org/10.1074/jbc.M113.473082
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang T, Baldie G, Periz G, Wang J (2014) RNA-processing protein TDP-43 regulates FOXO-dependent protein quality control in stress response. PLoS Genet 10:e1004693. https://doi.org/10.1371/journal.pgen.1004693
Article
CAS
PubMed
PubMed Central
Google Scholar
Kwak JY, Ham HJ, Kim CM, Hwang ES (2015) Nicotinamide exerts antioxidative effects on senescent cells. Mol Cells 38:229–235. https://doi.org/10.14348/molcells.2015.2253
Article
CAS
PubMed
PubMed Central
Google Scholar
Gautam M, Jara JH, Kocak N, Rylaarsdam LE, Kim KD, Bigio EH et al (2019) Mitochondria, ER, and nuclear membrane defects reveal early mechanisms for upper motor neuron vulnerability with respect to TDP-43 pathology. Acta Neuropathol 137:47–69. https://doi.org/10.1007/s00401-018-1934-8
Article
CAS
PubMed
Google Scholar
Izumikawa K, Nobe Y, Yoshikawa H, Ishikawa H, Miura Y, Nakayama H et al (2017) TDP-43 stabilises the processing intermediates of mitochondrial transcripts. Sci Rep 7:7709. https://doi.org/10.1038/s41598-017-06953-y
Article
CAS
PubMed
PubMed Central
Google Scholar
Onesto E, Colombrita C, Gumina V, Borghi MO, Dusi S, Doretti A et al (2016) Gene-specific mitochondria dysfunctions in human TARDBP and C9ORF72 fibroblasts. Acta Neuropathol Commun 4:47. https://doi.org/10.1186/s40478-016-0316-5
Article
CAS
PubMed
PubMed Central
Google Scholar
Tank EM, Figueroa-Romero C, Hinder LM, Bedi K, Archbold HC, Li X et al (2018) Abnormal RNA stability in amyotrophic lateral sclerosis. Nat Commun 9:2845. https://doi.org/10.1038/s41467-018-05049-z
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang W, Arakawa H, Wang L, Okolo O, Siedlak SL, Jiang Y et al (2017) Motor-coordinative and cognitive dysfunction caused by mutant TDP-43 could be reversed by inhibiting its mitochondrial localization. Mol Ther 25:127–139. https://doi.org/10.1016/j.ymthe.2016.10.013
Article
CAS
PubMed
PubMed Central
Google Scholar
Kreiter N, Pal A, Lojewski X, Corcia P, Naujock M, Reinhardt P et al (2018) Age-dependent neurodegeneration and organelle transport deficiencies in mutant TDP43 patient-derived neurons are independent of TDP43 aggregation. Neurobiol Dis 115:167–181. https://doi.org/10.1016/j.nbd.2018.03.010
Article
CAS
PubMed
Google Scholar
Magrané J, Cortez C, Gan WB, Manfredi G (2014) Abnormal mitochondrial transport and morphology are common pathological denominators in SOD1 and TDP43 ALS mouse models. Hum Mol Genet 23:1413–1424. https://doi.org/10.1093/hmg/ddt528
Article
CAS
PubMed
Google Scholar
Haigis MC, Sinclair DA (2010) Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol 5:253–295. https://doi.org/10.1146/annurev.pathol.4.110807.092250
Article
CAS
PubMed
PubMed Central
Google Scholar
Outeiro TF, Kontopoulos E, Altmann SM, Kufareva I, Strathearn KE, Amore AM et al (2007) Sirtuin 2 inhibitors rescue alpha-synuclein-mediated toxicity in models of Parkinson’s disease. Science 317:516–519. https://doi.org/10.1126/science.1143780
Article
CAS
PubMed
Google Scholar
Donmez G, Outeiro TF (2013) SIRT1 and SIRT2: emerging targets in neurodegeneration. EMBO Mol Med 5:344–352. https://doi.org/10.1002/emmm.201302451
Article
CAS
PubMed
PubMed Central
Google Scholar
Blacher E, Bashiardes S, Shapiro H, Rothschild D, Mor U, Dori-Bachash M et al (2019) Potential roles of gut microbiome and metabolites in modulating ALS in mice. Nature 572:474–480. https://doi.org/10.1038/s41586-019-1443-5
Article
CAS
PubMed
Google Scholar
Fiesel FC, Schurr C, Weber SS, Kahle PJ (2011) TDP-43 knockdown impairs neurite outgrowth dependent on its target histone deacetylase 6. Mol Neurodegener 6:64. https://doi.org/10.1186/1750-1326-6-64
Article
CAS
PubMed
PubMed Central
Google Scholar
Klim JR, Williams LA, Limone F, San Juan IG, Davis-Dusenbery BN, Mordes DA et al (2019) ALS-implicated protein TDP-43 sustains levels of STMN2, a mediator of motor neuron growth and repair. Nat Neurosci 22:167–179. https://doi.org/10.1038/s41593-018-0300-4
Article
CAS
PubMed
PubMed Central
Google Scholar
Tripathi VB, Baskaran P, Shaw CE, Guthrie S (2014) Tar DNA-binding protein-43 (TDP-43) regulates axon growth in vitro and in vivo. Neurobiol Dis 65:25–34. https://doi.org/10.1016/j.nbd.2014.01.004
Article
CAS
PubMed
PubMed Central
Google Scholar
Jablonka S, Beck M, Lechner BD, Mayer C, Sendtner M (2007) Defective Ca2+ channel clustering in axon terminals disturbs excitability in motoneurons in spinal muscular atrophy. J Cell Biol 179:139–149. https://doi.org/10.1083/jcb.200703187
Article
CAS
PubMed
PubMed Central
Google Scholar
Moradi M, Sivadasan R, Saal L, Luningschror P, Dombert B, Rathod RJ et al (2017) Differential roles of alpha-, beta-, and gamma-actin in axon growth and collateral branch formation in motoneurons. J Cell Biol 216:793–814. https://doi.org/10.1083/jcb.201604117
Article
CAS
PubMed
PubMed Central
Google Scholar
Rathod R, Havlicek S, Frank N, Blum R, Sendtner M (2012) Laminin induced local axonal translation of beta-actin mRNA is impaired in SMN-deficient motoneurons. Histochem Cell Biol 138:737–748. https://doi.org/10.1007/s00418-012-0989-1
Article
CAS
PubMed
Google Scholar
Rossoll W, Jablonka S, Andreassi C, Kroning AK, Karle K, Monani UR et al (2003) Smn, the spinal muscular atrophy-determining gene product, modulates axon growth and localization of beta-actin mRNA in growth cones of motoneurons. J Cell Biol 163:801–812. https://doi.org/10.1083/jcb.200304128
Article
CAS
PubMed
PubMed Central
Google Scholar
Sivadasan R, Hornburg D, Drepper C, Frank N, Jablonka S, Hansel A et al (2016) C9ORF72 interaction with cofilin modulates actin dynamics in motor neurons. Nat Neurosci 19:1610–1618. https://doi.org/10.1038/nn.4407
Article
CAS
PubMed
Google Scholar