Brattain K (2012) Analysis of the peripheral nerve repair market in the in the US
Google Scholar
Noble J, Munro CA, Prasad VS, Midha R (1998) Analysis of upper and lower extremity peripheral nerve injuries in a population of patients with multiple injuries. J Trauma 45:116–122
Article
CAS
PubMed
Google Scholar
Boerboom A, Dion V, Chariot A, Franzen R (2017) Molecular Mechanisms Involved in Schwann Cell Plasticity. Front Mol Neurosci 10:38. https://doi.org/10.3389/fnmol.2017.00038
Article
CAS
PubMed
PubMed Central
Google Scholar
Jessen KR, Arthur-Farraj P (2019) Repair Schwann cell update: adaptive reprogramming, EMT, and stemness in regenerating nerves. Glia 67:421–437. https://doi.org/10.1002/glia.23532
Article
PubMed
Google Scholar
Jessen KR, Mirsky R (2019) The success and failure of the Schwann cell response to nerve injury. Front Cell Neurosci 13:33–33. https://doi.org/10.3389/fncel.2019.00033
Article
CAS
PubMed
PubMed Central
Google Scholar
Jopling C, Boue S, Izpisua Belmonte JC (2011) Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration. Nat Rev Mol Cell Biol 12:79–89. https://doi.org/10.1038/nrm3043
Article
CAS
PubMed
Google Scholar
Scheib J, Höke A (2016) Impaired regeneration in aged nerves: clearing out the old to make way for the new. Exp Neurol https://doi.org/10.1016/j.expneurol.2016.07.010
Fu SY, Gordon T (1995) Contributing factors to poor functional recovery after delayed nerve repair: prolonged denervation. J Neurosci 15:3886–3895
Article
CAS
PubMed
PubMed Central
Google Scholar
Saito H, Dahlin LB (2008) Expression of ATF3 and axonal outgrowth are impaired after delayed nerve repair. BMC Neurosci 9:88–88
Article
PubMed
PubMed Central
Google Scholar
Wu P, Chawla A, Spinner RJ, Yu C, Yaszemski MJ, Windebank AJ, Wang H (2014) Key changes in denervated muscles and their impact on regeneration and reinnervation. Neural Regen Res 9:1796–1809. https://doi.org/10.4103/1673-5374.143424
Article
PubMed
PubMed Central
Google Scholar
Sulaiman OA, Gordon T (2000) Effects of short- and long-term Schwann cell denervation on peripheral nerve regeneration, myelination, and size. Glia 32:234–246
Article
CAS
PubMed
Google Scholar
Hoke A (2006) Mechanisms of disease: what factors limit the success of peripheral nerve regeneration in humans? Nat Clin Pract Neurol 2:448–454. https://doi.org/10.1038/ncpneuro0262
Article
CAS
PubMed
Google Scholar
Li H, Terenghi G, Hall SM (1997) Effects of delayed re-innervation on the expression of c-erbB receptors by chronically denervated rat Schwann cells in vivo. Glia 20:333–347
Article
CAS
PubMed
Google Scholar
Terenghi G, Calder JS, Birch R, Hall SM (1998) A morphological study of Schwann cells and axonal regeneration in chronically transected human peripheral nerves. J Hand Surg (Edinburgh, Scotland) 23:583–587
Article
CAS
Google Scholar
Isaacs J, Cochran AR (2019) Nerve transfers for peripheral nerve injury in the upper limb. Bone Joint J 101-B:124–131. https://doi.org/10.1302/0301-620X.101B2.BJJ-2018-0839.R1
Article
CAS
PubMed
Google Scholar
M F G, M M, S H, Khan WS (2014) Peripheral nerve injury: principles for repair and regeneration. Open Orthop J 8:199–203. https://doi.org/10.2174/1874325001408010199
Article
PubMed
PubMed Central
Google Scholar
Oberlin C, Beal D, Leechavengvongs S, Salon A, Dauge MC, Sarcy JJ (1994) Nerve transfer to biceps muscle using a part of ulnar nerve for C5-C6 avulsion of the brachial plexus: anatomical study and report of four cases. J Hand Surg 19:232–237. https://doi.org/10.1016/0363-5023(94)90011-6
Article
CAS
Google Scholar
Tung TH, Mackinnon SE (2010) Nerve transfers: indications, techniques, and outcomes. J Hand Surg 35:332–341. https://doi.org/10.1016/j.jhsa.2009.12.002
Article
Google Scholar
He B, Zhu Z, Zhu Q, Zhou X, Zheng C, Li P, Zhu S, Liu X, Zhu J (2014) Factors predicting sensory and motor recovery after the repair of upper limb peripheral nerve injuries. Neural Regen Res 9:661–672. https://doi.org/10.4103/1673-5374.130094
Article
PubMed
PubMed Central
Google Scholar
Mackinnon SE, Novak CB, Myckatyn TM, Tung TH (2005) Results of reinnervation of the biceps and brachialis muscles with a double fascicular transfer for elbow flexion. J Hand Surg 30:978–985. https://doi.org/10.1016/j.jhsa.2005.05.014
Article
Google Scholar
Hewitt SM, Lewis FA, Cao Y, Conrad RC, Cronin M, Danenberg KD, Goralski TJ, Langmore JP, Raja RG, Williams PM et al (2008) Tissue handling and specimen preparation in surgical pathology: issues concerning the recovery of nucleic acids from formalin-fixed, paraffin-embedded tissue. Arch Pathol Lab Med 132:1929–1935. https://doi.org/10.1043/1543-2165-132.12.1929
Article
PubMed
Google Scholar
Wilcox M, Quick TJ, Phillips JB (2019) The effects of surgical antiseptics and time delays on RNA isolated from human and rodent peripheral nerves. Front Cell Neurosci 13:189–189. https://doi.org/10.3389/fncel.2019.00189
Article
CAS
PubMed
PubMed Central
Google Scholar
Herrera-Perez M, Oller-Boix A, Perez-Lorensu PJ, de Bergua-Domingo J, Gonzalez-Casamayor S, Marquez-Marfil F, Diaz-Flores L, Pais-Brito JL (2015) Intraoperative neurophysiological monitoring in peripheral nerve surgery: technical description and experience in a Centre. Rev Esp Cir Ortop Traumatol 59:266–274. https://doi.org/10.1016/j.recot.2014.11.004
Article
CAS
PubMed
Google Scholar
Slimp JC (2000) Intraoperative monitoring of nerve repairs. Hand Clin 16:25–36
CAS
PubMed
Google Scholar
Leechavengvongs S, Witoonchart K, Uerpairojkit C, Thuvasethakul P, Ketmalasiri W (1998) Nerve transfer to biceps muscle using a part of the ulnar nerve in brachial plexus injury (upper arm type): a report of 32 cases. J Hand Surg 23:711–716. https://doi.org/10.1016/S0363-5023(98)80059-2
Article
CAS
Google Scholar
Leechavengvongs S, Witoonchart K, Uerpairojkit C, Thuvasethakul P, Malungpaishrope K (2006) Combined nerve transfers for C5 and C6 brachial plexus avulsion injury. J Hand Surg 31:183–189. https://doi.org/10.1016/j.jhsa.2005.09.019
Article
Google Scholar
Ray WZ, Mackinnon SE (2010) Management of nerve gaps: autografts, allografts, nerve transfers, and end-to-side neurorrhaphy. Exp Neurol 223:77–85. https://doi.org/10.1016/j.expneurol.2009.03.031
Article
PubMed
Google Scholar
Arthur-Farraj PJ, Latouche M, Wilton DK, Quintes S, Chabrol E, Banerjee A, Woodhoo A, Jenkins B, Rahman M, Turmaine M et al (2012) C-Jun reprograms Schwann cells of injured nerves to generate a repair cell essential for regeneration. Neuron 75:633–647. https://doi.org/10.1016/j.neuron.2012.06.021
Article
CAS
PubMed
PubMed Central
Google Scholar
Jang S-W, Srinivasan R, Jones EA, Sun G, Keles S, Krueger C, Chang L-W, Nagarajan R, Svaren J (2010) Locus-wide identification of Egr2/Krox20 regulatory targets in myelin genes. J Neurochem 115:1409–1420. https://doi.org/10.1111/j.1471-4159.2010.07045.x
Article
CAS
PubMed
PubMed Central
Google Scholar
Jessen KR, Mirsky R (2008) Negative regulation of myelination: relevance for development, injury, and demyelinating disease. Glia 56:1552–1565. https://doi.org/10.1002/glia.20761
Article
PubMed
Google Scholar
Kamholz J, Awatramani R, Menichella D, Jiang H, Xu W, Shy M (1999) Regulation of myelin-specific gene expression. Relevance to CMT1. Ann N Y Acad Sci 883:91–108
Article
CAS
PubMed
Google Scholar
Mirsky R, Woodhoo A, Parkinson DB, Arthur-Farraj P, Bhaskaran A, Jessen KR (2008) Novel signals controlling embryonic Schwann cell development, myelination and dedifferentiation. J Peripher Nerv Syst 13:122–135. https://doi.org/10.1111/j.1529-8027.2008.00168.x
Article
PubMed
Google Scholar
Bremer M, Frob F, Kichko T, Reeh P, Tamm ER, Suter U, Wegner M (2011) Sox10 is required for Schwann-cell homeostasis and myelin maintenance in the adult peripheral nerve. Glia 59:1022–1032. https://doi.org/10.1002/glia.21173
Article
PubMed
Google Scholar
Finzsch M, Schreiner S, Kichko T, Reeh P, Tamm ER, Bösl MR, Meijer D, Wegner M (2010) Sox10 is required for Schwann cell identity and progression beyond the immature Schwann cell stage. J Cell Biol 189:701–712. https://doi.org/10.1083/jcb.200912142
Article
CAS
PubMed
PubMed Central
Google Scholar
Miettinen M, McCue PA, Sarlomo-Rikala M, Biernat W, Czapiewski P, Kopczynski J, Thompson LD, Lasota J, Wang Z, Fetsch JF (2015) Sox10 – a marker for not only Schwannian and melanocytic neoplasms but also myoepithelial cell tumors of soft tissue. A systematic analysis of 5134 tumors. Am J Surg Pathol 39:826–835. https://doi.org/10.1097/PAS.0000000000000398
Article
PubMed
PubMed Central
Google Scholar
Nonaka D, Chiriboga L, Rubin BP (2008) Sox10: a pan-schwannian and melanocytic marker. Am J Surg Pathol 32:1291–1298. https://doi.org/10.1097/PAS.0b013e3181658c14
Article
PubMed
Google Scholar
Britsch S, Goerich DE, Riethmacher D, Peirano RI, Rossner M, Nave KA, Birchmeier C, Wegner M (2001) The transcription factor Sox10 is a key regulator of peripheral glial development. Genes Dev 15:66–78. https://doi.org/10.1101/gad.186601
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Z, Jin Y-Q, Chen L, Wang Y, Yang X, Cheng J, Wu W, Qi Z, Shen Z (2015) Specific marker expression and cell state of Schwann cells during culture in vitro. PLoS One 10:e0123278. https://doi.org/10.1371/journal.pone.0123278
Article
CAS
PubMed
PubMed Central
Google Scholar
World Medical Association Declaration of Helsinki (2013) Ethical principles for medical research involving human subjects. JAMA 310:2191–2194. https://doi.org/10.1001/jama.2013.281053
Article
CAS
Google Scholar
Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET, Eliceiri KW (2017) ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics 18:529–529. https://doi.org/10.1186/s12859-017-1934-z
Article
PubMed
PubMed Central
Google Scholar
Korenkova V, Slyskova J, Novosadova V, Pizzamiglio S, Langerova L, Bjorkman J, Vycital O, Liska V, Levy M, Veskrna K et al (2016) The focus on sample quality: influence of colon tissue collection on reliability of qPCR data. Sci Rep 6:29023
Article
PubMed
PubMed Central
Google Scholar
Spandidos A, Wang X, Wang H, Dragnev S, Thurber T, Seed B (2008) A comprehensive collection of experimentally validated primers for polymerase chain reaction quantitation of murine transcript abundance. BMC Genomics 9:633–633. https://doi.org/10.1186/1471-2164-9-633
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang X, Seed B (2003) A PCR primer bank for quantitative gene expression analysis. Nucleic Acids Res 31:e154
Article
PubMed
PubMed Central
Google Scholar
Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL et al (2009) The MIQE Guidelines: minimum information for Publication of quantitative Real-Time PCR experiments. Clin Chem 55:611 LP–611622. https://doi.org/10.1373/clinchem.2008.112797
Article
CAS
Google Scholar
Rogers-Broadway K-R, Karteris E (2015) Amplification efficiency and thermal stability of qPCR instrumentation: current landscape and future perspectives. Exp Ther Med 10:1261–1264. https://doi.org/10.3892/etm.2015.2712
Article
CAS
PubMed
PubMed Central
Google Scholar
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods (San Diego, Calif) 25:402–408. https://doi.org/10.1006/meth.2001.1262
Article
CAS
Google Scholar
Gambarotta G, Ronchi G, Friard O, Galletta P, Perroteau I, Geuna S (2014) Identification and validation of suitable housekeeping genes for normalizing quantitative real-time PCR assays in injured peripheral nerves. PLoS One 9:e105601. https://doi.org/10.1371/journal.pone.0105601
Article
CAS
PubMed
PubMed Central
Google Scholar
Caboux E, Paciencia M, Durand G, Robinot N, Wozniak MB, Galateau-Salle F, Byrnes G, Hainaut P, Le Calvez-Kelm F (2013) Impact of delay to cryopreservation on RNA integrity and genome-wide expression profiles in resected tumor samples. PLoS One 8:e79826. https://doi.org/10.1371/journal.pone.0079826
Article
PubMed
PubMed Central
Google Scholar
Jacobs JM, Love S (1985) Qualitative and quantitative morphology of human sural nerve at different ages. Brain 108(Pt 4):897–924
Article
PubMed
Google Scholar
Ochoa J, Mair WG (1969) The normal sural nerve in man. II. Changes in the axons and Schwann cells due to ageing. Acta Neuropathol 13:217–239
Article
CAS
PubMed
Google Scholar
Karamchandani JR, Nielsen TO, van de Rijn M, West RB (2012) Sox10 and S100 in the diagnosis of soft-tissue neoplasms. Appl Immunohistochem Mol Morphol 20:445–450. https://doi.org/10.1097/PAI.0b013e318244ff4b
Article
CAS
PubMed
Google Scholar
Campbell WW (2008) Evaluation and management of peripheral nerve injury. Clin Neurophysiol 119:1951–1965. https://doi.org/10.1016/j.clinph.2008.03.018
Article
PubMed
Google Scholar
Smith S, Knight R (2011) In: Birch R (ed) Clinical neurophysiology in peripheral nerve injuries BT - surgical disorders of the peripheral nerves. Springer, London, pp 191–229
Google Scholar
Kim HA, Pomeroy SL, Whoriskey W, Pawlitzky I, Benowitz LI, Sicinski P, Stiles CD, Roberts TM (2000) A developmentally regulated switch directs regenerative growth of Schwann cells through cyclin D1. Neuron 26:405–416
Article
CAS
PubMed
Google Scholar
Yang DP, Zhang DP, Mak KS, Bonder DE, Pomeroy SL, Kim HA (2008) Schwann cell proliferation during Wallerian degeneration is not necessary for regeneration and remyelination of the peripheral nerves: axon-dependent removal of newly generated Schwann cells by apoptosis. Mol Cell Neurosci 38:80–88. https://doi.org/10.1016/j.mcn.2008.01.017
Article
CAS
PubMed
PubMed Central
Google Scholar
Bosse F, Kury P, Muller HW (2001) Gene expression profiling and molecular aspects in peripheral nerve regeneration. Restor Neurol Neurosci 19:5–18
CAS
PubMed
Google Scholar
Jung Y, Ng JH, Keating CP, Senthil-Kumar P, Zhao J, Randolph MA, Winograd JM, Evans CL (2014) Comprehensive evaluation of peripheral nerve regeneration in the acute healing phase using tissue clearing and optical microscopy in a rodent model. PLoS One 9:e94054. https://doi.org/10.1371/journal.pone.0094054
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu P, Peng J, Han G-H, Ding X, Wei S, Gao G, Huang K, Chang F, Wang Y (2019) Role of macrophages in peripheral nerve injury and repair. Neural Regen Res 14:1335–1342. https://doi.org/10.4103/1673-5374.253510
Article
PubMed
PubMed Central
Google Scholar
Menorca RMG, Fussell TS, Elfar JC (2013) Nerve physiology: mechanisms of injury and recovery. Hand Clin 29:317–330. https://doi.org/10.1016/j.hcl.2013.04.002
Article
PubMed
PubMed Central
Google Scholar
Jessen KR, Mirsky R (2016) The repair Schwann cell and its function in regenerating nerves. J Physiol 594:3521–3531. https://doi.org/10.1113/JP270874
Article
CAS
PubMed
PubMed Central
Google Scholar
Painter MW (2017) Aging Schwann cells: mechanisms, implications, future directions. Curr Opin Neurobiol 47:203–208. https://doi.org/10.1016/j.conb.2017.10.022
Article
CAS
PubMed
Google Scholar
Fontana X, Hristova M, Da Costa C, Patodia S, Thei L, Makwana M, Spencer-Dene B, Latouche M, Mirsky R, Jessen KR et al (2012) C-Jun in Schwann cells promotes axonal regeneration and motoneuron survival via paracrine signaling. J Cell Biol 198:127–141. https://doi.org/10.1083/jcb.201205025
Article
CAS
PubMed
PubMed Central
Google Scholar
Gomez-Sanchez JA, Pilch KS, van der Lans M, Fazal SV, Benito C, Wagstaff LJ, Mirsky R, Jessen KR (2017) After nerve injury, lineage tracing shows that myelin and Remak Schwann cells elongate extensively and branch to form repair Schwann cells, which shorten radically on Remyelination. J Neurosci 37:9086–9099. https://doi.org/10.1523/JNEUROSCI.1453-17.2017
Article
CAS
PubMed
PubMed Central
Google Scholar
Sulaiman W, Gordon T (2013) Neurobiology of peripheral nerve injury, regeneration, and functional recovery: from bench top research to bedside application. Ochsner J 13:100–108
PubMed
PubMed Central
Google Scholar
Hoke A, Gordon T, Zochodne DW, Sulaiman OAR (2002) A decline in glial cell-line-derived neurotrophic factor expression is associated with impaired regeneration after long-term Schwann cell denervation. Exp Neurol 173:77–85. https://doi.org/10.1006/exnr.2001.7826
Article
CAS
PubMed
Google Scholar
Jessen KR, Wagstaff LJ, Gomez-Sanchez JA, Mirsky R (2017) Manipulation of repair Schwann cells to correct regeneration failures due to chronic denervation and advancing age. Glia 65:E56–E56
Google Scholar
Scheib J, Hoke A (2013) Advances in peripheral nerve regeneration. Nat Rev Neurol 9:668–676. https://doi.org/10.1038/nrneurol.2013.227
Article
CAS
PubMed
Google Scholar
Chao MV (2003) Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci 4:299–309. https://doi.org/10.1038/nrn1078
Article
CAS
PubMed
Google Scholar
Gonçalves NP, Mohseni S, El Soury M, Ulrichsen M, Richner M, Xiao J, Wood RJ, Andersen OM, Coulson EJ, Raimondo S et al (2019) Peripheral nerve regeneration is independent from Schwann cell p75NTR expression. Front Cell Neurosci 13:235. https://doi.org/10.3389/fncel.2019.00235
Article
CAS
PubMed
PubMed Central
Google Scholar
Reichardt LF (2006) Neurotrophin-regulated signalling pathways. Philos Trans R Soc Lond Ser B Biol Sci 361:1545–1564. https://doi.org/10.1098/rstb.2006.1894
Article
CAS
Google Scholar
Aydin MA, Mackinnon SE, Gu XM, Kobayashi J, Kuzon WM Jr (2004) Force deficits in skeletal muscle after delayed reinnervation. Plast Reconstr Surg 113:1712–1718
Article
PubMed
Google Scholar
Dahlin L (2006) Nerve injury and repair: from molecule to man
Google Scholar
Noaman HH, Shiha AE, Bahm J (2004) Oberlin's ulnar nerve transfer to the biceps motor nerve in obstetric brachial plexus palsy: indications, and good and bad results. Microsurgery 24:182–187. https://doi.org/10.1002/micr.20037
Article
PubMed
Google Scholar
Liu Y, Wang H (2020) Peripheral nerve injury induced changes in the spinal cord and strategies to counteract/enhance the changes to promote nerve regeneration. Neural Regen Res 15:189–198. https://doi.org/10.4103/1673-5374.265540
Article
PubMed
Google Scholar
Chan KM, Gordon T, Zochodne DW, Power HA (2014) Improving peripheral nerve regeneration: from molecular mechanisms to potential therapeutic targets. Exp Neurol 261:826–835. https://doi.org/10.1016/j.expneurol.2014.09.006
Article
CAS
PubMed
Google Scholar
Tomita K, Kubo T, Matsuda K, Fujiwara T, Yano K, Winograd JM, Tohyama M, Hosokawa K (2007) The neurotrophin receptor p75NTR in Schwann cells is implicated in remyelination and motor recovery after peripheral nerve injury. Glia 55:1199–1208. https://doi.org/10.1002/glia.20533
Article
PubMed
Google Scholar
Yi S, Tang X, Yu J, Liu J, Ding F, Gu X (2017) Microarray and qPCR analyses of Wallerian degeneration in rat sciatic nerves. Front Cell Neurosci 11:22–22. https://doi.org/10.3389/fncel.2017.00022
Article
CAS
PubMed
PubMed Central
Google Scholar
Parkinson DB, Bhaskaran A, Arthur-Farraj P, Noon LA, Woodhoo A, Lloyd AC, Feltri ML, Wrabetz L, Behrens A, Mirsky R et al (2008) C-Jun is a negative regulator of myelination. J Cell Biol 181:625–637. https://doi.org/10.1083/jcb.200803013
Article
CAS
PubMed
PubMed Central
Google Scholar
Parkinson DB, Bhaskaran A, Droggiti A, Dickinson S, D'Antonio M, Mirsky R, Jessen KR (2004) Krox-20 inhibits Jun-NH2-terminal kinase/c-Jun to control Schwann cell proliferation and death. J Cell Biol 164:385–394. https://doi.org/10.1083/jcb.200307132
Article
CAS
PubMed
PubMed Central
Google Scholar
Ciaramitaro P, Mondelli M, Logullo F, Grimaldi S, Battiston B, Sard A, Scarinzi C, Migliaretti G, Faccani G, Cocito D (2010) Traumatic peripheral nerve injuries: epidemiological findings, neuropathic pain and quality of life in 158 patients. J Peripher Nerv Syst 15:120–127. https://doi.org/10.1111/j.1529-8027.2010.00260.x
Article
PubMed
Google Scholar
McAllister RMR, Gilbert SEA, Calder JS, Smith PJ (1996) The epidemiology and management of upper limb peripheral nerve injuries in modern practice. J Hand Surg (Br) 21:4–13. https://doi.org/10.1016/S0266-7681(96)80004-0
Article
CAS
Google Scholar
Birch R (2011) Surgical disorders of the peripheral nerves. Springer Science & Business Media, London
Kovacic U, Zele T, Osredkar J, Sketelj J, Bajrovic FF (2004) Sex-related differences in the regeneration of sensory axons and recovery of nociception after peripheral nerve crush in the rat. Exp Neurol 189:94–104. https://doi.org/10.1016/j.expneurol.2004.05.015
Article
PubMed
Google Scholar
Stenberg L, Dahlin LB (2014) Gender differences in nerve regeneration after sciatic nerve injury and repair in healthy and in type 2 diabetic Goto-Kakizaki rats. BMC Neurosci 15:107–107. https://doi.org/10.1186/1471-2202-15-107
Article
CAS
PubMed
PubMed Central
Google Scholar