Adachi H, Waza M, Tokui K, Katsuno M, Minamiyama M, Tanaka F, Doyu M, Sobue G (2007) CHIP overexpression reduces mutant androgen receptor protein and ameliorates phenotypes of the spinal and bulbar muscular atrophy transgenic mouse model. J Neurosci 27:5115–5126. https://doi.org/10.1523/JNEUROSCI.1242-07.2007
Article
CAS
PubMed
PubMed Central
Google Scholar
Alvarez-Mora MI, Rodriguez-Revenga L, Madrigal I, Guitart-Mampel M, Garrabou G, Mila M (2017) Impaired Mitochondrial Function and Dynamics in the Pathogenesis of FXTAS. Mol Neurobiol 54:6896–6902. https://doi.org/10.1007/s12035-016-0194-7
Article
CAS
PubMed
Google Scholar
Amador-Ortiz C, Lin WL, Ahmed Z, Personett D, Davies P, Duara R, Graff-Radford NR, Hutton ML, Dickson DW (2007) TDP-43 immunoreactivity in hippocampal sclerosis and Alzheimer's disease. Ann Neurol 61:435–445. https://doi.org/10.1002/ana.21154
Article
CAS
PubMed
PubMed Central
Google Scholar
Anderson DB, Wilkinson KA, Henley JM (2009) Protein SUMOylation in neuropathological conditions. Drug News Perspect 22:255–265. https://doi.org/10.1358/dnp.2009.22.5.1378636
Article
CAS
PubMed
PubMed Central
Google Scholar
Ariza J, Rogers H, Monterrubio A, Reyes-Miranda A, Hagerman PJ, Martinez-Cerdeno V (2016) A Majority of FXTAS Cases Present with Intranuclear Inclusions Within Purkinje Cells. Cerebellum 15:546–551. https://doi.org/10.1007/s12311-016-0776-y
Article
CAS
PubMed
Google Scholar
Arocena DG, Iwahashi CK, Won N, Beilina A, Ludwig AL, Tassone F, Schwartz PH, Hagerman PJ (2005) Induction of inclusion formation and disruption of lamin A/C structure by premutation CGG-repeat RNA in human cultured neural cells. Hum Mol Genet 14:3661–3671. https://doi.org/10.1093/hmg/ddi394
Article
CAS
PubMed
Google Scholar
Aziz A, Fronczek R, Maat-Schieman M, Unmehopa U, Roelandse F, Overeem S, van Duinen S, Lammers GJ, Swaab D, Roos R (2008) Hypocretin and melanin-concentrating hormone in patients with Huntington disease. Brain Pathol 18:474–483. https://doi.org/10.1111/j.1750-3639.2008.00135.x
Article
CAS
PubMed
PubMed Central
Google Scholar
Benjwal S, Verma S, Rohm KH, Gursky O (2006) Monitoring protein aggregation during thermal unfolding in circular dichroism experiments. Protein Sci 15:635–639. https://doi.org/10.1110/ps.051917406
Article
CAS
PubMed
PubMed Central
Google Scholar
Bennett EJ, Shaler TA, Woodman B, Ryu KY, Zaitseva TS, Becker CH, Bates GP, Schulman H, Kopito RR (2007) Global changes to the ubiquitin system in Huntington's disease. Nature 448:704–708. https://doi.org/10.1038/nature06022
Article
CAS
PubMed
Google Scholar
Berman RF, Buijsen RA, Usdin K, Pintado E, Kooy F, Pretto D, Pessah IN, Nelson DL, Zalewski Z, Charlet-Bergeurand N, Willemsen R, Hukema RK (2014) Mouse models of the fragile X premutation and fragile X-associated tremor/ataxia syndrome. J Neurodev Disord 6:25. https://doi.org/10.1186/1866-1955-6-25
Article
PubMed
PubMed Central
Google Scholar
Bigio EH, Johnson NA, Rademaker AW, Fung BB, Mesulam MM, Siddique N, Dellefave L, Caliendo J, Freeman S, Siddique T (2004) Neuronal ubiquitinated intranuclear inclusions in familial and non-familial frontotemporal dementia of the motor neuron disease type associated with amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 63:801–811. https://doi.org/10.1093/jnen/63.8.801
Article
PubMed
Google Scholar
Bjorkoy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, Stenmark H, Johansen T (2005) p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171:603–614. https://doi.org/10.1083/jcb.200507002
Article
CAS
PubMed
PubMed Central
Google Scholar
Blair LJ, Baker JD, Sabbagh JJ, Dickey CA (2015) The emerging role of peptidyl-prolyl isomerase chaperones in tau oligomerization, amyloid processing, and Alzheimer's disease. J Neurochem 133:1–13. https://doi.org/10.1111/jnc.13033
Article
CAS
PubMed
PubMed Central
Google Scholar
Botta-Orfila T, Tartaglia GG, Michalon A (2016) Molecular Pathophysiology of Fragile X-Associated Tremor/Ataxia Syndrome and Perspectives for Drug Development. Cerebellum 15:599–610. https://doi.org/10.1007/s12311-016-0800-2
Article
CAS
PubMed
Google Scholar
Buijsen RA, Sellier C, Severijnen LA, Oulad-Abdelghani M, Verhagen RF, Berman RF, Charlet-Berguerand N, Willemsen R, Hukema RK (2014) FMRpolyG-positive inclusions in CNS and non-CNS organs of a fragile X premutation carrier with fragile X-associated tremor/ataxia syndrome. Acta Neuropathol Commun 2:162. https://doi.org/10.1186/s40478-014-0162-2
Article
PubMed
PubMed Central
Google Scholar
Cao Z, Hulsizer S, Tassone F, Tang HT, Hagerman RJ, Rogawski MA, Hagerman PJ, Pessah IN (2012) Clustered burst firing in FMR1 premutation hippocampal neurons: amelioration with allopregnanolone. Hum Mol Genet 21:2923–2935. https://doi.org/10.1093/hmg/dds118
Article
CAS
PubMed
PubMed Central
Google Scholar
Chai Y, Wu L, Griffin JD, Paulson HL (2001) The role of protein composition in specifying nuclear inclusion formation in polyglutamine disease. J Biol Chem 276:44889–44897. https://doi.org/10.1074/jbc.M106575200
Article
CAS
PubMed
Google Scholar
Chen Y, Tassone F, Berman RF, Hagerman PJ, Hagerman RJ, Willemsen R, Pessah IN (2010) Murine hippocampal neurons expressing Fmr1 gene premutations show early developmental deficits and late degeneration. Hum Mol Genet 19:196–208. https://doi.org/10.1093/hmg/ddp479
Article
CAS
PubMed
Google Scholar
Cid-Samper F, Gelabert-Baldrich M, Lang B, Lorenzo-Gotor N, Ponti RD, Severijnen L, Bolognesi B, Gelpi E, Hukema RK, Botta-Orfila T, Tartaglia GG (2018) An Integrative Study of Protein-RNA Condensates Identifies Scaffolding RNAs and Reveals Players in Fragile X-Associated Tremor/Ataxia Syndrome. Cell Rep 25(3422-3434):e3427. https://doi.org/10.1016/j.celrep.2018.11.076
Article
CAS
Google Scholar
Colunga A, Bollino D, Schech A, Aurelian L (2014) Calpain-dependent clearance of the autophagy protein p62/SQSTM1 is a contributor to DeltaPK oncolytic activity in melanoma. Gene Ther 21:371–378. https://doi.org/10.1038/gt.2014.6
Article
CAS
PubMed
PubMed Central
Google Scholar
Cooper-Knock J, Walsh MJ, Higginbottom A, Robin Highley J, Dickman MJ, Edbauer D, Ince PG, Wharton SB, Wilson SA, Kirby J, Hautbergue GM, Shaw PJ (2014) Sequestration of multiple RNA recognition motif-containing proteins by C9orf72 repeat expansions. Brain 137:2040–2051. https://doi.org/10.1093/brain/awu120
Article
PubMed
PubMed Central
Google Scholar
Couto CA, Wang HY, Green JC, Kiely R, Siddaway R, Borer C, Pears CJ, Lakin ND (2011) PARP regulates nonhomologous end joining through retention of Ku at double-strand breaks. J Cell Biol 194:367–375. https://doi.org/10.1083/jcb.201012132
Article
CAS
PubMed
PubMed Central
Google Scholar
Cunningham CL, Martinez Cerdeno V, Navarro Porras E, Prakash AN, Angelastro JM, Willemsen R, Hagerman PJ, Pessah IN, Berman RF, Noctor SC (2011) Premutation CGG-repeat expansion of the Fmr1 gene impairs mouse neocortical development. Hum Mol Genet 20:64–79. https://doi.org/10.1093/hmg/ddq432
Article
CAS
PubMed
Google Scholar
Dammer EB, Fallini C, Gozal YM, Duong DM, Rossoll W, Xu P, Lah JJ, Levey AI, Peng J, Bassell GJ, Seyfried NT (2012) Coaggregation of RNA-binding proteins in a model of TDP-43 proteinopathy with selective RGG motif methylation and a role for RRM1 ubiquitination. PLoS One 7:e38658. https://doi.org/10.1371/journal.pone.0038658
Article
CAS
PubMed
PubMed Central
Google Scholar
de Haro M, Al-Ramahi I, De Gouyon B, Ukani L, Rosa A, Faustino NA, Ashizawa T, Cooper TA, Botas J (2006) MBNL1 and CUGBP1 modify expanded CUG-induced toxicity in a Drosophila model of myotonic dystrophy type 1. Hum Mol Genet 15:2138–2145. https://doi.org/10.1093/hmg/ddl137
Article
CAS
PubMed
Google Scholar
Demishtein A, Fraiberg M, Berko D, Tirosh B, Elazar Z, Navon A (2017) SQSTM1/p62-mediated autophagy compensates for loss of proteasome polyubiquitin recruiting capacity. Autophagy 13:1697–1708. https://doi.org/10.1080/15548627.2017.1356549
Article
CAS
PubMed
PubMed Central
Google Scholar
Di Guardo G (2015) Lipofuscin, lipofuscin-like pigments and autofluorescence. Eur J Histochem 59:2485. https://doi.org/10.4081/ejh.2015.2485
Article
CAS
PubMed
PubMed Central
Google Scholar
DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsattel JP, Aronin N (1997) Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277:1990–1993. https://doi.org/10.1126/science.277.5334.1990
Article
CAS
PubMed
Google Scholar
Dorval V, Fraser PE (2006) Small ubiquitin-like modifier (SUMO) modification of natively unfolded proteins tau and alpha-synuclein. J Biol Chem 281:9919–9924. https://doi.org/10.1074/jbc.M510127200
Article
CAS
PubMed
Google Scholar
Fardaei M, Rogers MT, Thorpe HM, Larkin K, Hamshere MG, Harper PS, Brook JD (2002) Three proteins, MBNL, MBLL and MBXL, co-localize in vivo with nuclear foci of expanded-repeat transcripts in DM1 and DM2 cells. Hum Mol Genet 11:805–814. https://doi.org/10.1093/hmg/11.7.805
Article
CAS
PubMed
Google Scholar
Fujigasaki H, Uchihara T, Koyano S, Iwabuchi K, Yagishita S, Makifuchi T, Nakamura A, Ishida K, Toru S, Hirai S, Ishikawa K, Tanabe T, Mizusawa H (2000) Ataxin-3 is translocated into the nucleus for the formation of intranuclear inclusions in normal and Machado-Joseph disease brains. Exp Neurol 165:248–256. https://doi.org/10.1006/exnr.2000.7479
Article
CAS
PubMed
Google Scholar
Garcia-Arocena D, Hagerman PJ (2010) Advances in understanding the molecular basis of FXTAS. Hum Mol Genet 19:R83–R89. https://doi.org/10.1093/hmg/ddq166
Article
CAS
PubMed
PubMed Central
Google Scholar
Geronimo-Olvera C, Montiel T, Rincon-Heredia R, Castro-Obregon S, Massieu L (2017) Autophagy fails to prevent glucose deprivation/glucose reintroduction-induced neuronal death due to calpain-mediated lysosomal dysfunction in cortical neurons. Cell Death Dis 8:e2911. https://doi.org/10.1038/cddis.2017.299
Article
CAS
PubMed
PubMed Central
Google Scholar
Gittings LM, Foti SC, Benson BC, Gami-Patel P, Isaacs AM, Lashley T (2019) Heterogeneous nuclear ribonucleoproteins R and Q accumulate in pathological inclusions in FTLD-FUS. Acta Neuropathol Commun 7:18. https://doi.org/10.1186/s40478-019-0673-y
Article
PubMed
PubMed Central
Google Scholar
Glineburg MR, Todd PK, Charlet-Berguerand N, Sellier C (2018) Repeat-associated non-AUG (RAN) translation and other molecular mechanisms in Fragile X Tremor Ataxia Syndrome. Brain Res 1693:43–54. https://doi.org/10.1016/j.brainres.2018.02.006
Article
CAS
PubMed
PubMed Central
Google Scholar
Gobert V, Haenlin M, Waltzer L (2012) Myeloid leukemia factor: a return ticket from human leukemia to fly hematopoiesis. Transcription 3:250–254. https://doi.org/10.4161/trns.21490
Article
PubMed
PubMed Central
Google Scholar
Gozal YM, Dammer EB, Duong DM, Cheng D, Gearing M, Rees HD, Peng J, Lah JJ, Levey AI (2011) Proteomic analysis of hippocampal dentate granule cells in frontotemporal lobar degeneration: application of laser capture technology. Front Neurol 2:24. https://doi.org/10.3389/fneur.2011.00024
Article
PubMed
PubMed Central
Google Scholar
Greco CM, Berman RF, Martin RM, Tassone F, Schwartz PH, Chang A, Trapp BD, Iwahashi C, Brunberg J, Grigsby J, Hessl D, Becker EJ, Papazian J, Leehey MA, Hagerman RJ, Hagerman PJ (2006) Neuropathology of fragile X-associated tremor/ataxia syndrome (FXTAS). Brain 129:243–255. https://doi.org/10.1093/brain/awh683
Article
CAS
PubMed
Google Scholar
Greco CM, Hagerman RJ, Tassone F, Chudley AE, Del Bigio MR, Jacquemont S, Leehey M, Hagerman PJ (2002) Neuronal intranuclear inclusions in a new cerebellar tremor/ataxia syndrome among fragile X carriers. Brain 125:1760–1771. https://doi.org/10.1093/brain/awf184
Article
CAS
PubMed
Google Scholar
Gursky O, Aleshkov S (2000) Temperature-dependent beta-sheet formation in beta-amyloid Abeta (1-40) peptide in water: uncoupling beta-structure folding from aggregation. Biochim Biophys Acta 1476:93–102. https://doi.org/10.1016/s0167-4838(99)00228-9
Article
CAS
PubMed
Google Scholar
Guzzo CM, Matunis MJ (2013) Expanding SUMO and ubiquitin-mediated signaling through hybrid SUMO-ubiquitin chains and their receptors. Cell Cycle 12:1015–1017. https://doi.org/10.4161/cc.24332
Article
CAS
PubMed
PubMed Central
Google Scholar
Hagerman P (2013) Fragile X-associated tremor/ataxia syndrome (FXTAS): pathology and mechanisms. Acta Neuropathol 126:1–19. https://doi.org/10.1007/s00401-013-1138-1
Article
CAS
PubMed
PubMed Central
Google Scholar
Hagerman PJ, Hagerman RJ (2015) Fragile X-associated tremor/ataxia syndrome. Ann N Y Acad Sci 1338:58–70. https://doi.org/10.1111/nyas.12693
Article
CAS
PubMed
PubMed Central
Google Scholar
Hagerman RJ, Hagerman P (2016) Fragile X-associated tremor/ataxia syndrome - features, mechanisms and management. Nat Rev Neurol 12:403–412. https://doi.org/10.1038/nrneurol.2016.82
Article
CAS
PubMed
Google Scholar
Hall DA, Berry-Kravis E (2018) Fragile X syndrome and fragile X-associated tremor ataxia syndrome. Handbook of clinical neurology 147:377–391. https://doi.org/10.1016/b978-0-444-63233-3.00025-7
Article
PubMed
Google Scholar
Hall DA, Robertson E, Shelton AL, Losh MC, Mila M, Moreno EG, Gomez-Anson B, Martinez-Cerdeno V, Grigsby J, Lozano R, Hagerman R, Maria LS, Berry-Kravis E, O'Keefe JA (2016) Update on the Clinical, Radiographic, and Neurobehavioral Manifestations in FXTAS and FMR1 Premutation Carriers. Cerebellum 15:578–586. https://doi.org/10.1007/s12311-016-0799-4
Article
CAS
PubMed
PubMed Central
Google Scholar
Han SJ, Jang HS, Noh MR, Kim J, Kong MJ, Kim JI, Park JW, Park KM (2017) Mitochondrial NADP(+)-Dependent Isocitrate Dehydrogenase Deficiency Exacerbates Mitochondrial and Cell Damage after Kidney Ischemia-Reperfusion Injury. J Am Soc Nephrol 28:1200–1215. https://doi.org/10.1681/ASN.2016030349
Article
CAS
PubMed
Google Scholar
Haslbeck M, Vierling E (2015) A first line of stress defense: small heat shock proteins and their function in protein homeostasis. J Mol Biol 427:1537–1548. https://doi.org/10.1016/j.jmb.2015.02.002
Article
CAS
PubMed
PubMed Central
Google Scholar
Henderson MX, Chung CH, Riddle DM, Zhang B, Gathagan RJ, Seeholzer SH, Trojanowski JQ, Lee VMY (2017) Unbiased Proteomics of Early Lewy Body Formation Model Implicates Active Microtubule Affinity-Regulating Kinases (MARKs) in Synucleinopathies. J Neurosci 37:5870–5884. https://doi.org/10.1523/JNEUROSCI.2705-16.2017
Article
CAS
PubMed
PubMed Central
Google Scholar
Hendriks IA, Lyon D, Su D, Skotte NH, Daniel JA, Jensen LJ, Nielsen ML (2018) Site-specific characterization of endogenous SUMOylation across species and organs. Nat Commun 9:2456. https://doi.org/10.1038/s41467-018-04957-4
Article
CAS
PubMed
PubMed Central
Google Scholar
Hewitt G, Carroll B, Sarallah R, Correia-Melo C, Ogrodnik M, Nelson G, Otten EG, Manni D, Antrobus R, Morgan BA, von Zglinicki T, Jurk D, Seluanov A, Gorbunova V, Johansen T, Passos JF, Korolchuk VI (2016) SQSTM1/p62 mediates crosstalk between autophagy and the UPS in DNA repair. Autophagy 12:1917–1930. https://doi.org/10.1080/15548627.2016.1210368
Article
CAS
PubMed
PubMed Central
Google Scholar
Hilgarth RS, Sarge KD (2005) Detection of sumoylated proteins. Methods Mol Biol 301:329–338. https://doi.org/10.1385/1-59259-895-1:329
Article
CAS
PubMed
Google Scholar
Hoem G, Bowitz Larsen K, Overvatn A, Brech A, Lamark T, Sjottem E, Johansen T (2019) The FMRpolyGlycine Protein Mediates Aggregate Formation and Toxicity Independent of the CGG mRNA Hairpin in a Cellular Model for FXTAS. Front Genet 10:249. https://doi.org/10.3389/fgene.2019.00249
Article
CAS
PubMed
PubMed Central
Google Scholar
Hoem G, Raske CR, Garcia-Arocena D, Tassone F, Sanchez E, Ludwig AL, Iwahashi CK, Kumar M, Yang JE, Hagerman PJ (2011) CGG-repeat length threshold for FMR1 RNA pathogenesis in a cellular model for FXTAS. Hum Mol Genet 20:2161–2170. https://doi.org/10.1093/hmg/ddr101
Article
CAS
PubMed
PubMed Central
Google Scholar
Hunsaker MR, Greco CM, Tassone F, Berman RF, Willemsen R, Hagerman RJ, Hagerman PJ (2011) Rare intranuclear inclusions in the brains of 3 older adult males with fragile x syndrome: implications for the spectrum of fragile x-associated disorders. J Neuropathol Exp Neurol 70:462–469. https://doi.org/10.1097/NEN.0b013e31821d3194
Article
CAS
PubMed
Google Scholar
Isogai S, Morimoto D, Arita K, Unzai S, Tenno T, Hasegawa J, Sou YS, Komatsu M, Tanaka K, Shirakawa M, Tochio H (2011) Crystal structure of the ubiquitin-associated (UBA) domain of p62 and its interaction with ubiquitin. J Biol Chem 286:31864–31874. https://doi.org/10.1074/jbc.M111.259630
Article
CAS
PubMed
PubMed Central
Google Scholar
Iwahashi C, Hagerman PJ (2008) Isolation of pathology-associated intranuclear inclusions. Methods Mol Biol 463:181–190. https://doi.org/10.1007/978-1-59745-406-3_13
Article
CAS
PubMed
Google Scholar
Iwahashi CK, Yasui DH, An HJ, Greco CM, Tassone F, Nannen K, Babineau B, Lebrilla CB, Hagerman RJ, Hagerman PJ (2006) Protein composition of the intranuclear inclusions of FXTAS. Brain 129:256–271. https://doi.org/10.1093/brain/awh650
Article
CAS
PubMed
Google Scholar
Iwatsubo T (2003) Aggregation of alpha-synuclein in the pathogenesis of Parkinson's disease. J Neurol 250(Suppl 3):III11–III14. https://doi.org/10.1007/s00415-003-1303-x
Article
CAS
PubMed
Google Scholar
Jin P, Duan R, Qurashi A, Qin Y, Tian D, Rosser TC, Liu H, Feng Y, Warren ST (2007) Pur alpha binds to rCGG repeats and modulates repeat-mediated neurodegeneration in a Drosophila model of fragile X tremor/ataxia syndrome. Neuron 55:556–564. https://doi.org/10.1016/j.neuron.2007.07.020
Article
CAS
PubMed
PubMed Central
Google Scholar
Jo SH, Son MK, Koh HJ, Lee SM, Song IH, Kim YO, Lee YS, Jeong KS, Kim WB, Park JW, Song BJ, Huh TL (2001) Control of mitochondrial redox balance and cellular defense against oxidative damage by mitochondrial NADP+-dependent isocitrate dehydrogenase. J Biol Chem 276:16168–16176. https://doi.org/10.1074/jbc.M010120200
Article
CAS
PubMed
Google Scholar
Kametani F, Obi T, Shishido T, Akatsu H, Murayama S, Saito Y, Yoshida M, Hasegawa M (2016) Mass spectrometric analysis of accumulated TDP-43 in amyotrophic lateral sclerosis brains. Sci Rep 6:23281. https://doi.org/10.1038/srep23281
Article
CAS
PubMed
PubMed Central
Google Scholar
Kang C, Xu Q, Martin TD, Li MZ, Demaria M, Aron L, Lu T, Yankner BA, Campisi J, Elledge SJ (2015) The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4. Science 349:aaa5612. https://doi.org/10.1126/science.aaa5612
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaplan ES, Cao Z, Hulsizer S, Tassone F, Berman RF, Hagerman PJ, Pessah IN (2012) Early mitochondrial abnormalities in hippocampal neurons cultured from Fmr1 pre-mutation mouse model. J Neurochem 123:613–621. https://doi.org/10.1111/j.1471-4159.2012.07936.x
Article
CAS
PubMed
PubMed Central
Google Scholar
Kawamoto Y, Akiguchi I, Shirakashi Y, Honjo Y, Tomimoto H, Takahashi R, Budka H (2007) Accumulation of Hsc70 and Hsp70 in glial cytoplasmic inclusions in patients with multiple system atrophy. Brain Res 1136:219–227. https://doi.org/10.1016/j.brainres.2006.12.049
Article
CAS
PubMed
Google Scholar
Keller JN, Hanni KB, Markesbery WR (2000) Impaired proteasome function in Alzheimer's disease. J Neurochem 75:436–439. https://doi.org/10.1046/j.1471-4159.2000.0750436.x
Article
CAS
PubMed
Google Scholar
Kelner MJ, Estes L, Rutherford M, Uglik SF, Peitzke JA (1997) Heterologous expression of carbonyl reductase: demonstration of prostaglandin 9-ketoreductase activity and paraquat resistance. Life Sci 61:2317–2322. https://doi.org/10.1016/s0024-3205(97)00935-1
Article
CAS
PubMed
Google Scholar
Kenneson A, Zhang F, Hagedorn CH, Warren ST (2001) Reduced FMRP and increased FMR1 transcription is proportionally associated with CGG repeat number in intermediate-length and premutation carriers. Hum Mol Genet 10:1449–1454. https://doi.org/10.1093/hmg/10.14.1449
Article
CAS
PubMed
Google Scholar
Kim SJ, Yune TY, Han CT, Kim YC, Oh YJ, Markelonis GJ, Oh TH (2007) Mitochondrial isocitrate dehydrogenase protects human neuroblastoma SH-SY5Y cells against oxidative stress. J Neurosci Res 85:139–152. https://doi.org/10.1002/jnr.21106
Article
CAS
PubMed
Google Scholar
Kimber TE, Blumbergs PC, Rice JP, Hallpike JF, Edis R, Thompson PD, Suthers G (1998) Familial neuronal intranuclear inclusion disease with ubiquitin positive inclusions. J Neurol Sci 160:33–40. https://doi.org/10.1016/s0022-510x(98)00169-5
Article
CAS
PubMed
Google Scholar
Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E, Tanaka K (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441:880–884. https://doi.org/10.1038/nature04723
Article
CAS
PubMed
Google Scholar
Koyano S, Uchihara T, Fujigasaki H, Nakamura A, Yagishita S, Iwabuchi K (1999) Neuronal intranuclear inclusions in spinocerebellar ataxia type 2: triple-labeling immunofluorescent study. Neurosci Lett 273:117–120. https://doi.org/10.1016/s0304-3940(99)00656-4
Article
CAS
PubMed
Google Scholar
Kurosawa M, Matsumoto G, Kino Y, Okuno M, Kurosawa-Yamada M, Washizu C, Taniguchi H, Nakaso K, Yanagawa T, Warabi E, Shimogori T, Sakurai T, Hattori N, Nukina N (2015) Depletion of p62 reduces nuclear inclusions and paradoxically ameliorates disease phenotypes in Huntington's model mice. Hum Mol Genet 24:1092–1105. https://doi.org/10.1093/hmg/ddu522
Article
CAS
PubMed
Google Scholar
Landry CF, Ellison JA, Pribyl TM, Campagnoni C, Kampf K, Campagnoni AT (1996) Myelin basic protein gene expression in neurons: developmental and regional changes in protein targeting within neuronal nuclei, cell bodies, and processes. J Neurosci 16:2452–2462
Article
CAS
PubMed
PubMed Central
Google Scholar
Li S, Wang M, Qu X, Xu Z, Yang Y, Su Q, Wu H (2016) SUMOylation of PES1 upregulates its stability and function via inhibiting its ubiquitination. Oncotarget 7:50522–50534. https://doi.org/10.18632/oncotarget.10494
Article
PubMed
PubMed Central
Google Scholar
Li X, Zhang Y, Hu Y, Chang M, Liu T, Wang D, Zhang Y, Zhang L, Hu L (2008) Chaperone proteins identified from synthetic proteasome inhibitor-induced inclusions in PC12 cells by proteomic analysis. Acta Biochim Biophys Sin (Shanghai) 40:406–418. https://doi.org/10.1111/j.1745-7270.2008.00416.x
Article
CAS
Google Scholar
Li X, Zhang Y, Xie P, Piao J, Hu Y, Chang M, Liu T, Hu L (2010) Proteomic characterization of an isolated fraction of synthetic proteasome inhibitor (PSI)-induced inclusions in PC12 cells might offer clues to aggresomes as a cellular defensive response against proteasome inhibition by PSI. BMC Neurosci 11:95. https://doi.org/10.1186/1471-2202-11-95
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Y, Jin P (2012) RNA-mediated neurodegeneration in fragile X-associated tremor/ataxia syndrome. Brain Res 1462:112–117. https://doi.org/10.1016/j.brainres.2012.02.057
Article
CAS
PubMed
PubMed Central
Google Scholar
Liebelt F, Vertegaal AC (2016) Ubiquitin-dependent and independent roles of SUMO in proteostasis. Am J Physiol Cell Physiol 311:C284–C296. https://doi.org/10.1152/ajpcell.00091.2016
Article
PubMed
PubMed Central
Google Scholar
Lilienbaum A (2013) Relationship between the proteasomal system and autophagy. International journal of biochemistry and molecular biology 4:1–26
CAS
PubMed
PubMed Central
Google Scholar
Liu J, Koscielska KA, Cao Z, Hulsizer S, Grace N, Mitchell G, Nacey C, Githinji J, McGee J, Garcia-Arocena D, Hagerman RJ, Nolta J, Pessah IN, Hagerman PJ (2012) Signaling defects in iPSC-derived fragile X premutation neurons. Hum Mol Genet 21:3795–3805. https://doi.org/10.1093/hmg/dds207
Article
CAS
PubMed
PubMed Central
Google Scholar
Loesch DZ, Sherwell S, Kinsella G, Tassone F, Taylor A, Amor D, Sung S, Evans A (2012) Fragile X-associated tremor/ataxia phenotype in a male carrier of unmethylated full mutation in the FMR1 gene. Clin Genet 82:88–92. https://doi.org/10.1111/j.1399-0004.2011.01675.x
Article
CAS
PubMed
Google Scholar
Lovtrup-Rein H, McEwen BS (1966) Isolation and fractionation of rat brain nuclei. J Cell Biol 30:405–415. https://doi.org/10.1083/jcb.30.2.405
Article
CAS
PubMed
PubMed Central
Google Scholar
Low P (2011) The role of ubiquitin-proteasome system in ageing. Gen Comp Endocrinol 172:39–43. https://doi.org/10.1016/j.ygcen.2011.02.005
Article
CAS
PubMed
Google Scholar
Luo HB, Xia YY, Shu XJ, Liu ZC, Feng Y, Liu XH, Yu G, Yin G, Xiong YS, Zeng K, Jiang J, Ye K, Wang XC, Wang JZ (2014) SUMOylation at K340 inhibits tau degradation through deregulating its phosphorylation and ubiquitination. Proc Natl Acad Sci U S A 111:16586–16591. https://doi.org/10.1073/pnas.1417548111
Article
CAS
PubMed
PubMed Central
Google Scholar
Luo J, Gurung S, Lee L, Henley JM, Wilkinson KA, Guo C (2017) Increased SUMO-2/3-ylation mediated by SENP3 degradation is protective against cadmium-induced caspase 3-dependent cytotoxicity. J Toxicol Sci 42:529–538. https://doi.org/10.2131/jts.42.529
Article
CAS
PubMed
Google Scholar
Mackenzie IR, Bigio EH, Ince PG, Geser F, Neumann M, Cairns NJ, Kwong LK, Forman MS, Ravits J, Stewart H, Eisen A, McClusky L, Kretzschmar HA, Monoranu CM, Highley JR, Kirby J, Siddique T, Shaw PJ, Lee VM, Trojanowski JQ (2007) Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations. Ann Neurol 61:427–434. https://doi.org/10.1002/ana.21147
Article
CAS
PubMed
Google Scholar
Mackenzie IR, Frick P, Grasser FA, Gendron TF, Petrucelli L, Cashman NR, Edbauer D, Kremmer E, Prudlo J, Troost D, Neumann M (2015) Quantitative analysis and clinico-pathological correlations of different dipeptide repeat protein pathologies in C9ORF72 mutation carriers. Acta Neuropathol 130:845–861. https://doi.org/10.1007/s00401-015-1476-2
Article
CAS
PubMed
Google Scholar
Mankodi A, Urbinati CR, Yuan QP, Moxley RT, Sansone V, Krym M, Henderson D, Schalling M, Swanson MS, Thornton CA (2001) Muscleblind localizes to nuclear foci of aberrant RNA in myotonic dystrophy types 1 and 2. Hum Mol Genet 10:2165–2170. https://doi.org/10.1093/hmg/10.19.2165
Article
CAS
PubMed
Google Scholar
Marinello M, Werner A, Giannone M, Tahiri K, Alves S, Tesson C, den Dunnen W, Seeler JS, Brice A, Sittler A (2019) SUMOylation by SUMO2 is implicated in the degradation of misfolded ataxin-7 via RNF4 in SCA7 models. Dis Model Mech 12. https://doi.org/10.1242/dmm.036145
May S, Hornburg D, Schludi MH, Arzberger T, Rentzsch K, Schwenk BM, Grasser FA, Mori K, Kremmer E, Banzhaf-Strathmann J, Mann M, Meissner F, Edbauer D (2014) C9orf72 FTLD/ALS-associated Gly-Ala dipeptide repeat proteins cause neuronal toxicity and Unc119 sequestration. Acta Neuropathol 128:485–503. https://doi.org/10.1007/s00401-014-1329-4
Article
CAS
PubMed
PubMed Central
Google Scholar
Maziuk BF, Apicco DJ, Cruz AL, Jiang L, Ash PEA, da Rocha EL, Zhang C, Yu WH, Leszyk J, Abisambra JF, Li H, Wolozin B (2018) RNA binding proteins co-localize with small tau inclusions in tauopathy. Acta Neuropathol Commun 6:71. https://doi.org/10.1186/s40478-018-0574-5
Article
CAS
PubMed
PubMed Central
Google Scholar
McCormack A, Keating DJ, Chegeni N, Colella A, Wang JJ, Chataway T (2019) Abundance of Synaptic Vesicle-Related Proteins in Alpha-Synuclein-Containing Protein Inclusions Suggests a Targeted Formation Mechanism. Neurotox Res 35:883–897. https://doi.org/10.1007/s12640-019-00014-0
Article
CAS
PubMed
Google Scholar
McEwen BS, Zigmond RE (1972) Isolation of Brain Cell Nuclei. In: Marks N, Rodnight R (eds) Research Methods in Neurochemistry, Springer, vol 1. Boston, MA, pp 139–161
Chapter
Google Scholar
Menzies FM, Fleming A, Caricasole A, Bento CF, Andrews SP, Ashkenazi A, Fullgrabe J, Jackson A, Jimenez Sanchez M, Karabiyik C, Licitra F, Lopez Ramirez A, Pavel M, Puri C, Renna M, Ricketts T, Schlotawa L, Vicinanza M, Won H, Zhu Y, Skidmore J, Rubinsztein DC (2017) Autophagy and Neurodegeneration: Pathogenic Mechanisms and Therapeutic Opportunities. Neuron 93:1015–1034. https://doi.org/10.1016/j.neuron.2017.01.022
Article
CAS
PubMed
Google Scholar
Miteva M, Keusekotten K, Hofmann K, Praefcke GJ, Dohmen RJ (2010) Sumoylation as a signal for polyubiquitylation and proteasomal degradation. Sub-cellular biochemistry 54:195–214. https://doi.org/10.1007/978-1-4419-6676-6_16
Article
CAS
PubMed
Google Scholar
Mitsui K, Nakayama H, Akagi T, Nekooki M, Ohtawa K, Takio K, Hashikawa T, Nukina N (2002) Purification of polyglutamine aggregates and identification of elongation factor-1alpha and heat shock protein 84 as aggregate-interacting proteins. J Neurosci 22:9267–9277
Article
CAS
PubMed
PubMed Central
Google Scholar
Mori F, Tanji K, Miki Y, Toyoshima Y, Sasaki H, Yoshida M, Kakita A, Takahashi H, Wakabayashi K (2018) Immunohistochemical localization of exoribonucleases (DIS3L2 and XRN1) in intranuclear inclusion body disease. Neurosci Lett 662:389–394. https://doi.org/10.1016/j.neulet.2017.10.061
Article
CAS
PubMed
Google Scholar
Myeku N, Clelland CL, Emrani S, Kukushkin NV, Yu WH, Goldberg AL, Duff KE (2016) Tau-driven 26S proteasome impairment and cognitive dysfunction can be prevented early in disease by activating cAMP-PKA signaling. Nat Med 22:46–53. https://doi.org/10.1038/nm.4011
Article
CAS
PubMed
Google Scholar
Napoli E, Ross-Inta C, Wong S, Omanska-Klusek A, Barrow C, Iwahashi C, Garcia-Arocena D, Sakaguchi D, Berry-Kravis E, Hagerman R, Hagerman PJ, Giulivi C (2011) Altered zinc transport disrupts mitochondrial protein processing/import in fragile X-associated tremor/ataxia syndrome. Hum Mol Genet 20:3079–3092. https://doi.org/10.1093/hmg/ddr211
Article
CAS
PubMed
PubMed Central
Google Scholar
Nemes Z, Petrovski G, Aerts M, Sergeant K, Devreese B, Fesus L (2009) Transglutaminase-mediated intramolecular cross-linking of membrane-bound alpha-synuclein promotes amyloid formation in Lewy bodies. J Biol Chem 284:27252–27264. https://doi.org/10.1074/jbc.M109.033969
Article
PubMed
PubMed Central
Google Scholar
Nielsen SV, Poulsen EG, Rebula CA, Hartmann-Petersen R (2014) Protein quality control in the nucleus. Biomolecules 4:646–661. https://doi.org/10.3390/biom4030646
Article
CAS
PubMed
PubMed Central
Google Scholar
Norman JM, Cohen GM, Bampton ET (2010) The in vitro cleavage of the hAtg proteins by cell death proteases. Autophagy 6:1042–1056. https://doi.org/10.4161/auto.6.8.13337
Article
CAS
PubMed
Google Scholar
Oh SY, He F, Krans A, Frazer M, Taylor JP, Paulson HL, Todd PK (2015) RAN translation at CGG repeats induces ubiquitin proteasome system impairment in models of fragile X-associated tremor ataxia syndrome. Hum Mol Genet 24:4317–4326. https://doi.org/10.1093/hmg/ddv165
Article
CAS
PubMed
PubMed Central
Google Scholar
O'Rourke JG, Gareau JR, Ochaba J, Song W, Rasko T, Reverter D, Lee J, Monteys AM, Pallos J, Mee L, Vashishtha M, Apostol BL, Nicholson TP, Illes K, Zhu YZ, Dasso M, Bates GP, Difiglia M, Davidson B, Wanker EE, Marsh JL, Lima CD, Steffan JS, Thompson LM (2013) SUMO-2 and PIAS1 modulate insoluble mutant huntingtin protein accumulation. Cell Rep 4:362–375. https://doi.org/10.1016/j.celrep.2013.06.034
Article
CAS
PubMed
PubMed Central
Google Scholar
Ottis P, Koppe K, Onisko B, Dynin I, Arzberger T, Kretzschmar H, Requena JR, Silva CJ, Huston JP, Korth C (2012) Human and rat brain lipofuscin proteome. Proteomics 12:2445–2454. https://doi.org/10.1002/pmic.201100668
Article
CAS
PubMed
Google Scholar
Pankiv S, Lamark T, Bruun JA, Overvatn A, Bjorkoy G, Johansen T (2010) Nucleocytoplasmic shuttling of p62/SQSTM1 and its role in recruitment of nuclear polyubiquitinated proteins to promyelocytic leukemia bodies. J Biol Chem 285:5941–5953. https://doi.org/10.1074/jbc.M109.039925
Article
CAS
PubMed
Google Scholar
Pedraza L, Fidler L, Staugaitis SM, Colman DR (1997) The active transport of myelin basic protein into the nucleus suggests a regulatory role in myelination. Neuron 18:579–589
Article
CAS
PubMed
Google Scholar
Petersen TW, Brent Harrison C, Horner DN, van den Engh G (2012) Flow cytometric characterization of marine microbes. Methods 57:350–358. https://doi.org/10.1016/j.ymeth.2012.07.001
Article
CAS
PubMed
Google Scholar
Pountney DL, Huang Y, Burns RJ, Haan E, Thompson PD, Blumbergs PC, Gai WP (2003) SUMO-1 marks the nuclear inclusions in familial neuronal intranuclear inclusion disease. Exp Neurol 184:436–446. https://doi.org/10.1016/j.expneurol.2003.07.004
Article
CAS
PubMed
Google Scholar
Pountney DL, Raftery MJ, Chegini F, Blumbergs PC, Gai WP (2008) NSF, Unc-18-1, dynamin-1 and HSP90 are inclusion body components in neuronal intranuclear inclusion disease identified by anti-SUMO-1-immunocapture. Acta Neuropathol 116:603–614. https://doi.org/10.1007/s00401-008-0437-4
Article
CAS
PubMed
Google Scholar
Pountney DL, Treweek TM, Chataway T, Huang Y, Chegini F, Blumbergs PC, Raftery MJ, Gai WP (2005) Alpha B-crystallin is a major component of glial cytoplasmic inclusions in multiple system atrophy. Neurotox Res 7:77–85
Article
CAS
PubMed
Google Scholar
Pretto D, Yrigollen CM, Tang HT, Williamson J, Espinal G, Iwahashi CK, Durbin-Johnson B, Hagerman RJ, Hagerman PJ, Tassone F (2014) Clinical and molecular implications of mosaicism in FMR1 full mutations. Front Genet 5:318. https://doi.org/10.3389/fgene.2014.00318
Article
CAS
PubMed
PubMed Central
Google Scholar
Pretto DI, Hunsaker MR, Cunningham CL, Greco CM, Hagerman RJ, Noctor SC, Hall DA, Hagerman PJ, Tassone F (2013) Intranuclear inclusions in a fragile X mosaic male. Transl Neurodegener 2:10. https://doi.org/10.1186/2047-9158-2-10
Article
CAS
PubMed
PubMed Central
Google Scholar
Qurashi A, Li W, Zhou JY, Peng J, Jin P (2011) Nuclear accumulation of stress response mRNAs contributes to the neurodegeneration caused by Fragile X premutation rCGG repeats. PLoS Genet 7:e1002102. https://doi.org/10.1371/journal.pgen.1002102
Article
CAS
PubMed
PubMed Central
Google Scholar
Rhoades E (ed) (2018) Intrinsically Disordered Proteins, vol 611. Academic Press, Cambridge, MA
Google Scholar
Robin G, Lopez JR, Espinal GM, Hulsizer S, Hagerman PJ, Pessah IN (2017) Calcium dysregulation and Cdk5-ATM pathway involved in a mouse model of fragile X-associated tremor/ataxia syndrome. Hum Mol Genet 26:2649–2666. https://doi.org/10.1093/hmg/ddx148
Article
CAS
PubMed
PubMed Central
Google Scholar
Rodriguez CM, Todd PK (2019) New pathologic mechanisms in nucleotide repeat expansion disorders. Neurobiol Dis 130:104515. https://doi.org/10.1016/j.nbd.2019.104515
Article
CAS
PubMed
PubMed Central
Google Scholar
Roshchina VV (2012) Vital Autofluorescence: Application to the Study of Plant Living Cells. International Journal of Spectroscopy 2012:14. https://doi.org/10.1155/2012/124672
Article
CAS
Google Scholar
Ross-Inta C, Omanska-Klusek A, Wong S, Barrow C, Garcia-Arocena D, Iwahashi C, Berry-Kravis E, Hagerman RJ, Hagerman PJ, Giulivi C (2010) Evidence of mitochondrial dysfunction in fragile X-associated tremor/ataxia syndrome. Biochem J 429:545–552. https://doi.org/10.1042/BJ20091960
Article
CAS
PubMed
Google Scholar
Rotondo R, Moschini R, Renzone G, Tuccinardi T, Balestri F, Cappiello M, Scaloni A, Mura U, Del-Corso A (2016) Human carbonyl reductase 1 as efficient catalyst for the reduction of glutathionylated aldehydes derived from lipid peroxidation. Free Radic Biol Med 99:323–332. https://doi.org/10.1016/j.freeradbiomed.2016.08.015
Article
CAS
PubMed
Google Scholar
Sagne C, Isambert MF, Henry JP, Gasnier B (1996) SDS-resistant aggregation of membrane proteins: application to the purification of the vesicular monoamine transporter. Biochem J 316(Pt 3):825–831. https://doi.org/10.1042/bj3160825
Article
CAS
PubMed
PubMed Central
Google Scholar
Sato K, Murakami T, Hamakawa Y, Kamada H, Nagano I, Shoji M, Takata H, Nobukuni K, Ihara Y, Namba R, Hayabara T, Hirose S, Abe K (2002) Selective colocalization of transglutaminase-like activity in ubiquitinated intranuclear inclusions of hereditary dentatorubral-pallidoluysian atrophy. Brain Res 952:327–330. https://doi.org/10.1016/s0006-8993(02)03244-4
Article
CAS
PubMed
Google Scholar
Schludi MH, Becker L, Garrett L, Gendron TF, Zhou Q, Schreiber F, Popper B, Dimou L, Strom TM, Winkelmann J, von Thaden A, Rentzsch K, May S, Michaelsen M, Schwenk BM, Tan J, Schoser B, Dieterich M, Petrucelli L, Holter SM, Wurst W, Fuchs H, Gailus-Durner V, de Angelis MH, Klopstock T, Arzberger T, Edbauer D (2017) Spinal poly-GA inclusions in a C9orf72 mouse model trigger motor deficits and inflammation without neuron loss. Acta Neuropathol 134:241–254. https://doi.org/10.1007/s00401-017-1711-0
Article
CAS
PubMed
PubMed Central
Google Scholar
Sellier C, Buijsen RAM, He F, Natla S, Jung L, Tropel P, Gaucherot A, Jacobs H, Meziane H, Vincent A, Champy MF, Sorg T, Pavlovic G, Wattenhofer-Donze M, Birling MC, Oulad-Abdelghani M, Eberling P, Ruffenach F, Joint M, Anheim M, Martinez-Cerdeno V, Tassone F, Willemsen R, Hukema RK, Viville S, Martinat C, Todd PK, Charlet-Berguerand N (2017) Translation of Expanded CGG Repeats into FMRpolyG Is Pathogenic and May Contribute to Fragile X Tremor Ataxia Syndrome. Neuron 93:331–347. https://doi.org/10.1016/j.neuron.2016.12.016
Article
CAS
PubMed
PubMed Central
Google Scholar
Sellier C, Freyermuth F, Tabet R, Tran T, He F, Ruffenach F, Alunni V, Moine H, Thibault C, Page A, Tassone F, Willemsen R, Disney MD, Hagerman PJ, Todd PK, Charlet-Berguerand N (2013) Sequestration of DROSHA and DGCR8 by expanded CGG RNA repeats alters microRNA processing in fragile X-associated tremor/ataxia syndrome. Cell Rep 3:869–880. https://doi.org/10.1016/j.celrep.2013.02.004
Article
CAS
PubMed
PubMed Central
Google Scholar
Sellier C, Rau F, Liu Y, Tassone F, Hukema RK, Gattoni R, Schneider A, Richard S, Willemsen R, Elliott DJ, Hagerman PJ, Charlet-Berguerand N (2010) Sam68 sequestration and partial loss of function are associated with splicing alterations in FXTAS patients. EMBO J 29:1248–1261. https://doi.org/10.1038/emboj.2010.21
Article
CAS
PubMed
PubMed Central
Google Scholar
Seyfried NT, Gozal YM, Donovan LE, Herskowitz JH, Dammer EB, Xia Q, Ku L, Chang J, Duong DM, Rees HD, Cooper DS, Glass JD, Gearing M, Tansey MG, Lah JJ, Feng Y, Levey AI, Peng J (2012) Quantitative analysis of the detergent-insoluble brain proteome in frontotemporal lobar degeneration using SILAC internal standards. J Proteome Res 11:2721–2738. https://doi.org/10.1021/pr2010814
Article
CAS
PubMed
PubMed Central
Google Scholar
Sinigalliano CD, Winshell J, Guerrero MA, Scorzetti G, Fell JW, Eaton RW, Brand L, Rein KS (2009) Viable cell sorting of dinoflagellates by multiparametric flow cytometry. Phycologia 48:249–257
Article
PubMed
PubMed Central
Google Scholar
Sofola OA, Jin P, Qin Y, Duan R, Liu H, de Haro M, Nelson DL, Botas J (2007) RNA-binding proteins hnRNP A2/B1 and CUGBP1 suppress fragile X CGG premutation repeat-induced neurodegeneration in a Drosophila model of FXTAS. Neuron 55:565–571. https://doi.org/10.1016/j.neuron.2007.07.021
Article
CAS
PubMed
PubMed Central
Google Scholar
Song G, Napoli E, Wong S, Hagerman R, Liu S, Tassone F, Giulivi C (2016) Altered redox mitochondrial biology in the neurodegenerative disorder fragile X-tremor/ataxia syndrome: use of antioxidants in precision medicine. Mol Med 22:548–559. https://doi.org/10.2119/molmed.2016.00122
Article
CAS
PubMed
PubMed Central
Google Scholar
Steffan JS, Agrawal N, Pallos J, Rockabrand E, Trotman LC, Slepko N, Illes K, Lukacsovich T, Zhu YZ, Cattaneo E, Pandolfi PP, Thompson LM, Marsh JL (2004) SUMO modification of Huntingtin and Huntington's disease pathology. Science 304:100–104. https://doi.org/10.1126/science.1092194
Article
CAS
PubMed
Google Scholar
Tanaka G, Yamanaka T, Furukawa Y, Kajimura N, Mitsuoka K, Nukina N (2019) Biochemical and morphological classification of disease-associated alpha-synuclein mutants aggregates. Biochem Biophys Res Commun 508:729–734. https://doi.org/10.1016/j.bbrc.2018.11.200
Article
CAS
PubMed
Google Scholar
Tassone F, Hagerman RJ, Taylor AK, Gane LW, Godfrey TE, Hagerman PJ (2000) Elevated levels of FMR1 mRNA in carrier males: a new mechanism of involvement in the fragile-X syndrome. Am J Hum Genet 66:6–15. https://doi.org/10.1086/302720
Article
CAS
PubMed
PubMed Central
Google Scholar
Tassone F, Iwahashi C, Hagerman PJ (2004) FMR1 RNA within the intranuclear inclusions of fragile X-associated tremor/ataxia syndrome (FXTAS). RNA Biol 1:103–105. https://doi.org/10.4161/rna.1.2.1035
Article
CAS
PubMed
Google Scholar
Timchenko LT, Miller JW, Timchenko NA, DeVore DR, Datar KV, Lin L, Roberts R, Caskey CT, Swanson MS (1996) Identification of a (CUG) n triplet repeat RNA-binding protein and its expression in myotonic dystrophy. Nucleic Acids Res 24:4407–4414. https://doi.org/10.1093/nar/24.22.4407
Article
CAS
PubMed
PubMed Central
Google Scholar
Todd PK, Oh SY, Krans A, He F, Sellier C, Frazer M, Renoux AJ, Chen KC, Scaglione KM, Basrur V, Elenitoba-Johnson K, Vonsattel JP, Louis ED, Sutton MA, Taylor JP, Mills RE, Charlet-Berguerand N, Paulson HL (2013) CGG repeat-associated translation mediates neurodegeneration in fragile X tremor ataxia syndrome. Neuron 78:440–455. https://doi.org/10.1016/j.neuron.2013.03.026
Article
CAS
PubMed
Google Scholar
Tsai AM, van Zanten JH, Betenbaugh MJ (1998) I. Study of protein aggregation due to heat denaturation: A structural approach using circular dichroism spectroscopy, nuclear magnetic resonance, and static light scattering. Biotechnology and bioengineering 59:273–280
Article
CAS
PubMed
Google Scholar
Tsutakawa SE, Yan C, Xu X, Weinacht CP, Freudenthal BD, Yang K, Zhuang Z, Washington MT, Tainer JA, Ivanov I (2015) Structurally distinct ubiquitin- and sumo-modified PCNA: implications for their distinct roles in the DNA damage response. Structure 23:724–733. https://doi.org/10.1016/j.str.2015.02.008
Article
CAS
PubMed
PubMed Central
Google Scholar
van Wijk SJ, Muller S, Dikic I (2011) Shared and unique properties of ubiquitin and SUMO interaction networks in DNA repair. Genes Dev 25:1763–1769. https://doi.org/10.1101/gad.17593511
Article
CAS
PubMed
PubMed Central
Google Scholar
Walker C, Herranz-Martin S, Karyka E, Liao C, Lewis K, Elsayed W, Lukashchuk V, Chiang SC, Ray S, Mulcahy PJ, Jurga M, Tsagakis I, Iannitti T, Chandran J, Coldicott I, De Vos KJ, Hassan MK, Higginbottom A, Shaw PJ, Hautbergue GM, Azzouz M, El-Khamisy SF (2017) C9orf72 expansion disrupts ATM-mediated chromosomal break repair. Nat Neurosci 20:1225–1235. https://doi.org/10.1038/nn.4604
Article
CAS
PubMed
PubMed Central
Google Scholar
Willemsen R, Hoogeveen-Westerveld M, Reis S, Holstege J, Severijnen LA, Nieuwenhuizen IM, Schrier M, van Unen L, Tassone F, Hoogeveen AT, Hagerman PJ, Mientjes EJ, Oostra BA (2003) The FMR1 CGG repeat mouse displays ubiquitin-positive intranuclear neuronal inclusions; implications for the cerebellar tremor/ataxia syndrome. Hum Mol Genet 12:949–959. https://doi.org/10.1093/hmg/ddg114
Article
CAS
PubMed
Google Scholar
Wooten MW, Hu X, Babu JR, Seibenhener ML, Geetha T, Paine MG, Wooten MC (2006) Signaling, polyubiquitination, trafficking, and inclusions: sequestosome 1/p62's role in neurodegenerative disease. J Biomed Biotechnol 2006:62079. https://doi.org/10.1155/JBB/2006/62079
Article
CAS
PubMed
PubMed Central
Google Scholar
Xia Q, Liao L, Cheng D, Duong DM, Gearing M, Lah JJ, Levey AI, Peng J (2008) Proteomic identification of novel proteins associated with Lewy bodies. Front Biosci 13:3850–3856
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiao Y, Pollack D, Nieves E, Winchell A, Callaway M, Vigodner M (2015) Can your protein be sumoylated? A quick summary and important tips to study SUMO-modified proteins. Anal Biochem 477:95–97. https://doi.org/10.1016/j.ab.2014.11.006
Article
CAS
PubMed
Google Scholar
Yang G, Liu C, Chen SH, Kassab MA, Hoff JD, Walter NG, Yu X (2018) Super-resolution imaging identifies PARP1 and the Ku complex acting as DNA double-strand break sensors. Nucleic Acids Res 46:3446–3457. https://doi.org/10.1093/nar/gky088
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang L, Zhou Y, Zhu S, Huang T, Wu L, Yan X (2012) Detection and quantification of bacterial autofluorescence at the single-cell level by a laboratory-built high-sensitivity flow cytometer. Anal Chem 84:1526–1532. https://doi.org/10.1021/ac2031332
Article
CAS
PubMed
Google Scholar
Yang WY, Larios E, Gruebele M (2003) On the extended beta-conformation propensity of polypeptides at high temperature. J Am Chem Soc 125:16220–16227. https://doi.org/10.1021/ja0360081
Article
CAS
PubMed
Google Scholar
Yang Y, He Y, Wang X, Liang Z, He G, Zhang P, Zhu H, Xu N, Liang S (2017) Protein SUMOylation modification and its associations with disease. Open Biol 7. https://doi.org/10.1098/rsob.170167
Yousefi S, Perozzo R, Schmid I, Ziemiecki A, Schaffner T, Scapozza L, Brunner T, Simon HU (2006) Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol 8:1124–1132. https://doi.org/10.1038/ncb1482
Article
CAS
PubMed
Google Scholar
Yun M, Choi AJ, Lee YC, Kong M, Sung JY, Kim SS, Eun YG (2018) Carbonyl reductase 1 is a new target to improve the effect of radiotherapy on head and neck squamous cell carcinoma. J Exp Clin Cancer Res 37:264. https://doi.org/10.1186/s13046-018-0942-9
Article
CAS
PubMed
PubMed Central
Google Scholar
Yun SM, Cho SJ, Song JC, Song SY, Jo SA, Jo C, Yoon K, Tanzi RE, Choi EJ, Koh YH (2013) SUMO1 modulates Abeta generation via BACE1 accumulation. Neurobiol Aging 34:650–662. https://doi.org/10.1016/j.neurobiolaging.2012.08.005
Article
CAS
PubMed
Google Scholar
Zanon A, Rakovic A, Blankenburg H, Doncheva NT, Schwienbacher C, Serafin A, Alexa A, Weichenberger CX, Albrecht M, Klein C, Hicks AA, Pramstaller PP, Domingues FS, Pichler I (2013) Profiling of Parkin-binding partners using tandem affinity purification. PLoS One 8:e78648. https://doi.org/10.1371/journal.pone.0078648
Article
CAS
PubMed
PubMed Central
Google Scholar
Zatloukal K, Stumptner C, Fuchsbichler A, Heid H, Schnoelzer M, Kenner L, Kleinert R, Prinz M, Aguzzi A, Denk H (2002) p62 Is a common component of cytoplasmic inclusions in protein aggregation diseases. The American journal of pathology 160:255–263. https://doi.org/10.1016/s0002-9440(10)64369-6
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang XD, Goeres J, Zhang H, Yen TJ, Porter AC, Matunis MJ (2008) SUMO-2/3 modification and binding regulate the association of CENP-E with kinetochores and progression through mitosis. Mol Cell 29:729–741. https://doi.org/10.1016/j.molcel.2008.01.013
Article
CAS
PubMed
PubMed Central
Google Scholar
Zheng H, Yuan C, Zhang H, Chen Y, Zhang H (2019) The tissue- and developmental stage-specific involvement of autophagy genes in aggrephagy. Autophagy. 2019:1–11. https://doi.org/10.1080/15548627.2019.1632121. Epub ahead of print.
Zhou Y, Gu G, Goodlett DR, Zhang T, Pan C, Montine TJ, Montine KS, Aebersold RH, Zhang J (2004) Analysis of alpha-synuclein-associated proteins by quantitative proteomics. J Biol Chem 279:39155–39164. https://doi.org/10.1074/jbc.M405456200
Article
CAS
PubMed
Google Scholar