Adams SR, Campbell RE, Gross LA, Martin BR, Walkup GK, Yao Y, Llopis J, Tsien RY (2002) New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: synthesis and biological applications. J Am Chem Soc 124:6063–6076
Article
CAS
PubMed
Google Scholar
Alberdi E, Sanchez-Gomez MV, Cavaliere F, Perez-Samartin A, Zugaza JL, Trullas R, Domercq M, Matute C (2010) Amyloid beta oligomers induce Ca2+ dysregulation and neuronal death through activation of ionotropic glutamate receptors. Cell Calcium 47:264–272. https://doi.org/10.1016/j.ceca.2009.12.010
Article
CAS
PubMed
Google Scholar
Ando K, Brion JP, Stygelbout V, Suain V, Authelet M, Dedecker R, Chanut A, Lacor P, Lavaur J, Sazdovitch V et al (2013) Clathrin adaptor CALM/PICALM is associated with neurofibrillary tangles and is cleaved in Alzheimer’s brains. Acta Neuropathol 125:861–878. https://doi.org/10.1007/s00401-013-1111-z
Article
CAS
PubMed
Google Scholar
Anekonda TS, Quinn JF, Harris C, Frahler K, Wadsworth TL, Woltjer RL (2011) L-type voltage-gated calcium channel blockade with isradipine as a therapeutic strategy for Alzheimer’s disease. Neurobiol Dis 41:62–70. https://doi.org/10.1016/j.nbd.2010.08.020
Article
CAS
PubMed
Google Scholar
Arbel-Ornath M, Hudry E, Boivin JR, Hashimoto T, Takeda S, Kuchibhotla KV, Hou S, Lattarulo CR, Belcher AM, Shakerdge N et al (2017) Soluble oligomeric amyloid-beta induces calcium dyshomeostasis that precedes synapse loss in the living mouse brain. Mol Neurodegener 12:27. https://doi.org/10.1186/s13024-017-0169-9
Article
CAS
PubMed
PubMed Central
Google Scholar
Arispe N, Pollard HB, Rojas E (1993) Giant multilevel cation channels formed by Alzheimer disease amyloid beta-protein [A beta P-(1-40)] in bilayer membranes. Proc Natl Acad Sci U S A 90:10573–10577
Article
CAS
PubMed
PubMed Central
Google Scholar
Bate C, Williams A (2011) Amyloid-beta-induced synapse damage is mediated via cross-linkage of cellular prion proteins. J Biol Chem 286:37955–37963. https://doi.org/10.1074/jbc.M111.248724
Article
CAS
PubMed
PubMed Central
Google Scholar
Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94
CAS
PubMed
PubMed Central
Google Scholar
Calafate S, Flavin W, Verstreken P, Moechars D (2016) Loss of Bin1 promotes the propagation of tau pathology. Cell Rep 17:931–940. https://doi.org/10.1016/j.celrep.2016.09.063
Article
CAS
PubMed
Google Scholar
Carrasquillo MM, Belbin O, Hunter TA, Ma L, Bisceglio GD, Zou F, Crook JE, Pankratz VS, Sando SB, Aasly JO et al (2011) Replication of BIN1 association with Alzheimer’s disease and evaluation of genetic interactions. J Alzheimers Dis 24:751–758. https://doi.org/10.3233/JAD-2011-101932
Article
CAS
PubMed
PubMed Central
Google Scholar
Castaneda MT, Lopez ED, Touhami A, Tovar R, Ortega MR, Rodriguez JM (2015) Neuroprotection of medial septal cholinergic neurons by memantine after intralateral septal injection of Abeta1-40. Neuroreport 26:450–454. https://doi.org/10.1097/WNR.0000000000000364
Article
CAS
PubMed
Google Scholar
Cataldo AM, Barnett JL, Pieroni C, Nixon RA (1997) Increased neuronal endocytosis and protease delivery to early endosomes in sporadic Alzheimer’s disease: neuropathologic evidence for a mechanism of increased beta-amyloidogenesis. J Neurosci 17:6142–6151
Article
CAS
PubMed
PubMed Central
Google Scholar
Chapuis J, Hansmannel F, Gistelinck M, Mounier A, Van Cauwenberghe C, Kolen KV, Geller F, Sottejeau Y, Harold D, Dourlen P et al (2013) Increased expression of BIN1 mediates Alzheimer genetic risk by modulating tau pathology. Mol Psychiatry 18:1225–1234. https://doi.org/10.1038/mp.2013.1
Article
CAS
PubMed
PubMed Central
Google Scholar
De Felice FG, Wu D, Lambert MP, Fernandez SJ, Velasco PT, Lacor PN, Bigio EH, Jerecic J, Acton PJ, Shughrue PJ et al (2008) Alzheimer’s disease-type neuronal tau hyperphosphorylation induced by A beta oligomers. Neurobiol Aging 29:1334–1347. https://doi.org/10.1016/j.neurobiolaging.2007.02.029
Article
CAS
PubMed
Google Scholar
Deng J, Habib A, Obregon DF, Barger SW, Giunta B, Wang YJ, Hou H, Sawmiller D, Tan J (2015) Soluble amyloid precursor protein alpha inhibits tau phosphorylation through modulation of GSK3beta signaling pathway. J Neurochem 135:630–637. https://doi.org/10.1111/jnc.13351
Article
CAS
PubMed
PubMed Central
Google Scholar
Diomede L, Di Fede G, Romeo M, Bagnati R, Ghidoni R, Fiordaliso F, Salio M, Rossi A, Catania M, Paterlini A et al (2014) Expression of A2V-mutated Abeta in Caenorhabditis elegans results in oligomer formation and toxicity. Neurobiol Dis 62:521–532. https://doi.org/10.1016/j.nbd.2013.10.024
Article
CAS
PubMed
PubMed Central
Google Scholar
Dosanjh LE, Brown MK, Rao G, Link CD, Luo Y (2010) Behavioral phenotyping of a transgenic Caenorhabditis elegans expressing neuronal amyloid-beta. J Alzheimers Dis 19:681–690. https://doi.org/10.3233/JAD-2010-1267
Article
CAS
PubMed
Google Scholar
Duan Z, Sesti F (2013) A Caenorhabditis elegans model system for amylopathy study. J Vis Exp:e50435. https://doi.org/10.3791/50435
Etxaniz A, Gonzalez-Bullon D, Martin C, Ostolaza H (2018) Membrane repair mechanisms against Permeabilization by pore-forming toxins. Toxins (Basel) 10. https://doi.org/10.3390/toxins10060234
Article
PubMed Central
Google Scholar
Fonte V, Dostal V, Roberts CM, Gonzales P, Lacor PN, Velasco PT, Magrane J, Dingwell N, Fan EY, Silverman MA et al (2011) A glycine zipper motif mediates the formation of toxic beta-amyloid oligomers in vitro and in vivo. Mol Neurodegener 6:61. https://doi.org/10.1186/1750-1326-6-61
Article
CAS
PubMed
PubMed Central
Google Scholar
Goedert M, Baur CP, Ahringer J, Jakes R, Hasegawa M, Spillantini MG, Smith MJ, Hill F (1996) PTL-1, a microtubule-associated protein with tau-like repeats from the nematode Caenorhabditis elegans. J Cell Sci 109(Pt 11):2661–2672
CAS
PubMed
Google Scholar
Goll DE, Thompson VF, Li H, Wei W, Cong J (2003) The calpain system. Physiol Rev 83:731–801. https://doi.org/10.1152/physrev.00029.2002
Article
CAS
PubMed
Google Scholar
Grueninger F, Bohrmann B, Czech C, Ballard TM, Frey JR, Weidensteiner C, von Kienlin M, Ozmen L (2010) Phosphorylation of Tau at S422 is enhanced by Abeta in TauPS2APP triple transgenic mice. Neurobiol Dis 37:294–306. https://doi.org/10.1016/j.nbd.2009.09.004
Article
CAS
PubMed
Google Scholar
Guivernau B, Bonet J, Valls-Comamala V, Bosch-Morato M, Godoy JA, Inestrosa NC, Peralvarez-Marin A, Fernandez-Busquets X, Andreu D, Oliva B et al (2016) Amyloid-beta Peptide Nitrotyrosination Stabilizes Oligomers and Enhances NMDAR-Mediated Toxicity. J Neurosci 36:11693–11703. https://doi.org/10.1523/JNEUROSCI.1081-16.2016
Article
CAS
PubMed
PubMed Central
Google Scholar
Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356. https://doi.org/10.1126/science.1072994
Article
CAS
PubMed
Google Scholar
Hassan WM, Dostal V, Huemann BN, Yerg JE, Link CD (2015) Identifying Abeta-specific pathogenic mechanisms using a nematode model of Alzheimer's disease. Neurobiol Aging 36:857–866. https://doi.org/10.1016/j.neurobiolaging.2014.10.016
Article
CAS
PubMed
Google Scholar
Hernandez F, Lucas JJ, Avila J (2013) GSK3 and tau: two convergence points in Alzheimer’s disease. J Alzheimers Dis 33(Suppl 1):S141–S144. https://doi.org/10.3233/JAD-2012-129025
Article
CAS
PubMed
Google Scholar
Herrup K (2015) The case for rejecting the amyloid cascade hypothesis. Nat Neurosci 18:794–799. https://doi.org/10.1038/nn.4017
Article
CAS
PubMed
Google Scholar
Hirakura Y, Lin MC, Kagan BL (1999) Alzheimer amyloid abeta1-42 channels: effects of solvent, pH, and Congo red. J Neurosci Res 57:458–466
Article
CAS
PubMed
Google Scholar
Ho R, Ortiz D, Shea TB (2001) Amyloid-beta promotes calcium influx and neurodegeneration via stimulation of L voltage-sensitive calcium channels rather than NMDA channels in cultured neurons. J Alzheimers Dis 3:479–483
Article
CAS
PubMed
Google Scholar
Huffman DL, Abrami L, Sasik R, Corbeil J, van der Goot FG, Aroian RV (2004) Mitogen-activated protein kinase pathways defend against bacterial pore-forming toxins. Proc Natl Acad Sci U S A 101:10995–11000. https://doi.org/10.1073/pnas.0404073101
Article
CAS
PubMed
PubMed Central
Google Scholar
Idone V, Tam C, Goss JW, Toomre D, Pypaert M, Andrews NW (2008) Repair of injured plasma membrane by rapid Ca2+−dependent endocytosis. J Cell Biol 180:905–914. https://doi.org/10.1083/jcb.200708010
Article
CAS
PubMed
PubMed Central
Google Scholar
Jeong SY, Martchenko M, Cohen SN (2013) Calpain-dependent cytoskeletal rearrangement exploited for anthrax toxin endocytosis. Proc Natl Acad Sci U S A 110:E4007–E4015. https://doi.org/10.1073/pnas.1316852110
Article
CAS
PubMed
PubMed Central
Google Scholar
Jin N, Yin X, Yu D, Cao M, Gong CX, Iqbal K, Ding F, Gu X, Liu F (2015) Truncation and activation of GSK-3beta by calpain I: a molecular mechanism links to tau hyperphosphorylation in Alzheimer’s disease. Sci Rep 5:8187. https://doi.org/10.1038/srep08187
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaech S, Banker G (2006) Culturing hippocampal neurons. Nat Protoc 1:2406–2415. https://doi.org/10.1038/nprot.2006.356
Article
CAS
PubMed
Google Scholar
Kagan BL (2012) Membrane pores in the pathogenesis of neurodegenerative disease. Prog Mol Biol Transl Sci 107:295–325. https://doi.org/10.1016/B978-0-12-385883-2.00001-1
Article
CAS
PubMed
Google Scholar
Kanatsu K, Hori Y, Takatori S, Watanabe T, Iwatsubo T, Tomita T (2016) Partial loss of CALM function reduces Abeta42 production and amyloid deposition in vivo. Hum Mol Genet 25:3988–3997. https://doi.org/10.1093/hmg/ddw239
Article
CAS
PubMed
Google Scholar
Kao CY, Los FC, Huffman DL, Wachi S, Kloft N, Husmann M, Karabrahimi V, Schwartz JL, Bellier A, Ha C et al (2011) Global functional analyses of cellular responses to pore-forming toxins. PLoS Pathog 7:e1001314. https://doi.org/10.1371/journal.ppat.1001314
Article
CAS
PubMed
PubMed Central
Google Scholar
Karran E, De Strooper B (2016) The amyloid cascade hypothesis: are we poised for success or failure? J Neurochem 139(Suppl 2):237–252. https://doi.org/10.1111/jnc.13632
Article
CAS
PubMed
Google Scholar
Kim JA, Kim HL (2001) Cell-free expression and functional reconstitution of CALM in clathrin assembly. Exp Mol Med 33:89–94. https://doi.org/10.1038/emm.2001.16
Article
CAS
PubMed
Google Scholar
Kim S, Jeon TJ, Oberai A, Yang D, Schmidt JJ, Bowie JU (2005) Transmembrane glycine zippers: physiological and pathological roles in membrane proteins. Proc Natl Acad Sci U S A 102:14278–14283. https://doi.org/10.1073/pnas.0501234102
Article
CAS
PubMed
PubMed Central
Google Scholar
Kurbatskaya K, Phillips EC, Croft CL, Dentoni G, Hughes MM, Wade MA, Al-Sarraj S, Troakes C, O’Neill MJ, Perez-Nievas BG et al (2016) Upregulation of calpain activity precedes tau phosphorylation and loss of synaptic proteins in Alzheimer’s disease brain. Acta Neuropathol Commun 4:34. https://doi.org/10.1186/s40478-016-0299-2
Article
CAS
PubMed
PubMed Central
Google Scholar
Lambert MP, Viola KL, Chromy BA, Chang L, Morgan TE, Yu J, Venton DL, Krafft GA, Finch CE, Klein WL (2001) Vaccination with soluble Abeta oligomers generates toxicity-neutralizing antibodies. J Neurochem 79:595–605
Article
CAS
PubMed
Google Scholar
Lauren J, Gimbel DA, Nygaard HB, Gilbert JW, Strittmatter SM (2009) Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature 457:1128–1132. https://doi.org/10.1038/nature07761
Article
CAS
PubMed
PubMed Central
Google Scholar
Lebart MC, Benyamin Y (2006) Calpain involvement in the remodeling of cytoskeletal anchorage complexes. FEBS J 273:3415–3426. https://doi.org/10.1111/j.1742-4658.2006.05350.x
Article
CAS
PubMed
Google Scholar
Lin H, Bhatia R, Lal R (2001) Amyloid beta protein forms ion channels: implications for Alzheimer’s disease pathophysiology. FASEB J 15:2433–2444. https://doi.org/10.1096/fj.01-0377com
Article
CAS
PubMed
Google Scholar
Link CD (1995) Expression of human beta-amyloid peptide in transgenic Caenorhabditis elegans. Proc Natl Acad Sci U S A 92:9368–9372
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu CC, Liu CC, Kanekiyo T, Xu H, Bu G (2013) Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol 9:106–118. https://doi.org/10.1038/nrneurol.2012.263
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu O, Grant BD (2015) Basolateral endocytic recycling requires RAB-10 and AMPH-1 mediated recruitment of RAB-5 GAP TBC-2 to endosomes. PLoS Genet 11:e1005514. https://doi.org/10.1371/journal.pgen.1005514
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu SL, Wang C, Jiang T, Tan L, Xing A, Yu JT (2016) The role of Cdk5 in Alzheimer’s disease. Mol Neurobiol 53:4328–4342. https://doi.org/10.1007/s12035-015-9369-x
Article
CAS
PubMed
Google Scholar
Lopes JP, Oliveira CR, Agostinho P (2010) Neurodegeneration in an Abeta-induced model of Alzheimer's disease: the role of Cdk5. Aging Cell 9:64–77. https://doi.org/10.1111/j.1474-9726.2009.00536.x
Article
CAS
PubMed
Google Scholar
Los FC, Kao CY, Smitham J, McDonald KL, Ha C, Peixoto CA, Aroian RV (2011) RAB-5- and RAB-11-dependent vesicle-trafficking pathways are required for plasma membrane repair after attack by bacterial pore-forming toxin. Cell Host Microbe 9:147–157. https://doi.org/10.1016/j.chom.2011.01.005
Article
CAS
PubMed
PubMed Central
Google Scholar
Luedtke NW, Dexter RJ, Fried DB, Schepartz A (2007) Surveying polypeptide and protein domain conformation and association with FlAsH and ReAsH. Nat Chem Biol 3:779–784. https://doi.org/10.1038/nchembio.2007.49
Article
CAS
PubMed
PubMed Central
Google Scholar
Mahley RW (2016) Central nervous system lipoproteins: ApoE and regulation of cholesterol metabolism. Arterioscler Thromb Vasc Biol 36:1305–1315. https://doi.org/10.1161/ATVBAHA.116.307023
Article
CAS
PubMed
PubMed Central
Google Scholar
Mairet-Coello G, Courchet J, Pieraut S, Courchet V, Maximov A, Polleux F (2013) The CAMKK2-AMPK kinase pathway mediates the synaptotoxic effects of Abeta oligomers through Tau phosphorylation. Neuron 78:94–108. https://doi.org/10.1016/j.neuron.2013.02.003
Article
CAS
PubMed
PubMed Central
Google Scholar
Manucat-Tan NB, Saadipour K, Wang YJ, Bobrovskaya L, Zhou XF (2018) Cellular trafficking of amyloid precursor protein in Amyloidogenesis physiological and pathological significance. Mol Neurobiol. https://doi.org/10.1007/s12035-018-1106-9
Martin L, Latypova X, Wilson CM, Magnaudeix A, Perrin ML, Yardin C, Terro F (2013) Tau protein kinases: involvement in Alzheimer's disease. Ageing Res Rev 12:289–309. https://doi.org/10.1016/j.arr.2012.06.003
Article
CAS
PubMed
Google Scholar
Meng L, Zhang A, Jin Y, Yan D (2016) Regulation of neuronal axon specification by glia-neuron gap junctions in C. elegans. Elife 5. https://doi.org/10.7554/eLife.19510
Miranda CJ, Braun L, Jiang Y, Hester ME, Zhang L, Riolo M, Wang H, Rao M, Altura RA, Kaspar BK (2012) Aging brain microenvironment decreases hippocampal neurogenesis through Wnt-mediated survivin signaling. Aging Cell 11:542–552. https://doi.org/10.1111/j.1474-9726.2012.00816.x
Article
PubMed
Google Scholar
Miyagawa T, Ebinuma I, Morohashi Y, Hori Y, Young Chang M, Hattori H, Maehara T, Yokoshima S, Fukuyama T, Tsuji S et al (2016) BIN1 regulates BACE1 intracellular trafficking and amyloid-beta production. Hum Mol Genet 25:2948–2958. https://doi.org/10.1093/hmg/ddw146
Article
CAS
PubMed
Google Scholar
Naj AC, Jun G, Reitz C, Kunkle BW, Perry W, Park YS, Beecham GW, Rajbhandary RA, Hamilton-Nelson KL, Wang LS et al (2014) Effects of multiple genetic loci on age at onset in late-onset Alzheimer disease: a genome-wide association study. JAMA Neurol 71:1394–1404. https://doi.org/10.1001/jamaneurol.2014.1491
Article
PubMed
PubMed Central
Google Scholar
Nikkel AL, Martino B, Markosyan S, Brederson JD, Medeiros R, Moeller A, Bitner RS (2012) The novel calpain inhibitor A-705253 prevents stress-induced tau hyperphosphorylation in vitro and in vivo. Neuropharmacology 63:606–612. https://doi.org/10.1016/j.neuropharm.2012.05.011
Article
CAS
PubMed
Google Scholar
Nonet ML, Holgado AM, Brewer F, Serpe CJ, Norbeck BA, Holleran J, Wei L, Hartwieg E, Jorgensen EM, Alfonso A (1999) UNC-11, a Caenorhabditis elegans AP180 homologue, regulates the size and protein composition of synaptic vesicles. Mol Biol Cell 10:2343–2360. https://doi.org/10.1091/mbc.10.7.2343
Article
CAS
PubMed
PubMed Central
Google Scholar
Padamsey Z, McGuinness L, Emptage NJ (2017) Inhibition of lysosomal Ca(2+) signalling disrupts dendritic spine structure and impairs wound healing in neurons. Commun Integr Biol 10:e1344802. https://doi.org/10.1080/19420889.2017.1344802
Article
PubMed
PubMed Central
Google Scholar
Pant S, Sharma M, Patel K, Caplan S, Carr CM, Grant BD (2009) AMPH-1/Amphiphysin/Bin1 functions with RME-1/Ehd1 in endocytic recycling. Nat Cell Biol 11:1399–1410. https://doi.org/10.1038/ncb1986
Article
CAS
PubMed
PubMed Central
Google Scholar
Parikh I, Fardo DW, Estus S (2014) Genetics of PICALM expression and Alzheimer’s disease. PLoS One 9:e91242. https://doi.org/10.1371/journal.pone.0091242
Article
CAS
PubMed
PubMed Central
Google Scholar
Peters C, Espinoza MP, Gallegos S, Opazo C, Aguayo LG (2015) Alzheimer’s Abeta interacts with cellular prion protein inducing neuronal membrane damage and synaptotoxicity. Neurobiol Aging 36:1369–1377. https://doi.org/10.1016/j.neurobiolaging.2014.11.019
Article
CAS
PubMed
Google Scholar
Peters C, Fernandez-Perez EJ, Burgos CF, Espinoza MP, Castillo C, Urrutia JC, Streltsov VA, Opazo C, Aguayo LG (2013) Inhibition of amyloid beta-induced synaptotoxicity by a pentapeptide derived from the glycine zipper region of the neurotoxic peptide. Neurobiol Aging 34:2805–2814. https://doi.org/10.1016/j.neurobiolaging.2013.06.001
Article
CAS
PubMed
Google Scholar
Petralia RS, Wang YX, Indig FE, Bushlin I, Wu F, Mattson MP, Yao PJ (2013) Reduction of AP180 and CALM produces defects in synaptic vesicle size and density. NeuroMolecular Med 15:49–60. https://doi.org/10.1007/s12017-012-8194-x
Article
CAS
PubMed
Google Scholar
Peyronnet O, Vachon V, Schwartz JL, Laprade R (2001) Ion channels induced in planar lipid bilayers by the bacillus thuringiensis toxin Cry1Aa in the presence of gypsy moth (Lymantria dispar) brush border membrane. J Membr Biol 184:45–54
Article
CAS
PubMed
Google Scholar
de Planque MR, Raussens V, Contera SA, Rijkers DT, Liskamp RM, Ruysschaert JM, Ryan JF, Separovic F, Watts A (2007) Beta-sheet structured beta-amyloid(1-40) perturbs phosphatidylcholine model membranes. J Mol Biol 368: 982–997 Doi https://doi.org/10.1016/j.jmb.2007.02.063
Article
CAS
PubMed
Google Scholar
Reitz C Alzheimer’s disease and the amyloid cascade hypothesis: a critical review. Int J Alzheimers Dis 2012, 2012:369808. https://doi.org/10.1155/2012/369808
Article
Google Scholar
Resende R, Pereira C, Agostinho P, Vieira AP, Malva JO, Oliveira CR (2007) Susceptibility of hippocampal neurons to Abeta peptide toxicity is associated with perturbation of Ca2+ homeostasis. Brain Res 1143:11–21. https://doi.org/10.1016/j.brainres.2007.01.071
Article
CAS
PubMed
Google Scholar
Rushworth JV, Griffiths HH, Watt NT, Hooper NM (2013) Prion protein-mediated toxicity of amyloid-beta oligomers requires lipid rafts and the transmembrane LRP1. J Biol Chem 288:8935–8951. https://doi.org/10.1074/jbc.M112.400358
Article
CAS
PubMed
PubMed Central
Google Scholar
Seshadri S, Fitzpatrick AL, Ikram MA, DeStefano AL, Gudnason V, Boada M, Bis JC, Smith AV, Carassquillo MM, Lambert JC et al (2010) Genome-wide analysis of genetic loci associated with Alzheimer disease. JAMA 303:1832–1840. https://doi.org/10.1001/jama.2010.574
Article
CAS
PubMed
PubMed Central
Google Scholar
Seward ME, Swanson E, Norambuena A, Reimann A, Cochran JN, Li R, Roberson ED, Bloom GS (2013) Amyloid-beta signals through tau to drive ectopic neuronal cell cycle re-entry in Alzheimer’s disease. J Cell Sci 126:1278–1286. https://doi.org/10.1242/jcs.1125880
Article
CAS
PubMed
PubMed Central
Google Scholar
Small DH, Gasperini R, Vincent AJ, Hung AC, Foa L (2009) The role of Abeta-induced calcium dysregulation in the pathogenesis of Alzheimer’s disease. J Alzheimers Dis 16:225–233. https://doi.org/10.3233/JAD-2009-0951
Article
CAS
PubMed
Google Scholar
Sul D, Kim HS, Lee D, Joo SS, Hwang KW, Park SY (2009) Protective effect of caffeic acid against beta-amyloid-induced neurotoxicity by the inhibition of calcium influx and tau phosphorylation. Life Sci 84:257–262. https://doi.org/10.1016/j.lfs.2008.12.001
Article
CAS
PubMed
Google Scholar
Tam C, Idone V, Devlin C, Fernandes MC, Flannery A, He X, Schuchman E, Tabas I, Andrews NW (2010) Exocytosis of acid sphingomyelinase by wounded cells promotes endocytosis and plasma membrane repair. J Cell Biol 189:1027–1038. https://doi.org/10.1083/jcb.201003053
Article
CAS
PubMed
PubMed Central
Google Scholar
Thomas RS, Henson A, Gerrish A, Jones L, Williams J, Kidd EJ (2016) Decreasing the expression of PICALM reduces endocytosis and the activity of beta-secretase: implications for Alzheimer’s disease. BMC Neurosci 17:50. https://doi.org/10.1186/s12868-016-0288-1
Article
CAS
PubMed
PubMed Central
Google Scholar
Town T, Zolton J, Shaffner R, Schnell B, Crescentini R, Wu Y, Zeng J, DelleDonne A, Obregon D, Tan J et al (2002) p35/Cdk5 pathway mediates soluble amyloid-beta peptide-induced tau phosphorylation in vitro. J Neurosci Res 69:362–372. https://doi.org/10.1002/jnr.10299
Article
CAS
PubMed
Google Scholar
Treusch S, Hamamichi S, Goodman JL, Matlack KE, Chung CY, Baru V, Shulman JM, Parrado A, Bevis BJ, Valastyan JS et al (2011) Functional links between Abeta toxicity, endocytic trafficking, and Alzheimer’s disease risk factors in yeast. Science 334:1241–1245. https://doi.org/10.1126/science.1213210
Article
CAS
PubMed
PubMed Central
Google Scholar
Ubelmann F, Burrinha T, Salavessa L, Gomes R, Ferreira C, Moreno N, Guimas Almeida C (2017) Bin1 and CD2AP polarise the endocytic generation of beta-amyloid. EMBO Rep 18:102–122. https://doi.org/10.15252/embr.201642738
Article
CAS
PubMed
Google Scholar
Wang Z, Lei H, Zheng M, Li Y, Cui Y, Hao F (2016) Meta-analysis of the association between Alzheimer disease and variants in GAB2, PICALM, and SORL1. Mol Neurobiol 53:6501–6510. https://doi.org/10.1007/s12035-015-9546-y
Article
CAS
PubMed
Google Scholar
Wei JZ, Hale K, Carta L, Platzer E, Wong C, Fang SC, Aroian RV (2003) Bacillus thuringiensis crystal proteins that target nematodes. Proc Natl Acad Sci U S A 100:2760–2765. https://doi.org/10.1073/pnas.0538072100
Article
CAS
PubMed
PubMed Central
Google Scholar
Yao J, Nowack A, Kensel-Hammes P, Gardner RG, Bajjalieh SM (2010) Cotrafficking of SV2 and synaptotagmin at the synapse. J Neurosci 30:5569–5578. https://doi.org/10.1523/JNEUROSCI.4781-09.2010
Article
CAS
PubMed
PubMed Central
Google Scholar
Zempel H, Thies E, Mandelkow E, Mandelkow EM (2010) Abeta oligomers cause localized Ca(2+) elevation, missorting of endogenous Tau into dendrites, Tau phosphorylation, and destruction of microtubules and spines. J Neurosci 30:11938–11950. https://doi.org/10.1523/JNEUROSCI.2357-10.2010
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao WQ, Santini F, Breese R, Ross D, Zhang XD, Stone DJ, Ferrer M, Townsend M, Wolfe AL, Seager MA et al (2010) Inhibition of calcineurin-mediated endocytosis and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors prevents amyloid beta oligomer-induced synaptic disruption. J Biol Chem 285:7619–7632. https://doi.org/10.1074/jbc.M109.057182
Article
CAS
PubMed
Google Scholar
Zhou M, Huang T, Collins N, Zhang J, Shen H, Dai X, Xiao N, Wu X, Wei Z, York J et al (2016) APOE4 induces site-specific Tau phosphorylation through Calpain-CDK5 signaling pathway in EFAD-Tg mice. Curr Alzheimer Res 13:1048–1055
Article
CAS
PubMed
Google Scholar