Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008;132(1):27–42. doi:10.1016/j.cell.2007.12.018.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mehrpour M, Esclatine A, Beau I, Codogno P. Autophagy in health and disease. 1. Regulation and significance of autophagy: An overview. Am J Physiol Cell Physiol. 2010;298(4):C776–85. doi:10.1152/ajpcell.00507.2009.
Article
CAS
PubMed
Google Scholar
Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy. 2016;12(1):1–222. doi:10.1080/15548627.2015.1100356.
Article
PubMed
Google Scholar
Komatsu M, Ichimura Y. Physiological significance of selective degradation of p62 by autophagy. FEBS Lett. 2010;584(7):1374–8. doi:10.1016/j.febslet.2010.02.017.
Article
CAS
PubMed
Google Scholar
Nishino I. Autophagic vacuolar myopathy. Semin Pediatr Neurol. 2006;13(2):90–5. doi:10.1016/j.spen.2006.06.004.
Article
PubMed
Google Scholar
Malicdan MC, Noguchi S, Nonaka I, Saftig P, Nishino I. Lysosomal myopathies: an excessive build-up in autophagosomes is too much to handle. Neuromuscul Disord. 2008;18(7):521–9. doi:10.1016/j.nmd.2008.04.010.
Article
PubMed
Google Scholar
Casado E, Gratacos J, Tolosa C, Martinez JM, Ojanguren I, Ariza A, Real J, Sanjuan A, Larrosa M. Antimalarial myopathy: an underdiagnosed complication? Prospective longitudinal study of 119 patients. Ann Rheum Dis. 2006;65(3):385–90. doi:10.1136/ard.2004.023200.
Article
CAS
PubMed
Google Scholar
Estes ML, Ewing-Wilson D, Chou SM, Mitsumoto H, Hanson M, Shirey E, Ratliff NB. Chloroquine neuromyotoxicity: Clinical and pathologic perspective. Am J Med. 1987;82(3):447–55. doi:10.1016/0002-9343(87)90444-X.
Article
CAS
PubMed
Google Scholar
Kuncl RW, Duncan G, Watson D, Alderson K, Rogawski MA, Peper M. Colchicine myopathy and neuropathy. N Engl J Med. 1987;316(25):1562–8. doi:10.1056/NEJM198706183162502.
Article
CAS
PubMed
Google Scholar
Zirin J, Nieuwenhuis J, Perrimon N. Role of autophagy in glycogen breakdown and its relevance to chloroquine myopathy. PLoS Biol. 2013;11(11):e1001708. doi:10.1371/journal.pbio.1001708.
Article
PubMed
PubMed Central
Google Scholar
Lee HS, Daniels BH, Salas E, Bollen AW, Debnath J, Margeta M. Clinical utility of LC3 and p62 immunohistochemistry in diagnosis of drug-induced autophagic vacuolar myopathies: a case-control study. PLoS One. 2012;7(4):e36221. doi:10.1371/journal.pone.0036221.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dalakas MC. Sporadic inclusion body myositis—diagnosis, pathogenesis and therapeutic strategies. Nat Clin Pract Neurol. 2006;2(8):437–47. doi:10.1038/ncpneuro0261.
Article
CAS
PubMed
Google Scholar
Greenberg SA. Inclusion body myositis. Curr Opin Rheumatol. 2011;23(6):574–8. doi:10.1097/BOR.0b013e32834b53cc.
Article
PubMed
Google Scholar
Hilton-Jones D, Brady S. Diagnostic criteria for inclusion body myositis. J Intern Med. 2016;280(1):52–62. doi:10.1111/joim.12480.
Article
CAS
PubMed
Google Scholar
Hiniker A, Daniels BH, Lee HS, Margeta M. Comparative utility of LC3, p62 and TDP-43 immunohistochemistry in differentiation of inclusion body myositis from polymyositis and related inflammatory myopathies. Acta Neuropathol Commun. 2013;1(1):29. doi:10.1186/2051-5960-1-29.
Article
PubMed
PubMed Central
Google Scholar
Kensler TW, Wakabayashi N, Biswal S. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol. 2007;47:89–116. doi:10.1146/annurev.pharmtox.46.120604.141046.
Article
CAS
PubMed
Google Scholar
Tebay LE, Robertson H, Durant ST, Vitale SR, Penning TM, Dinkova-Kostova AT, Hayes JD. Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues and energy status, and pathways through which it attenuates degenerative disease. Free Radic Biol Med. 2015;88:108–46. doi:10.1016/j.freeradbiomed.2015.06.021.
Article
CAS
PubMed
Google Scholar
Zhang DD. Mechanistic studies of the Nrf2-Keap1 signaling pathway. Drug Metab Rev. 2006;38(4):769–89. doi:10.1080/03602530600971974.
Article
CAS
PubMed
Google Scholar
Komatsu M, Kurokawa H, Waguri S, Taguchi K, Kobayashi A, Ichimura Y, et al. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol. 2010;12(3):213–23. doi:10.1038/ncb2021.
CAS
PubMed
Google Scholar
Lau A, Wang XJ, Zhao F, Villeneuve NF, Wu T, Jiang T, Sun Z, White E, Zhang DD. A noncanonical mechanism of Nrf2 activation by autophagy deficiency: direct interaction between Keap1 and p62. Mol Cell Biol. 2010;30(13):3275–85. doi:10.1128/MCB.00248-10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Inami Y, Waguri S, Sakamoto A, Kouno T, Nakada K, Hino O, Watanabe S, Ando J, Iwadate M, Yamamoto M, Lee MS, Tanaka K, Komatsu M. Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells. J Cell Biol. 2011;193(2):275–84. doi:10.1083/jcb.201102031.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ichimura Y, Waguri S, Sou YS, Kageyama S, Hasegawa J, Ishimura R, et al. Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. Mol Cell. 2013;51(5):618–31. doi:10.1016/j.molcel.2013.08.003.
Article
CAS
PubMed
Google Scholar
Taguchi K, Fujikawa N, Komatsu M, Ishii T, Unno M, Akaike T, Motohashi H, Yamamoto M. Keap1 degradation by autophagy for the maintenance of redox homeostasis. Proc Natl Acad Sci U S A. 2012;109(34):13561–6. doi:10.1073/pnas.1121572109.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brady S, Squier W, Sewry C, Hanna M, Hilton-Jones D, Holton JL. A retrospective cohort study identifying the principal pathological features useful in the diagnosis of inclusion body myositis. BMJ Open. 2014;4(4):e004552. doi:10.1136/bmjopen-2013-004552.
Article
PubMed
PubMed Central
Google Scholar
Nogalska A, D’Agostino C, Terracciano C, Engel WK, Askanas V. Impaired autophagy in sporadic inclusion-body myositis and in endoplasmic reticulum stress-provoked cultured human muscle fibers. Am J Pathol. 2010;177(3):1377–87. doi:10.2353/ajpath.2010.100050.
Article
CAS
PubMed
PubMed Central
Google Scholar
Temiz P, Weihl CC, Pestronk A. Inflammatory myopathies with mitochondrial pathology and protein aggregates. J Neurol Sci. 2009;278(1–2):25–9. doi:10.1016/j.jns.2008.11.010.
Article
PubMed
Google Scholar
Rajasekaran NS, Connell P, Christians ES, Yan LJ, Taylor RP, Orosz A, Zhang XQ, Stevenson TJ, Peshock RM, Leopold JA, Barry WH, Loscalzo J, Odelberg SJ, Benjamin IJ. Human aB-crystallin mutation causes oxido-reductive stress and protein aggregation cardiomyopathy in mice. Cell. 2007;130(3):427–39. doi:10.1016/j.cell.2007.06.044.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kannan S, Muthusamy VR, Whitehead KJ, Wang L, Gomes AV, Litwin SE, Kensler TW, Abel ED, Hoidal JR, Rajasekaran NS. Nrf2 deficiency prevents reductive stress-induced hypertrophic cardiomyopathy. Cardiovasc Res. 2013;100(1):63–73. doi:10.1093/cvr/cvt150.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tanji K, Maruyama A, Odagiri S, Mori F, Itoh K, Kakita A, Takahashi H, Wakabayashi K. Keap1 is localized in neuronal and glial cytoplasmic inclusions in various neurodegenerative diseases. J Neuropathol Exp Neurol. 2013;72(1):18–28. doi:10.1097/NEN.0b013e31827b5713.
Article
CAS
PubMed
Google Scholar
Nogalska A, Terracciano C, D’Agostino C, King Engel W, Askanas V. p62/SQSTM1 is overexpressed and prominently accumulated in inclusions of sporadic inclusion-body myositis muscle fibers, and can help differentiating it from polymyositis and dermatomyositis. Acta Neuropathol. 2009;118(3):407–13. doi:10.1007/s00401-009-0564-6.
Article
CAS
PubMed
Google Scholar
Dubourg O, Wanschitz J, Maisonobe T, Behin A, Allenbach Y, Herson S, Benveniste O. Diagnostic value of markers of muscle degeneration in sporadic inclusion body myositis. Acta Myol. 2011;30(2):103–8.
CAS
PubMed
PubMed Central
Google Scholar
Griggs RC, Askanas V, DiMauro S, Engel A, Karpati G, Mendell JR, Rowland LP. Inclusion body myositis and myopathies. Ann Neurol. 1995;38(5):705–13. doi:10.1002/ana.410380504.
Article
CAS
PubMed
Google Scholar
Jain A, Lamark T, Sjottem E, Larsen KB, Awuh JA, Overvatn A, McMahon M, Hayes JD, Johansen T. p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J Biol Chem. 2010;285(29):22576–91. doi:10.1074/jbc.M110.118976.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fan W, Tang Z, Chen D, Moughon D, Ding X, Chen S, Zhu M, Zhong Q. Keap1 facilitates p62-mediated ubiquitin aggregate clearance via autophagy. Autophagy. 2010;6(5):614–21. doi:10.4161/auto.6.5.12189.
Article
CAS
PubMed
PubMed Central
Google Scholar
Harder B, Jiang T, Wu T, Tao S, de la Vega MR, Tian W, Chapman E, Zhang DD. Molecular mechanisms of Nrf2 regulation and how these influence chemical modulation for disease intervention. Biochem Soc Trans. 2015;43(4):680–6. doi:10.1042/BST20150020.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sykiotis GP, Bohmann D. Keap1/Nrf2 signaling regulates oxidative stress tolerance and lifespan in Drosophila. Dev Cell. 2008;14(1):76–85. doi:10.1016/j.devcel.2007.12.002.
Article
CAS
PubMed
PubMed Central
Google Scholar
An JH, Blackwell TK. SKN-1 links C. elegans mesendodermal specification to a conserved oxidative stress response. Genes Dev. 2003;17(15):1882–93. doi:10.1101/gad.1107803.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun C, Yang C, Xue R, Li S, Zhang T, Pan L, Ma X, Wang L, Li D. Sulforaphane alleviates muscular dystrophy in mdx mice by activation of Nrf2. J Appl Physiol. 2015;118(2):224–37. doi:10.1152/japplphysiol.00744.2014.
Article
PubMed
Google Scholar
Kombairaju P, Kerr JP, Roche JA, Pratt SJ, Lovering RM, Sussan TE, Kim JH, Shi G, Biswal S, Ward CW. Genetic silencing of Nrf2 enhances X-ROS in dysferlin-deficient muscle. Front Physiol. 2014;5:57. doi:10.3389/fphys.2014.00057.
Article
PubMed
PubMed Central
Google Scholar
Shelar SB, Narasimhan M, Shanmugam G, Litovsky SH, Gounder SS, Karan G, Arulvasu C, Kensler TW, Hoidal JR, Darley-Usmar VM, Rajasekaran NS. Disruption of nuclear factor (erythroid-derived-2)-like 2 antioxidant signaling: a mechanism for impaired activation of stem cells and delayed regeneration of skeletal muscle. FASEB J. 2016. doi:10.1096/fj.201500153.
PubMed
Google Scholar
DeNicola GM, Karreth FA, Humpton TJ, Gopinathan A, Wei C, Frese K, et al. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature. 2011;475(7354):106–9. doi:10.1038/nature10189.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chandiramani N, Wang X, Margeta M. Molecular basis for vulnerability to mitochondrial and oxidative stress in a neuroendocrine CRI-G1 cell line. PLoS One. 2011;6(1):e14485. doi:10.1371/journal.pone.0014485.
Article
CAS
PubMed
PubMed Central
Google Scholar
Riley BE, Kaiser SE, Shaler TA, Ng AC, Hara T, Hipp MS, et al. Ubiquitin accumulation in autophagy-deficient mice is dependent on the Nrf2-mediated stress response pathway: a potential role for protein aggregation in autophagic substrate selection. J Cell Biol. 2010;191(3):537–52. doi:10.1083/jcb.201005012.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pajares M, Jimenez-Moreno N, Garcia-Yague AJ, Escoll M, de Ceballos ML, Van Leuven F, Rabano A, Yamamoto M, Rojo AI, Cuadrado A. Transcription factor NFE2L2/NRF2 is a regulator of macroautophagy genes. 2016. Autophagy:0. doi:10.1080/15548627.2016.1208889.
Dialynas G, Shrestha OK, Ponce JM, Zwerger M, Thiemann DA, Young GH, Moore SA, Yu L, Lammerding J, Wallrath LL. Myopathic lamin mutations cause reductive stress and activate the Nrf2/Keap-1 pathway. PLoS Genet. 2015;11(5):e1005231. doi:10.1371/journal.pgen.1005231.
Article
PubMed
PubMed Central
Google Scholar