Lord C, Risi S, Lambrecht L, Cook EH Jr, Leventhal BL, DiLavore PC, Pickles A, Rutter M: The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. J Autism Dev Disord 2000, 30: 205–223.
CAS
PubMed
Google Scholar
Ozonoff S: Editorial perspective: autism spectrum disorders in DSM-5-an historical perspective and the need for change. J Child Psychol Psychiatry 2012, 53: 1092–1094.
PubMed
Google Scholar
Fombonne E, Roge B, Claverie J, Courty S, Fremolle J: Microcephaly and macrocephaly in autism. J Autism Dev Disord 1999, 29: 113–119.
CAS
PubMed
Google Scholar
Courchesne E, Carper R, Akshoomoff N: Evidence of brain overgrowth in the first year of life in autism. JAMA 2003, 290: 337–344.
PubMed
Google Scholar
Dementieva YA, Vance DD, Donnelly SL, Elston LA, Wolpert CM, Ravan SA, DeLong GR, Abramson RK, Wright HH, Cuccaro ML: Accelerated head growth in early development of individuals with autism. Pediatr Neurol 2005, 32: 102–108.
PubMed
Google Scholar
Dissanayake C, Bui QM, Huggins R, Loesch DZ: Growth in stature and head circumference in high-functioning autism and asperger disorder during the first 3 years of life. Dev Psychopathol 2006, 18: 381–393.
PubMed
Google Scholar
Dawson G, Munson J, Webb SJ, Nalty T, Abbott R, Toth K: Rate of head growth decelerates and symptoms worsen in the second year of life in autism. Biol Psychiatry 2007, 61: 458–464.
PubMed
Google Scholar
Courchesne E, Karns CM, Davis HR, Ziccardi R, Carper RA, Tigue ZD, Hisum HJ, Moses P, Pierce K, Lord C, Lincoln AJ, Pizzo S, Schreibman L, Hass RH, Akshoomoff NA, Courchesne RY: Unusual brain growth patterns in early life in patients with autistic disorder: an MRI study. Neurology 2001, 57: 245–254.
CAS
PubMed
Google Scholar
Carper RA, Moses P, Tigue ZD, Courchesne E: Cerebral lobes in autism: early hyperplasia and abnormal age effects. NeuroImage 2002, 16: 1038–1051.
PubMed
Google Scholar
Sparks BF, Friedman SD, Shaw DW, Aylward EH, Echelard D, Artru AA, Maravilla KR, Giedd JN, Munson J, Dawson G, Dager SR: Brain structural abnormalities in young children with autism spectrum disorder. Neurology 2002, 59: 184–192.
CAS
PubMed
Google Scholar
Hazlett HC, Poe M, Gerig G, Smith RG, Provenzale J, Ross A, Gilmore J, Piven J: Magnetic resonance imaging and head circumference study of brain size in autism: birth through age 2 years. Arch Gen Psychiatry 2005, 62: 1366–1376.
PubMed
Google Scholar
Redcay E, Courchesne E: When is the brain enlarged in autism? A meta-analysis of all brain size reports. Biol Psychiatry 2005, 58: 1–9.
PubMed
Google Scholar
Kosaka H, Omori M, Munesue T, Ishitobi M, Matsumura Y, Takahashi T, Narita K, Murata T, Saito DN, Uchiyama H, Morita T, Kikuchi M, Mizukami K, Okazawa H, Sadato N, Wada Y: Smaller insula and inferior frontal volumes in young adults with pervasive developmental disorders. NeuroImage 2010, 50: 1357–1363.
PubMed
Google Scholar
Raznahan A, Wallace GL, Antezana L, Greenstein D, Lenroot R, Thurm A, Gozzi M, Spence S, Martin A, Swedo SE, Giedd JN: Compared to what? Early brain overgrowth in autism and the perils of population norms. Biol Psychiatry 2013, 74: 563–575.
PubMed
PubMed Central
Google Scholar
Cohen MM Jr: Mental deficiency, alterations in performance, and CNS abnormalities in overgrowth syndromes. Am J Med Genet C: Semin Med Genet 2003, 117C: 49–56.
Google Scholar
Betancur C: Etiological heterogeneity in autism spectrum disorders: more than 100 genetic and genomic disorders are still counting. Brain Res 2011, 1380: 42–77.
CAS
PubMed
Google Scholar
Wegiel J, Schanen NC, Cook EH, Sigman M, Brown WT, Kuchna I, Nowicki K, Wegiel J, Imaki H, Ma SY, Marchi E, Wierzba Bobrowicz T, Chauhan A, Chauhan V, Cohen IL, London E, Flory M, Lach B, Wisniewski T: Differences between the pattern of developmental abnormalities in autism associated with duplications 15q11.2-q13 and idiopathic autism. J Neuropathol Exp Neurol 2012, 71: 382–397.
CAS
PubMed
PubMed Central
Google Scholar
Caviness VS Jr, Kennedy DN, Richelme C, Rademacher J, Filipek PA: The human brain age 7-11 years: a volumetric analysis based on magnetic resonance images. Cereb Cortex 1996, 6: 726–736.
PubMed
Google Scholar
Piven J, Arndt S, Bailey J, Andreasen N: Regional brain enlargement in autism: a magnetic resonance imaging study. J Am Acad Child Adolesc Psychiatry 1996, 35: 530–536.
CAS
PubMed
Google Scholar
Herbert MR, Ziegler DA, Deutsch CK, O'Brien LM, Lange N, Bakardjiev A, Hodgson J, Adrien KT, Steele S, Makris N, Kennedy D, Harris GJ, Caviness VS Jr: Dissociations of cerebral cortex, subcortical and cerebral white matter volumes in autistic boys. Brain 2003, 126: 1182–1192.
CAS
PubMed
Google Scholar
Carper RA, Courchesne E: Localized enlargement of the frontal cortex in early autism. Biol Psychiatry 2005, 57: 126–133.
PubMed
Google Scholar
Courchesne E, Mouton PR, Calhoun ME, Semendeferi K, Ahrens-Barbeau C, Hallet MJ, Barnes CC, Pierce K: Neuron number and size in prefrontal cortex of children with autism. JAMA 2011, 306: 2001–2010.
CAS
PubMed
Google Scholar
Santos M, Uppal N, Butti C, Wicinski B, Schmeidler J, Giannakopoulos P, Heinsen H, Schmitz C, Hof PR: Von Economo neurons in autism: a stereologic study of the frontoinsular cortex in children. Brain Res 2011, 1380: 206–217.
CAS
PubMed
Google Scholar
Guerin P, Lyon G, Barthelemy C, Sostak E, Chevrollier V, Garreau B, Lelord G: Neuropathological study of a case of autistic syndrome with severe mental retardation. Dev Med Child Neurol 1996, 38: 203–211.
CAS
PubMed
Google Scholar
Fatemi SH, Halt AR, Realmuto G, Earle J, Kist DA, Thuras P, Merz A: Purkinje cell size is reduced in cerebellum of patients with autism. Cell Mol Neurobiol 2002, 22: 171–175.
PubMed
Google Scholar
Kennedy DP, Semendeferi K, Courchesne E: No reduction of spindle neuron number in frontoinsular cortex in autism. Brain Cogn 2007, 64: 124–129.
PubMed
Google Scholar
Whitney ER, Kemper TL, Rosene DL, Bauman ML, Blatt GJ: Density of cerebellar basket and stellate cells in autism: evidence for a late developmental loss of Purkinje cells. J Neurosci Res 2009, 87: 2245–2254.
CAS
PubMed
PubMed Central
Google Scholar
Jacot-Descombes S, Uppal N, Wicinski B, Santos M, Schmeidler J, Giannakopoulos P, Heinsen H, Schmitz C, Hof PR: Decreased pyramidal neuron size in brodmann areas 44 and 45 in patients with autism. Acta Neuropathol 2012, 124: 67–79.
CAS
PubMed
Google Scholar
Ritvo ER, Freeman BJ, Scheibel AB, Duong T, Robinson H, Guthrie D, Ritvo A: Lower Purkinje cell counts in the cerebella of four autistic subjects: initial findings of the UCLA-NSAC autopsy research report. Am J Psychiatry 1986, 143: 862–866.
CAS
PubMed
Google Scholar
Kemper TL, Bauman M: Neuropathology of infantile autism. J Neuropath Exp Neurol 1998, 57: 645–652.
CAS
PubMed
Google Scholar
Schumann CM, Amaral DG: Stereological analysis of amygdala neuron number in autism. J Neurosci 2006, 26: 7674–7679.
CAS
PubMed
Google Scholar
van Kooten IAJ, Palmen SJMC, von Cappeln P, Steinbusch HWM, Korr H, Heinsen H, Hof PR, van Engeland H, Schmitz C: Neurons in the fusiform gyrus are fewer and smaller in autism. Brain 2008, 131: 987–999.
PubMed
Google Scholar
Simms ML, Kemper TL, Timbie CM, Bauman ML, Blatt GJ: The anterior cingulate cortex in autism: heterogeneity of qualitative and quantitative cytoarchitectonic features suggests possible subgroups. Acta Neuropathol 2009, 118: 673–684.
PubMed
Google Scholar
Kulesza RJ Jr, Lukose R, Stevens LV: Malformation of the human superior olive in autistic spectrum disorders. Brain Res 2011, 1367: 360–371.
CAS
PubMed
Google Scholar
Wegiel J, Flory M, Kuchna I, Nowicki K, Ma SY, Imaki H, Wegiel J, Cohen IL, London E, Brown WT, Wisniewski T: Brain-region-specific alterations of the trajectories of neuronal volume growth throughout the lifespan in autism. Acta Neuropathol Comm 2014, 2: 28.
Google Scholar
Wegiel J, Kuchna I, Nowicki K, Imaki H, Wegiel J, Marchi E, Ma SY, Chauhan A, Chauhan V, Wierzba Bobrowicz T, de Leon M, Sain Louis LA, Cohen IL, London E, Brown WR, Wisniewski T: The neuropathology of autism: defects of neurogenesis and neuronal migration, and dysplastic changes. Acta Neuropathol 2010, 119: 755–770.
PubMed
PubMed Central
Google Scholar
Heinsen H, Arzberger T, Schmitz C: Celloidin mounting (embedding without infiltration) - a new, simple and reliable method for producing serial sections of high thickness through complete human brains and its application to stereological and immunohistochemical investigations. J Chem Neuroanat 2000, 20: 49–59.
CAS
PubMed
Google Scholar
Lehéricy S, Hirsch EC, Cervera P, Hersch LB, Hauw J-J, Ruberg M, Agid Y: Selective loss of cholinergic neurons in the ventral striatum of patients with Alzheimer disease. Proc Natl Acad Sci U S A 1989, 86: 8580–8584.
PubMed
PubMed Central
Google Scholar
Braak H, Braak E: Neuronal types in the striatum of man. Cell Tissue Res 1982, 227: 319–342.
CAS
PubMed
Google Scholar
Alheid GF, Heimer L, Switzer RC III: Basal Ganglia. In The Human Nervous System. Edited by: Paxinos G. Academic Press, Inc, San Diego; 1990:483–582.
Google Scholar
Schumann CM, Amaral DG: Stereological estimation of the number of neurons in the human amygdaloid complex. J Comp Neurol 2005, 491: 320–329.
PubMed
PubMed Central
Google Scholar
Amaral DG, Insausti R: Hippocampal Formation. In The Human Nervous System. Edited by: Paxinos G. Academic Press, Inc, San Diego; 1990:711–755.
Google Scholar
Braak H: Architectonics of the Human Telencephalic Cortex. Springer Verlag, New York; 1980.
Google Scholar
Duvernoy HM: The Human Hippocampus. J.P. Bergman Verlag, München; 1988.
Google Scholar
Gaffney GR, Tsai LY, Kuperman S, Minchin S: Cerebellar structure in autism. Am J Dis Child 1987, 141: 1330–1332.
CAS
PubMed
Google Scholar
Murakami JW, Courchesne E, Press GA, Yeung-Courchesne R, Hesselink JR: Reduced cerebellar hemisphere size and its relationship to vermal hypoplasia in autism. Arch Neurol 1989, 46: 689–694.
CAS
PubMed
Google Scholar
Courchesne E, Yeung-Courchesne R, Press GA, Hesselink JR, Jernigan TL: Hypoplasia of cerebellar vermal lobules VI and VII in autism. N Engl J Med 1988, 318: 1349–1354.
CAS
PubMed
Google Scholar
Hashimoto T, Tayama M, Murakawa K, Yoshimoto T, Miyazaki M, Harada M, Kuroda Y: Development of the brainstem and cerebellum in autistic patients. J Autism Dev Disord 1995, 25: 1–18.
CAS
PubMed
Google Scholar
Ciesielski KT, Harris RJ, Hart BL, Pabst HF: Cerebellar hypoplasia and frontal lobe cognitive deficits in disorders of early childhood. Neuropsychologia 1997, 35: 643–655.
CAS
PubMed
Google Scholar
Piven J, Saliba K, Bailey J, Arndt S: An MRI study of autism: the cerebellum revisited. Neurology 1997, 49: 546–551.
CAS
PubMed
Google Scholar
Harris NS, Courchesne E, Townsend J, Carper RA, Lord C: Neuroanatomic contributions to slowed orienting of attention in children with autism. Brain Res. Cogn Brain Res 1999, 8: 61–71.
CAS
Google Scholar
Townsend J, Courchesne E, Covington J, Westerfield M, Harris NS, Lyden P, Lowry TP, Press GA: Spatial attention deficits in patients with acquired or developmental cerebellar abnormality. J Neurosci 1999, 19: 5632–5643.
CAS
PubMed
Google Scholar
Pierce K, Courchesne E: Evidence for a cerebellar role in reduced exploration and stereotyped behavior in autism. Biol Psychiatry 2001, 49: 655–664.
CAS
PubMed
Google Scholar
Andersen BB, Pakkenberg B: Stereological quantitation in cerebella from people with schizophrenia. Brit J Psychiatry 2003, 182: 354–361.
Google Scholar
Andersen BB, Gundersen HJ, Pakkenberg B: Aging of the human cerebellum: a stereological study. J Comp Neurol 2003, 466: 356–365.
PubMed
Google Scholar
Andersen BB: Reduction of Purkinje cell volume in cerebellum of alcoholics. Brain Res 2004, 1007: 10–18.
CAS
PubMed
Google Scholar
Agashiwala RM, Louis ED, Hof PR, Perl DP: A novel approach to non-biased systemic random sampling: a stereologic estimate of Purkinje cells in the human cerebellum. Brain Res 2008, 1236: 73–78.
CAS
PubMed
PubMed Central
Google Scholar
Palmen SJMC, Van Engeland H, Hof SC: Neuropathological findings in autism. Brain 2004, 127: 2572–2583.
PubMed
Google Scholar
Skefos J, Cummings C, Enzer K, Holiday J, Weed K, Levy E, Yuce T, Kemper T, Bauman M: Regional alterations in Purkinje cell density in patients with autism. PLoS One 2014, 9: e81255.
PubMed
PubMed Central
Google Scholar
Wegiel J, Kuchna I, Nowicki K, Imaki H, Wegiel J, Ma SY, Azmitia EC, Banerjee P, Flory M, Cohen IL, London E, Brown WT, Komich Hare C, Wisniewski T: Contribution of olivofloccular circuitry developmental defects to atypical gaze in autism. Brain Res 2013, 1512: 106–122.
CAS
PubMed
PubMed Central
Google Scholar
Ghatak NR, Santoso RA, McKinney WM: Cerebellar degeneration following long-term phenytoin therapy. Neurology 1976, 26: 818–820.
CAS
PubMed
Google Scholar
Rapport RL, Shaw CM: Phenytoin-related cerebellar degeneration without seizures. Ann Neurol 1977, 2: 437–439.
PubMed
Google Scholar
McLain LW Jr, Martin JT, Allen JH: Cerebellar degeneration due to chronic phenytoin therapy. Ann Neurol 1980, 7: 18–23.
PubMed
Google Scholar
Whitney ER, Kemper TL, Bauman ML, Rosene DL, Blatt GJ: Cerebellar Purkinje cells are reduced in a subpopulation of autistic brains: a stereological experiment using calbindin-D28k. Cerebellum 2008, 7: 406–416.
CAS
PubMed
Google Scholar
Yip J, Soghomonian JJ, Nguyen L, Blatt GJ: GAD 67 mRNA decrease in cerebellar Purkinje cells in autism: pathophysiological implications. Acta Neuropathol 2007, 113: 559–568.
CAS
PubMed
Google Scholar
Kreczmanski P, Heinsen H, Mantua V, Woltersdorf F, Masson T, Ulfig N, Schmidt-Kastner R, Korr H, Steinbusch HWM, Hof PR, Schmitz C: Volume, neuron density and total neuron number in five subcortical regions in schizophrenia. Brain 2007, 130: 678–692.
PubMed
Google Scholar
Bogerts B: Zur Neuropathologie der Schizophrenien. Fortschr Neurol Psychiatr 1984, 52: 428–437.
CAS
PubMed
Google Scholar
Lauer M, Senitz D, Beckmann H: Increased volume of the nucleus accumbens in schizophrenia. J Neural Transm 2001, 108: 645–660.
CAS
PubMed
Google Scholar
Pakkenberg B: Pronounced reduction of total neuron number in mediodorsal thalamic nucleus and nucleus accumbens in schizophrenics. Arch Gen Psychiatry 1990, 47: 1023–1028.
CAS
PubMed
Google Scholar
Sears LL, Vest C, Mohamed S, Bailey J, Ranson BJ, Piven J: An MRI study of the basal ganglia in autism. Progr Neuropsychopharmacol Biol Psychiatry 1999, 23: 613–624.
CAS
Google Scholar
Hollander E, Anagnostou E, Chaplin W, Esposito K, Haznedar MM, Licalzi E, Wasserman S, Soorya L, Buchsbaum M: Striatal volume on magnetic resonance imaging and repetitive behaviors in autism. Biol Psychiatry 2005, 58: 226–232.
PubMed
Google Scholar
Langen M, Durston S, Staal WG, Palmen SJ, van Engeland H: Caudate nucleus is enlarged in high-functioning medication-naive subjects with autism. Biol Psychiatry 2007, 62: 262–266.
PubMed
Google Scholar
Hardan AY, Kilpatrick M, Keshavan MS, Minshew NJ: Motor performance and anatomic magnetic resonance imaging (MRI) of the basal ganglia in autism. J Child Neurol 2003, 18: 317–324.
PubMed
Google Scholar
Thompson PM, Giedd JN, Woods RP, MacDonald D, Evans AC, Toga AW: Growth patterns in the developing brain detected by using continuum mechanical tensor maps. Nature 2000, 404: 190–193.
CAS
PubMed
Google Scholar
Sowell ER, Thompson PM, Holmes CJ, Jernigan TL, Toga AW: In vivo evidence for post-adolescent brain maturation in frontal and striatal regions. Nat Neurosci 1999, 2: 859–861.
CAS
PubMed
Google Scholar
Voelbel GT, Bates ME, Buckman JF, Pandina G, Hendren RL: Caudate nucleus volume and cognitive performance: are they related in childhood psychopathology? Biol Psychiatry 2006, 60: 942–950.
PubMed
PubMed Central
Google Scholar
Heimer L, Alheid GF, de Olmos JS, Groenewegen HJ, Haber SN, Harlan RE, Zahm DS: The accumbens: beyond the core-shell dichotomy. J Neuropsychiatry Clin Neurosci 1997, 9: 354–381.
CAS
PubMed
Google Scholar
Day JJ, Carelli RM: The nucleus accumbens and Pavlovian reward learning. Neuroscientist 2007, 13: 148–159.
PubMed
PubMed Central
Google Scholar
Mogenson GJ, Jones DL, Yim CY: From motivation to action: functional interface between the limbic system and the motor system. Progr Neurobiol 1980, 14: 69–97.
CAS
Google Scholar
Bailey DB Jr, Hatton DD, Mesibov G, Ament N, Skinner M: Early development, temperament, and functional impairment in autism and fragile X syndrome. J Autism Dev Disord 2000, 30: 49–59.
PubMed
Google Scholar
Kaufmann WE, Cortell R, Kau AS, Bukelis I, Tierney E, Gray RM, Cox C, Capone GT, Stanard P: Autism spectrum disorder in fragile X syndrome: communication, social interaction, and specific behaviors. Am J Med Gen Part A 2004, 129A: 225–234.
Google Scholar
Hatton DD, Sideris J, Skinner M, Mankowski J, Bailey DB, Roberts J, Mirrett P: Autistic behavior in children with fragile X syndrome: prevalence, stability, and the impact of FMRP. Am J Med Gen Part A 2006, 140A: 1804–1813.
Google Scholar
Harris SW, Hessl D, Goodlin-Jones B, Ferranti J, Bacalman S, Barbato I, Tassone F, Hagerman PJ, Herman H, Hagerman RJ: Autism profiles of males with fragile X syndrome. Am J Ment Retard 2008, 113: 427–438.
PubMed
PubMed Central
Google Scholar
Brown WT, Cohen IL: Fragile X syndrome and autism spectrum disorders. In The Neuroscience of Autism Spectrum Disorders. Edited by: Buxbaum JD, Hof PH. Elsevier, Inc, Amsterdam; 2013:409–419.
Google Scholar
Gothelf D, Furfaro JA, Hoeft F, Eckert MA, Hall SS, O'Hara R, Erba HW, Ringel J, Hayashi KH, Patnaik S, Golianu B, Kraemer HC, Thompson PM, Piven J, Reiss AL: Neuroanatomy of fragile X syndrome is associated with aberrant behavior and the fragile X mental retardation protein (FMRP). Ann Neurol 2008, 63: 40–51.
PubMed
PubMed Central
Google Scholar
Fatemi SH, Folsom TD: Dysregulation of fragile X mental retardation protein and metabotropic glutamate receptor 5 in superior frontal cortex of individuals with autism: a postmortem brains study. Mol Autism 2011, 2: 6. doi:10.1186/2040–2392–2-6
PubMed
PubMed Central
Google Scholar
Kemper TL, Bauman ML: The contribution of neuropathologic studies to the understanding of autism. Neurol Clin 1993, 11: 175–187.
CAS
PubMed
Google Scholar
Schumann CM, Hamstra J, Goodlin-Jones BL, Lotspeich LJ, Kwon H, Buonocore MH, Lammers CR, Reiss AL, Amaral DG: The amygdala is enlarged in children but not adolescents with autism; the hippocampus is enlarged at all ages. J Neurosci 2004, 24: 6392–6401.
CAS
PubMed
Google Scholar
Baron-Cohen S, Ring HA, Bullmore ET, Wheelwright S, Ashwin C, Williams SC: The amygdala theory of autism. Neurosci Biobehav Rev 2000, 24: 355–364.
CAS
PubMed
Google Scholar
Ahlsen G, Rosengren L, Belfrage M, Palm A, Haglid K, Hamberger A, Gillberg C: Glial fibrillary acidic protein in the cerebrospinal fluid of children with autism and other neuropsychiatric disorders. Biol Psychiatry 1993, 33: 734–743.
CAS
PubMed
Google Scholar
Laurence JA, Fatemi SH: Glial fibrillary acidic protein is elevated in superior frontal, parietal and cerebellar cortices of autistic subjects. Cerebellum 2005, 4: 206–210.
CAS
PubMed
Google Scholar
Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA: Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol 2005, 57: 67–81.
CAS
PubMed
Google Scholar
Perea G, Navarrete M, Araque A: Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci 2009, 32: 421–431.
CAS
PubMed
Google Scholar
Alexander GE, DeLong MR, Strick PL: Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Ann Rev Neurosci 1986, 9: 357–381.
CAS
PubMed
Google Scholar
Muris P, Steerneman P, Merckelbach H, Holdrinet I, Meesters C: Comorbid anxiety symptoms in children with pervasive developmental disorders. J Anxiety Disord 1998, 12: 387–393.
CAS
PubMed
Google Scholar
Stoner R, Chow ML, Boyle MP, Sunkin SM, Mouton PR, Roy S, Wynshaw-Boris A, Colamarino SA, Lein ES, Courchesne E: Patches of disorganization in the neocortex of children with autism. N Engl J Med 2014, 370: 1209–1219.
CAS
PubMed
PubMed Central
Google Scholar
Coleman PD, Romano J, Lapham L, Simon W: Cell counts in cerebral cortex of an autistic patient. J Autism Dev Disord 1985, 15: 245–255.
CAS
PubMed
Google Scholar
Bailey A, Luthert P, Dean A, Harding B, Janota I, Montgomery M, Rutter M, Lantos P: A clinicopathological study of autism. Brain 1998, 121: 889–905.
PubMed
Google Scholar
Duvernoy HM: The human hippocampus. JF Bergmann Verlag, München; 1988.
Google Scholar
Honer WG, Bassett AS, Falkai P, Beach TG, Lapointe JS: A case study of temporal lobe development in familial schizophrenia. Psychol Med 1996, 26: 191–195.
CAS
PubMed
PubMed Central
Google Scholar
Falkai P, Schneider-Axmann T, Honer WG: Entorhinal cortex pre-alpha cell clusters in schizophrenia: quantitative evidence of a developmental abnormality. Biol Psychiatry 2000, 47: 937–943.
CAS
PubMed
Google Scholar
DiCiccio-Bloom E, Lord C, Zwaigenbaum L, Courchesne E, Dager SR, Schmitz C, Schultz RT, Crawley J, Young LJ: The developmental neurobiology of autism spectrum disorder. J Neurosci 2006, 26: 6897–6906.
Google Scholar
Kern JK, Geier DA, Sykes LK, Geier MR: Evidence for neurodegeneration in autism spectrum disorder. Transl Neurodegener 2013, 2: 17.
PubMed
PubMed Central
Google Scholar
Hof PR, Knabe R, Bovier P, Bouras C: Neuropathological observations in a case of autism presenting with self-injury behavior. Acta Neuropathol 1991, 82: 321–326.
CAS
PubMed
Google Scholar
Fatemi SH, Aldinger KA, Ashwood P, Bauman ML, Blaha CD, Blatt GJ, Chauhan A, Chauhan V, Dager SR, Dickson PE, Estes AM, Goldovitz D, Heck DH, Kemper TL, King BH, Martin LA, Millen KJ, Mittleman G, Mosconi MW, Persico AM, Sweeney JA, Webb SJ, Welsh JP: Consensus paper: pathological role of the cerebellum in autism. Cerebellum 2013, 11: 777–807.
Google Scholar
Korbo L, West M: No loss of hippocampal neurons in AIDS patients. Acta Neuropathol 2000, 99: 529–533.
CAS
PubMed
Google Scholar
West MJ, Gundersen HJG: Unbiased stereological estimation of the number of neurons in the human hippocampus. J Comp Neurol 1990, 296: 1–22.
CAS
PubMed
Google Scholar
West MJ, Kawas CH, Stewart WF, Rudow GL, Troncoso JC: Hippocampal neurons in pre-clinical Alzheimer’s disease. Neurobiol Aging 2004, 25: 1205–1212.
CAS
PubMed
Google Scholar
Pakkenberg B, Møller A, Gundersen HJ, Mouritzen Dam A, Pakkenberg H: The absolute number of nerve cells in substantia nigra in normal subjects and in patients with Parkinson’s disease estimated with an unbiased stereological method. J Neurol Neurosurg Psychiatry 1991, 54: 30–33.
CAS
PubMed
PubMed Central
Google Scholar
Chauhan A, Gu F, Essa MM, Wegiel J, Kaur K, Brown WT, Chauhan V: Brain region-specific deficit in mitochondrial electron transport chain complex in children with autism. J Neurochem 2011, 117: 209–220.
CAS
PubMed
PubMed Central
Google Scholar
Gu F, Chauhan V, Kaur K, Brown WT, LaFauci G, Wegiel J, Chauhan A: Alterations in mitochondrial DNA copy number and the activities of electron transport chain complexes and pyruvate dehydrogenase in the frontal cortex from subjects with autism. Transl Psychiatry 2013, 3: e299. doi:10.1038/tp.2013.68
CAS
PubMed
PubMed Central
Google Scholar
Tang G, Rios PG, Kuo S-H, Akman HO, Rosoklija G, Tnji K, Dwork A, Schon EA, DiMauro S, Goldman J, Sulzer D: Mitochondrial abnormalities in temporal lobe of autistic brain. Neurobiol Dis 2013, 54: 349–361.
CAS
PubMed
PubMed Central
Google Scholar
Sajdel-Sulkowska EM, Lipinsk B, Windom H, Audhya T, McGinnis W: Oxidative stress in autism: elevated cerebellar 3-nitrotyrosine levels. Am J Bioch Biotechnol 2008, 4: 73–84.
CAS
Google Scholar
Chauhan A, Audhya T, Chauhan V: Brain region-specific glutathione redox imbalance in autism. Neurochem Res 2012, 37: 1681–1689.
CAS
PubMed
Google Scholar
Wegiel J, Frackowiak J, Mazur-Kolecka B, Schanen NC, Cook EH Jr, Sigman M, Brown WT, Kuchna I, Wegiel J, Nowicki K, Imaki H, Ma SY, Chauhan A, Chauhan V, Miller DL, Mehta PD, Flory M, Cohen IL, London E, Reisberg B, de Leon MJ, Wisniewski T: Abnormal intracellular accumulation and extracellular Aβ deposition in idiopathic and Dup15q11.2-q13 autism spectrum disorders. PLoS One 2012, 7(5):e35414. doi:10,1731/journal.pone.0035414
CAS
PubMed
PubMed Central
Google Scholar
Frackowiak J, Mazur-Kolecka B, Schanen NC, Brown WT, Wegiel J: The link between intraneuronal N-truncated amyloid b-peptide and oxidatively modified lipids in idiopathic autism and dup(15q11.2-q13)/autism. Acta Neuropathol Comm 2013, 1: 61.
Google Scholar