Ballester L, Wang Z, Shandilya S, Miettinen M, Burger P, Eberhart C, Rodriguez F, Raabe E, Nazarian J, Warren K, Quezado M: Morphologic characteristics and immunohistochemical profile of diffuse intrinsic pontine gliomas. Am J Surg Pathol 2013, 37(9):1357–1364. doi:10.1097/PAS.0b013e318294e817 10.1097/PAS.0b013e318294e817
Article
PubMed
PubMed Central
Google Scholar
Paugh BS, Broniscer A, Qu C, Miller CP, Zhang J, Tatevossian RG, Olson JM, Geyer JR, Chi SN, Da Silva NS, Onar-Thomas A, Baker JN, Gajjar A, Ellison DW, Baker SJ: Genome-wide analyses identify recurrent amplifications of receptor tyrosine kinases and cell-cycle regulatory genes in diffuse intrinsic pontine glioma. J Clin Oncol 2011, 29(30):3999–4006. doi:10.1200/JCO.2011.35.5677 10.1200/JCO.2011.35.5677
Article
CAS
PubMed
PubMed Central
Google Scholar
Paugh BS, Zhu X, Qu C, Endersby R, Diaz AK, Zhang J, Bax DA, Carvalho D, Reis RM, Onar-Thomas A, Broniscer A, Wetmore C, Zhang J, Jones C, Ellison DW, Baker SJ: Novel oncogenic PDGFRA mutations in pediatric high-grade gliomas. Cancer Res 2013, 73(20):6219–6229. doi:10.1158/0008–5472. CAN-13–1491 10.1158/0008-5472.CAN-13-1491
Article
CAS
PubMed
PubMed Central
Google Scholar
Saratsis AM, Kambhampati M, Snyder K, Yadavilli S, Devaney JM, Harmon B, Hall J, Raabe EH, An P, Weingart M, Rood BR, Magge SN, Macdonald TJ, Packer RJ, Nazarian J: Comparative multidimensional molecular analyses of pediatric diffuse intrinsic pontine glioma reveals distinct molecular subtypes. Acta Neuropathol 2013. doi:10.1007/s00401–013–1218–2
Google Scholar
Buczkowicz P, Hoeman C, Rakopoulos P, Pajovic S, Letourneau L, Dzamba M, Morrison A, Lewis P, Bouffet E, Bartels U, Zuccaro J, Agnihotri S, Ryall S, Barszczyk M, Chornenkyy Y, Bourgey M, Bourque G, Montpetit A, Cordero F, Castelo-Branco P, Mangerel J, Tabori U, Ho KC, Huang A, Taylor KR, Mackay A, Bendel AE, Nazarian J, Fangusaro JR, Karajannis MA, et al.: Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations. Nat Genet 2014. doi:10.1038/ng.2936
Google Scholar
Taylor KR, Mackay A, Truffaux N, Butterfield YS, Morozova O, Philippe C, Castel D, Grasso CS, Vinci M, Carvalho D, Carcaboso AM, De Torres C, Cruz O, Mora J, Entz-Werle N, Ingram WJ, Monje M, Hargrave D, Bullock AN, Puget S, Yip S, Jones C, Grill J: Recurrent activating ACVR1 mutations in diffuse intrinsic pontine glioma. Nat Genet 2014. doi:10.1038/ng.2925
Google Scholar
Dewoskin V, Million R: The epigenetics pipeline. Nat Rev Drug Discov 2013, 12(9):661–662. doi:10.1038/nrd4091 10.1038/nrd4091
Article
CAS
PubMed
Google Scholar
Schwartzentruber J, Korshunov A, Liu X-Y, Jones D, Pfaff E, Jacob K, Sturm D, Fontebasso A, Quang D-AK, Tönjes M, Hovestadt V, Albrecht S, Kool M, Nantel A, Konermann C, Lindroth A, Jäger N, Rausch T, Ryzhova M, Korbel J, Hielscher T, Hauser P, Garami M, Klekner A, Bognar L, Ebinger M, Schuhmann M, Scheurlen W, Pekrun A, Frühwald M, et al.: Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 2012, 482(7384):226–231. doi:10.1038/nature10833 10.1038/nature10833
Article
CAS
PubMed
Google Scholar
Sturm D, Witt H, Hovestadt V, Khuong-Quang D-A, Jones D, Konermann C, Pfaff E, Tönjes M, Sill M, Bender S, Kool M, Zapatka M, Becker N, Zucknick M, Hielscher T, Liu X-Y, Fontebasso A, Ryzhova M, Albrecht S, Jacob K, Wolter M, Ebinger M, Schuhmann M, van Meter T, Frühwald M, Hauch H, Pekrun A, Radlwimmer B, Niehues T, von Komorowski G, et al.: Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 2012, 22(4):425–437. doi:10.1016/j.ccr.2012.08.024 10.1016/j.ccr.2012.08.024
Article
CAS
PubMed
Google Scholar
Bender S, Tang Y, Lindroth A, Hovestadt V, Jones D, Kool M, Zapatka M, Northcott P, Sturm D, Wang W, Radlwimmer B, Højfeldt J, Truffaux N, Castel D, Schubert S, Ryzhova M, Seker-Cin H, Gronych J, Johann P, Stark S, Meyer J, Milde T, Schuhmann M, Ebinger M, Monoranu C-M, Ponnuswami A, Chen S, Jones C, Witt O, Collins V, et al.: Reduced H3K27me3 and DNA Hypomethylation Are Major Drivers of Gene Expression in K27M Mutant Pediatric High-Grade Gliomas. Cancer Cell 2013, 24(5):660–672. doi:10.1016/j.ccr.2013.10.006 10.1016/j.ccr.2013.10.006
Article
CAS
PubMed
Google Scholar
Wu G, Broniscer A, McEachron TA, Lu C, Paugh BS, Becksfort J, Qu C, Ding L, Huether R, Parker M, Zhang J, Gajjar A, Dyer MA, Mullighan CG, Gilbertson RJ, Mardis ER, Wilson RK, Downing JR, Ellison DW, Zhang J, Baker SJ, St. Jude Children’s Research Hospital-Washington University Pediatric Cancer Genome P: Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet 2012, 44(3):251–253. doi:10.1038/ng.1102 10.1038/ng.1102
Article
CAS
PubMed
PubMed Central
Google Scholar
Khuong-Quang DA, Buczkowicz P, Rakopoulos P, Liu XY, Fontebasso AM, Bouffet E, Bartels U, Albrecht S, Schwartzentruber J, Letourneau L, Bourgey M, Bourque G, Montpetit A, Bourret G, Lepage P, Fleming A, Lichter P, Kool M, von Deimling A, Sturm D, Korshunov A, Faury D, Jones DT, Majewski J, Pfister SM, Jabado N, Hawkins C: K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathol 2012, 124(3):439–447. doi:10.1007/s00401–012–0998–0 10.1007/s00401-012-0998-0
Article
CAS
PubMed
PubMed Central
Google Scholar
Lewis P, Müller M, Koletsky M, Cordero F, Lin S, Banaszynski L, Garcia B, Muir T, Becher O, Allis C: Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science (New York, NY) 2013, 340(6134):857–861. doi:10.1126/science.1232245 10.1126/science.1232245
Article
CAS
Google Scholar
Sparmann A, van Lohuizen M: Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer 2006, 6(11):846–856. doi:10.1038/nrc1991 10.1038/nrc1991
Article
CAS
PubMed
Google Scholar
Reddington J, Perricone S, Nestor C, Reichmann J, Youngson N, Suzuki M, Reinhardt D, Dunican D, Prendergast J, Mjoseng H, Ramsahoye B, Whitelaw E, Greally J, Adams I, Bickmore W, Meehan R: Redistribution of H3K27me3 upon DNA hypomethylation results in de-repression of Polycomb target genes. Genome Biol 2013., 14(3): doi:10.1186/gb-2013–14–3-r25
Google Scholar
Pfeifer G, Kadam S, Jin S-G: 5-hydroxymethylcytosine and its potential roles in development and cancer. Epigenetics Chromatin 2013, 6(1):10. doi:10.1186/1756–8935–6-10 10.1186/1756-8935-6-10
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun W, Guan M, Li X: 5-hydroxymethylcytosine-mediated DNA demethylation in stem cells and development. Stem Cells Dev 2014. doi:10.1089/scd.2013.0428
Google Scholar
Hahn M, Qiu R, Wu X, Li A, Zhang H, Wang J, Jui J, Jin S-G, Jiang Y, Pfeifer G, Lu Q: Dynamics of 5-hydroxymethylcytosine and chromatin marks in Mammalian neurogenesis. Cell Rep 2013, 3(2):291–300. doi:10.1016/j.celrep.2013.01.011 10.1016/j.celrep.2013.01.011
Article
CAS
PubMed
PubMed Central
Google Scholar
Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, He C, Zhang Y: Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 2011, 333(6047):1300–1303. doi:10.1126/science.1210597 10.1126/science.1210597
Article
CAS
PubMed
PubMed Central
Google Scholar
Haffner MC, Chaux A, Meeker AK, Esopi DM, Gerber J, Pellakuru LG, Toubaji A, Argani P, Iacobuzio-Donahue C, Nelson WG, Netto GJ, De Marzo AM, Yegnasubramanian S: Global 5-hydroxymethylcytosine content is significantly reduced in tissue stem/progenitor cell compartments and in human cancers. Oncotarget 2011, 2(8):627–637.
Article
PubMed
PubMed Central
Google Scholar
Orr B, Haffner M, Nelson W, Yegnasubramanian S, Eberhart C: Decreased 5-hydroxymethylcytosine is associated with neural progenitor phenotype in normal brain and shorter survival in malignant glioma. PLoS One 2012., 7(7): doi:10.1371/journal.pone.0041036
Google Scholar
Venneti S, Garimella MT, Sullivan LM, Martinez D, Huse JT, Heguy A, Santi M, Thompson CB, Judkins AR: Evaluation of histone 3 lysine 27 trimethylation (H3K27me3) and enhancer of Zest 2 (EZH2) in pediatric glial and glioneuronal tumors shows decreased H3K27me3 in H3F3A K27M mutant glioblastomas. Brain Pathol 2013, 23(5):558–564. doi:10.1111/bpa.12042 10.1111/bpa.12042
Article
CAS
PubMed
Google Scholar
Odia Y, Orr BA, Bell WR, Eberhart CG, Rodriguez FJ: cMYC expression in infiltrating gliomas: associations with IDH1 mutations, clinicopathologic features and outcome. J Neurooncol 2013, 115(2):249–259. doi:10.1007/s11060–013–1221–4 10.1007/s11060-013-1221-4
Article
CAS
PubMed
Google Scholar
Haffner M, Pellakuru L, Ghosh S, Lotan T, Nelson W, De Marzo A, Yegnasubramanian S: Tight correlation of 5-hydroxymethylcytosine and Polycomb marks in health and disease. Cell Cycle 2013, 12(12):1835–1841. doi:10.4161/cc.25010 10.4161/cc.25010
Article
CAS
PubMed
PubMed Central
Google Scholar