Alzheimer's Association (2021) Facts and Figures https://www.alz.org/media/Documents/alzheimers-facts-and-figures.pdf
DeTure MA, Dickson DW (2019) The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener 14:32. https://doi.org/10.1186/s13024-019-0333-5
Article
PubMed
PubMed Central
Google Scholar
Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, Cooper NR, Eikelenboom P, Emmerling M, Fiebich BL et al (2000) Inflammation and Alzheimer’s disease. Neurobiol Aging 21:383–421. https://doi.org/10.1016/s0197-4580(00)00124-x
Article
CAS
PubMed
PubMed Central
Google Scholar
Kunkle BW, Grenier-Boley B, Sims R, Bis JC, Damotte V, Naj AC, Boland A, Vronskaya M, van der Lee SJ, Amlie-Wolf A et al (2019) Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Abeta, tau, immunity and lipid processing. Nat Genet 51:414–430. https://doi.org/10.1038/s41588-019-0358-2
Article
CAS
PubMed
PubMed Central
Google Scholar
Wyss-Coray T, Rogers J (2012) Inflammation in Alzheimer disease-a brief review of the basic science and clinical literature. Cold Spring Harb Perspect Med 2:a006346. https://doi.org/10.1101/cshperspect.a006346
Article
PubMed
PubMed Central
Google Scholar
Carpanini SM, Harwood JC, Baker E, Torvell M, The Gerad C, Sims R, Williams J, Morgan BP (2021) The impact of complement genes on the risk of Late-Onset Alzheimer’s Disease. Genes (Basel). https://doi.org/10.3390/genes12030443
Article
Google Scholar
Afagh A, Cummings BJ, Cribbs DH, Cotman CW, Tenner AJ (1996) Localization and cell association of C1q in Alzheimer’s disease brain. Exp Neurol 138:22–32. https://doi.org/10.1006/exnr.1996.0043
Article
CAS
PubMed
Google Scholar
Gomez-Arboledas A, Acharya MM, Tenner AJ (2021) The role of complement in synaptic pruning and neurodegeneration. Immunotargets Ther 10:373–386. https://doi.org/10.2147/ITT.S305420
Article
PubMed
PubMed Central
Google Scholar
Zhou J, Fonseca MI, Pisalyaput K, Tenner AJ (2008) Complement C3 and C4 expression in C1q sufficient and deficient mouse models of Alzheimer’s disease. J Neurochem 106:2080–2092. https://doi.org/10.1111/j.1471-4159.2008.05558.x
Article
CAS
PubMed
PubMed Central
Google Scholar
Schartz ND, Tenner AJ (2020) The good, the bad, and the opportunities of the complement system in neurodegenerative disease. J Neuroinflammation 17:354. https://doi.org/10.1186/s12974-020-02024-8
Article
PubMed
PubMed Central
Google Scholar
Torvell M, Carpanini SM, Daskoulidou N, Byrne RAJ, Sims R, Morgan BP (2021) Genetic insights into the impact of complement in Alzheimer’s Disease. Genes (Basel). https://doi.org/10.3390/genes12121990
Article
Google Scholar
Benoit ME, Clarke EV, Morgado P, Fraser DA, Tenner AJ (2012) Complement protein C1q directs macrophage polarization and limits inflammasome activity during the uptake of apoptotic cells. J Immunol 188:5682–5693. https://doi.org/10.4049/jimmunol.1103760
Article
CAS
PubMed
Google Scholar
Benoit ME, Hernandez MX, Dinh ML, Benavente F, Vasquez O, Tenner AJ (2013) C1q-induced LRP1B and GPR6 proteins expressed early in Alzheimer disease mouse models, are essential for the C1q-mediated protection against amyloid-beta neurotoxicity. J Biol Chem 288:654–665. https://doi.org/10.1074/jbc.M112.400168
Article
CAS
PubMed
Google Scholar
Fonseca MI, Zhou J, Botto M, Tenner AJ (2004) Absence of C1q leads to less neuropathology in transgenic mouse models of Alzheimer’s disease. J Neurosci 24:6457–6465. https://doi.org/10.1523/JNEUROSCI.0901-04.2004
Article
CAS
PubMed
PubMed Central
Google Scholar
Shi Q, Chowdhury S, Ma R, Le KX, Hong S, Caldarone BJ, Stevens B, Lemere CA (2017) Complement C3 deficiency protects against neurodegeneration in aged plaque-rich APP/PS1 mice. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aaf6295
Article
PubMed
PubMed Central
Google Scholar
Shi Q, Colodner KJ, Matousek SB, Merry K, Hong S, Kenison JE, Frost JL, Le KX, Li S, Dodart JC et al (2015) Complement C3-deficient mice fail to display age-related hippocampal decline. J Neurosci 35:13029–13042. https://doi.org/10.1523/JNEUROSCI.1698-15.2015
Article
CAS
PubMed
PubMed Central
Google Scholar
Carvalho K, Schartz ND, Balderrama-Gutierrez G, Liang HY, Chu S-H, Selvan P, Gomez-Arboledas A, Petrisko TJ, Fonseca MI, Mortazavi A et al (2022) Modulation of C5a–C5aR1 signaling alters the dynamics of AD progression. J Neuroinflammation 19:178. https://doi.org/10.1186/s12974-022-02539-2
Article
CAS
PubMed
PubMed Central
Google Scholar
Coulthard LG, Woodruff TM (2015) Is the complement activation product C3a a proinflammatory molecule? Re-evaluating the evidence and the myth. J Immunol 194:3542–3548. https://doi.org/10.4049/jimmunol.1403068
Article
CAS
PubMed
Google Scholar
Cheng IH, Palop JJ, Esposito LA, Bien-Ly N, Yan F, Mucke L (2004) Aggressive amyloidosis in mice expressing human amyloid peptides with the Arctic mutation. Nat Med 10:1190–1192. https://doi.org/10.1038/nm1123
Article
CAS
PubMed
Google Scholar
Carvalho K, Schartz ND, Balderrama-Gutierrez G, Liang HY, Chu S-H, Selvan P, Gomez-Arboledas A, Petrisko TJ, Fonseca MI, Mortazavi A et al (2022) Modulation of C5a-C5aR1 signaling alters the dynamics of AD progression. bioRxiv: 2022.2004.2001.486759. https://doi.org/10.1101/2022.04.01.486759
Hernandez MX, Jiang S, Cole TA, Chu SH, Fonseca MI, Fang MJ, Hohsfield LA, Torres MD, Green KN, Wetsel RA et al (2017) Prevention of C5aR1 signaling delays microglial inflammatory polarization, favors clearance pathways and suppresses cognitive loss. Mol Neurodegener 12:66. https://doi.org/10.1186/s13024-017-0210-z
Article
CAS
PubMed
PubMed Central
Google Scholar
Fonseca MI, Ager RR, Chu SH, Yazan O, Sanderson SD, LaFerla FM, Taylor SM, Woodruff TM, Tenner AJ (2009) Treatment with a C5aR antagonist decreases pathology and enhances behavioral performance in murine models of Alzheimer’s disease. J Immunol 183:1375–1383. https://doi.org/10.4049/jimmunol.0901005
Article
CAS
PubMed
Google Scholar
Kumar V, Lee JD, Clark RJ, Noakes PG, Taylor SM, Woodruff TM (2020) Preclinical pharmacokinetics of complement C5a receptor antagonists PMX53 and PMX205 in mice. ACS Omega 5:2345–2354. https://doi.org/10.1021/acsomega.9b03735
Article
CAS
PubMed
PubMed Central
Google Scholar
Woodruff TM, Pollitt S, Proctor LM, Stocks SZ, Manthey HD, Williams HM, Mahadevan IB, Shiels IA, Taylor SM (2005) Increased potency of a novel complement factor 5a receptor antagonist in a rat model of inflammatory bowel disease. J Pharmacol Exp Ther 314:811–817. https://doi.org/10.1124/jpet.105.086835
Article
CAS
PubMed
Google Scholar
Biggins PJC, Brennan FH, Taylor SM, Woodruff TM, Ruitenberg MJ (2017) The alternative receptor for complement component 5a, C5aR2, conveys neuroprotection in traumatic spinal cord injury. J Neurotrauma 34:2075–2085. https://doi.org/10.1089/neu.2016.4701
Article
PubMed
Google Scholar
Lee JD, Kumar V, Fung JN, Ruitenberg MJ, Noakes PG, Woodruff TM (2017) Pharmacological inhibition of complement C5a–C5a1 receptor signalling ameliorates disease pathology in the hSOD1(G93A) mouse model of amyotrophic lateral sclerosis. Br J Pharmacol 174:689–699. https://doi.org/10.1111/bph.13730
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee JD, Coulthard LG, Woodruff TM (2019) Complement dysregulation in the central nervous system during development and disease. Semin Immunol 45:101340. https://doi.org/10.1016/j.smim.2019.101340
Article
CAS
PubMed
Google Scholar
Jayne DRW, Merkel PA, Schall TJ, Bekker P, Group AS (2021) Avacopan for the treatment of ANCA-associated vasculitis. N Engl J Med 384:599–609. https://doi.org/10.1056/NEJMoa2023386
Article
CAS
PubMed
Google Scholar
Tenner AJ (2020) Complement-mediated events in alzheimer’s disease: mechanisms and potential therapeutic targets. J Immunol 204:306–315. https://doi.org/10.4049/jimmunol.1901068
Article
CAS
PubMed
Google Scholar
Woodruff TM, Nandakumar KS, Tedesco F (2011) Inhibiting the C5–C5a receptor axis. Mol Immunol 48:1631–1642. https://doi.org/10.1016/j.molimm.2011.04.014
Article
CAS
PubMed
Google Scholar
Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, Yang F, Cole G (1996) Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 274:99–102. https://doi.org/10.1126/science.274.5284.99
Article
CAS
PubMed
Google Scholar
Marsh SE, Kamath T, Walker AJ, Dissing-Olesen L, Hammond TR, Young AMH, Abdulraouf A, Nadaf N, Dufort C, Murphy S et al (2020) Single Cell Sequencing Reveals Glial Specific Responses to Tissue Processing and Enzymatic Dissociation in Mice and Humans. bioRxiv: 2020.2012.2003.408542, https://doi.org/10.1101/2020.12.03.408542
Bray NL, Pimentel H, Melsted P, Pachter L (2016) Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol 34:525–527. https://doi.org/10.1038/nbt.3519
Article
CAS
PubMed
Google Scholar
Melsted P, Booeshaghi AS, Liu L, Gao F, Lu L, Min KHJ, da Veiga BE, Hjörleifsson KE, Gehring J, Pachter L (2021) Modular, efficient and constant-memory single-cell RNA-seq preprocessing. Nat Biotechnol 39:813–818. https://doi.org/10.1038/s41587-021-00870-2
Article
CAS
PubMed
Google Scholar
Wolock SL, Lopez R, Klein AM (2019) Scrublet: computational identification of cell doublets in single-cell transcriptomic data. Cell Syst 8(281–291):e289. https://doi.org/10.1016/j.cels.2018.11.005
Article
CAS
Google Scholar
Hao Y, Hao S, Andersen-Nissen E, Mauck WM, Zheng S, Butler A, Lee MJ, Wilk AJ, Darby C, Zager M et al (2021) Integrated analysis of multimodal single-cell data. Cell 184:3573-3587.e3529. https://doi.org/10.1016/j.cell.2021.04.048
Article
CAS
PubMed
PubMed Central
Google Scholar
Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan C-H, Myung P, Plikus MV, Nie Q (2021) Inference and analysis of cell-cell communication using cell chat. Nat Commun 12:1–20. https://doi.org/10.1038/s41467-021-21246-9
Article
CAS
Google Scholar
Ager RR, Fonseca MI, Chu SH, Sanderson SD, Taylor SM, Woodruff TM, Tenner AJ (2010) Microglial C5aR (CD88) expression correlates with amyloid-beta deposition in murine models of Alzheimer’s disease. J Neurochem 113:389–401
Article
CAS
Google Scholar
Fonseca MI, McGuire SO, Counts SE, Tenner AJ (2013) Complement activation fragment C5a receptors, CD88 and C5L2, are associated with neurofibrillary pathology. J Neuroinflammation 10:25
Article
CAS
Google Scholar
Woodruff TM, Ager RR, Tenner AJ, Noakes PG, Taylor SM (2010) The role of the complement system and the activation fragment C5a in the central nervous system. Neuromolecular Med 12:179–192. https://doi.org/10.1007/s12017-009-8085-y
Article
CAS
PubMed
Google Scholar
Hopperton KE, Mohammad D, Trépanier MO, Giuliano V, Bazinet RP (2018) Markers of microglia in post-mortem brain samples from patients with Alzheimer’s disease: a systematic review. Mol Psychiatry 23:177–198. https://doi.org/10.1038/mp.2017.246
Article
CAS
PubMed
Google Scholar
Selkoe DJ (2002) Alzheimer’s disease is a synaptic failure. Science 298:789–791. https://doi.org/10.1126/science.1074069
Article
CAS
PubMed
Google Scholar
Hong S, Beja-Glasser VF, Nfonoyim BM, Frouin A, Li S, Ramakrishnan S, Merry KM, Shi Q, Rosenthal A, Barres BA et al (2016) Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 352:712–716. https://doi.org/10.1126/science.aad8373
Article
CAS
PubMed
PubMed Central
Google Scholar
Lui H, Zhang J, Makinson SR, Cahill MK, Kelley KW, Huang HY, Shang Y, Oldham MC, Martens LH, Gao F et al (2016) Progranulin deficiency promotes circuit-specific synaptic pruning by microglia via complement activation. Cell 165:921–935. https://doi.org/10.1016/j.cell.2016.04.001
Article
CAS
PubMed
PubMed Central
Google Scholar
Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, Ransohoff RM, Greenberg ME, Barres BA, Stevens B (2012) Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74:691–705. https://doi.org/10.1016/j.neuron.2012.03.026
Article
CAS
PubMed
PubMed Central
Google Scholar
Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, Micheva KD, Mehalow AK, Huberman AD, Stafford B et al (2007) The classical complement cascade mediates CNS synapse elimination. Cell 131:1164–1178. https://doi.org/10.1016/j.cell.2007.10.036
Article
CAS
PubMed
Google Scholar
Holtman IR, Raj DD, Miller JA, Schaafsma W, Yin Z, Brouwer N, Wes PD, Möller T, Orre M, Kamphuis W et al (2015) Induction of a common microglia gene expression signature by aging and neurodegenerative conditions: a co-expression meta-analysis. Acta Neuropathol Commun 3:1–18. https://doi.org/10.1186/s40478-015-0203-5
Article
CAS
Google Scholar
Rangaraju S, Dammer EB, Raza SA, Rathakrishnan P, Xiao H, Gao T, Duong DM, Pennington MW, Lah JJ, Seyfried NT et al (2018) Identification and therapeutic modulation of a pro-inflammatory subset of disease-associated-microglia in Alzheimer’s disease. Mol Neurodegener 13:1–25. https://doi.org/10.1186/s13024-018-0254-8
Article
CAS
Google Scholar
Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256:184–185
Article
CAS
Google Scholar
McManus RM, Heneka MT (2017) Role of neuroinflammation in neurodegeneration: new insights. Alzheimers Res Ther 9:14. https://doi.org/10.1186/s13195-017-0241-2
Article
CAS
PubMed
PubMed Central
Google Scholar
Newcombe EA, Camats-Perna J, Silva ML, Valmas N, Huat TJ, Medeiros R (2018) Inflammation: the link between comorbidities, genetics, and Alzheimer’s disease. J Neuroinflammation 15:1–26. https://doi.org/10.1186/s12974-018-1313-3
Article
CAS
Google Scholar
Marciniak E, Faivre E, Dutar P, Alves Pires C, Demeyer D, Caillierez R, Laloux C, Buée L, Blum D, Humez S (2015) The Chemokine MIP-1α/CCL3 impairs mouse hippocampal synaptic transmission, plasticity and memory. Sci Rep. https://doi.org/10.1038/srep15862
Article
PubMed
PubMed Central
Google Scholar
Estevao C, Bowers CE, Luo D, Sarker M, Hoeh AE, Frudd K, Turowski P, Greenwood J (2021) CCL4 induces inflammatory signalling and barrier disruption in the neurovascular endothelium. Brain Behav Immun Health 18:100370. https://doi.org/10.1016/j.bbih.2021.100370
Article
CAS
PubMed
PubMed Central
Google Scholar
Matsuda S, Matsuda Y, D’Adamio L (2009) CD74 interacts with APP and suppresses the production of Abeta. Mol Neurodegener 4:41. https://doi.org/10.1186/1750-1326-4-41
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu Y, Hou H, Rezai-Zadeh K, Giunta B, Ruscin A, Gemma C, Jin J, Dragicevic N, Bradshaw P, Rasool S et al (2011) CD45 deficiency drives amyloid-β peptide oligomers and neuronal loss in Alzheimer’s disease mice. J Neurosci Off J Soc Neurosci. https://doi.org/10.1523/JNEUROSCI.3268-10.2011
Article
Google Scholar
Meyer R, Giddens M, Coleman B, Hall R (2014) The protective role of prosaposin and its receptors in the nervous system. Brain Res. https://doi.org/10.1016/j.brainres.2014.08.022
Article
PubMed
PubMed Central
Google Scholar
Li XX, Lee JD, Kemper C, Woodruff TM (2019) The complement receptor c5ar2: a powerful modulator of innate and adaptive immunity. J Immunol 202:3339–3348. https://doi.org/10.4049/jimmunol.1900371
Article
CAS
PubMed
Google Scholar
Morris JC, Roe CM, Grant EA, Head D, Storandt M, Goate AM, Fagan AM, Holtzman DM, Mintun MA (2009) Pittsburgh compound B imaging and prediction of progression from cognitive normality to symptomatic Alzheimer disease. Arch Neurol 66:1469–1475. https://doi.org/10.1001/archneurol.2009.269
Article
PubMed
PubMed Central
Google Scholar
Vlassenko AG, Benzinger TL, Morris JC (2012) PET amyloid-beta imaging in preclinical Alzheimer’s disease. Biochim Biophys Acta 1822:370–379. https://doi.org/10.1016/j.bbadis.2011.11.005
Article
CAS
PubMed
Google Scholar
Spangenberg E, Severson PL, Hohsfield LA, Crapser J, Zhang J, Burton EA, Zhang Y, Spevak W, Lin J, Phan NY et al (2019) Sustained microglial depletion with CSF1R inhibitor impairs parenchymal plaque development in an Alzheimer’s disease model. Nat Commun 10:3758. https://doi.org/10.1038/s41467-019-11674-z
Article
CAS
PubMed
PubMed Central
Google Scholar
Spangenberg EE, Lee RJ, Najafi AR, Rice RA, Elmore MR, Blurton-Jones M, West BL, Green KN (2016) Eliminating microglia in Alzheimer’s mice prevents neuronal loss without modulating amyloid-beta pathology. Brain 139:1265–1281. https://doi.org/10.1093/brain/aww016
Article
PubMed
PubMed Central
Google Scholar
Baik SH, Kang S, Son SM, Mook-Jung I (2016) Microglia contributes to plaque growth by cell death due to uptake of amyloid beta in the brain of Alzheimer’s disease mouse model. Glia 64:2274–2290. https://doi.org/10.1002/glia.23074
Article
PubMed
Google Scholar
Huang Y, Happonen KE, Burrola PG, O’Connor C, Hah N, Huang L, Nimmerjahn A, Lemke G (2021) Microglia use TAM receptors to detect and engulf amyloid beta plaques. Nat Immunol 22:586–594. https://doi.org/10.1038/s41590-021-00913-5
Article
CAS
PubMed
PubMed Central
Google Scholar
Condello C, Yuan P, Schain A, Grutzendler J (2015) Microglia constitute a barrier that prevents neurotoxic protofibrillar Abeta42 hotspots around plaques. Nat Commun 6:6176. https://doi.org/10.1038/ncomms7176
Article
CAS
PubMed
Google Scholar
Wang Y, Ulland TK, Ulrich JD, Song W, Tzaferis JA, Hole JT, Yuan P, Mahan TE, Shi Y, Gilfillan S et al (2016) TREM2-mediated early microglial response limits diffusion and toxicity of amyloid plaques. J Exp Med 213:667–675. https://doi.org/10.1084/jem.20151948
Article
CAS
PubMed
PubMed Central
Google Scholar
Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA, Katzman R (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30:572–580. https://doi.org/10.1002/ana.410300410
Article
CAS
PubMed
Google Scholar
Colom-Cadena M, Spires-Jones T, Zetterberg H, Blennow K, Caggiano A, DeKosky ST, Fillit H, Harrison JE, Schneider LS, Scheltens P et al (2020) The clinical promise of biomarkers of synapse damage or loss in Alzheimer’s disease. Alzheimers Res Ther 12:21. https://doi.org/10.1186/s13195-020-00588-4
Article
PubMed
PubMed Central
Google Scholar
Mecca AP, O’Dell RS, Sharp ES, Banks ER, Bartlett HH, Zhao W, Lipior S, Diepenbrock NG, Chen MK, Naganawa M et al (2022) Synaptic density and cognitive performance in Alzheimer’s disease: A PET imaging study with [(11) C]UCB-J. Alzheimers Dement. https://doi.org/10.1002/alz.12582
Article
PubMed
Google Scholar
Schwabe T, Srinivasan K, Rhinn H (2020) Shifting paradigms: The central role of microglia in Alzheimer’s disease. Neurobiol Dis. https://doi.org/10.1016/j.nbd.2020.104962
Article
PubMed
Google Scholar
Deczkowska A, Keren-Shaul H, Weiner A, Colonna M, Schwartz M, Amit I (2018) Disease-associated microglia: a universal immune sensor of neurodegeneration. Cell. https://doi.org/10.1016/j.cell.2018.05.003
Article
PubMed
Google Scholar
Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland T, David E, Baruch K, Lara-Astaiso D, Toth B et al (2017) A unique microglia type associated with restricting development of Alzheimer’s Disease. Cell. https://doi.org/10.1016/j.cell.2017.05.018
Article
PubMed
Google Scholar
Kang SS, Ebbert MTW, Baker KE, Cook C, Wang X, Sens JP, Kocher JP, Petrucelli L, Fryer JD (2018) Microglial translational profiling reveals a convergent APOE pathway from aging, amyloid, and tau. J Exp Med 215:2235–2245. https://doi.org/10.1084/jem.20180653
Article
CAS
PubMed
PubMed Central
Google Scholar
Kiyota T, Zhang G, Morrison CM, Bosch ME, Weir RA, Lu Y, Dong W, Gendelman HE (2015) AAV2/1 CD74 gene transfer reduces beta-amyloidosis and improves learning and memory in a mouse model of Alzheimer’s disease. Mol Ther 23:1712–1721. https://doi.org/10.1038/mt.2015.142
Article
CAS
PubMed
PubMed Central
Google Scholar
Minami SS, Min SW, Krabbe G, Wang C, Zhou Y, Asgarov R, Li Y, Martens LH, Elia LP, Ward ME et al (2014) Progranulin protects against amyloid beta deposition and toxicity in Alzheimer’s disease mouse models. Nat Med 20:1157–1164. https://doi.org/10.1038/nm.3672
Article
CAS
PubMed
PubMed Central
Google Scholar
Terryn J, Verfaillie CM, Van Damme P (2021) Tweaking progranulin expression: therapeutic avenues and opportunities. Front Mol Neurosci 14:713031. https://doi.org/10.3389/fnmol.2021.713031
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiang X, Werner G, Bohrmann B, Liesz A, Mazaheri F, Capell A, Feederle R, Knuesel I, Kleinberger G, Haass C (2016) TREM2 deficiency reduces the efficacy of immunotherapeutic amyloid clearance. EMBO Mol Med. https://doi.org/10.15252/emmm.201606370
Article
PubMed
PubMed Central
Google Scholar
Lee S, Meilandt W, Xie L, Gandham V, Ngu H, Barck K, Rezzonico M, Imperio J, Lalehzadeh G, Huntley M et al (2021) Trem2 restrains the enhancement of tau accumulation and neurodegeneration by β-amyloid pathology. Neuron. https://doi.org/10.1016/j.neuron.2021.02.010
Article
PubMed
PubMed Central
Google Scholar
Hulková H, Cervenková M, Ledvinová J, Tochácková M, Hrebícek M, Poupetová H, Befekadu A, Berná L, Paton B, Harzer K et al (2001) A novel mutation in the coding region of the prosaposin gene leads to a complete deficiency of prosaposin and saposins, and is associated with a complex sphingolipidosis dominated by lactosylceramide accumulation. Hum Mol Genet. https://doi.org/10.1093/hmg/10.9.927
Article
PubMed
Google Scholar
Kuchar L, Ledvinová J, Hrebícek M, Mysková H, Dvoráková L, Berná L, Chrastina P, Asfaw B, Elleder M, Petermöller M et al (2009) Prosaposin deficiency and saposin B deficiency (activator-deficient metachromatic leukodystrophy): report on two patients detected by analysis of urinary sphingolipids and carrying novel PSAP gene mutations. Am J Med Genet A. https://doi.org/10.1002/ajmg.a.32712
Article
PubMed
PubMed Central
Google Scholar
Kunihiro J, Nabeka H, Wakisaka H, Unuma K, Khan M, Shimokawa T, Islam F, Doihara T, Yamamiya K, Saito S et al (2020) Prosaposin and its receptors GRP37 and GPR37L1 show increased immunoreactivity in the facial nucleus following facial nerve transection. PLoS ONE. https://doi.org/10.1371/journal.pone.0241315
Article
PubMed
PubMed Central
Google Scholar
Ide M, Harris M, Stevens A, Sussams R, Hopkins V, Culliford D, Fuller J, Ibbett P, Raybould R, Thomas R et al (2016) Periodontitis and cognitive decline in Alzheimer’s Disease. PLoS ONE 11:e0151081. https://doi.org/10.1371/journal.pone.0151081
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiao H, Dairaghi DJ, Powers JP, Ertl LS, Baumgart T, Wang Y, Seitz LC, Penfold ME, Gan L, Hu P et al (2014) C5a receptor (CD88) blockade protects against MPO-ANCA GN. J Am Soc Nephrol 25:225–231
Article
CAS
Google Scholar
Bettcher BM, Tansey MG, Dorothee G, Heneka MT (2021) Peripheral and central immune system crosstalk in Alzheimer disease—a research prospectus. Nat Rev Neurol 17:689–701. https://doi.org/10.1038/s41582-021-00549-x
Article
PubMed
PubMed Central
Google Scholar