Cavanagh JB (1999) Corpora-amylacea and the family of polyglucosan diseases. Brain Res Rev 29(2–3):265–295. https://doi.org/10.1016/S0165-0173(99)00003-X
Article
CAS
PubMed
Google Scholar
Augé E, Duran J, Guinovart JJ, Pelegrí C, Vilaplana J (2018) Exploring the elusive composition of corpora amylacea of human brain. Sci Rep 8(1):1–13. https://doi.org/10.1038/s41598-018-31766-y
Article
CAS
Google Scholar
Avendano J, Rodrigues MM, Hackett JJ, Gaskins R (1980) Corpora amylacea of the optic nerve and retina: a form of neuronal degeneration. Investig Ophthalmol Vis Sci 19(5):550–555
CAS
Google Scholar
Riba M, Aug E. From corpora amylacea to wasteosomes : history and perspectives. 2021;72. doi:https://doi.org/10.1016/j.arr.2021.101484
Riba M, Augé E, Tena I et al (2021) Corpora amylacea in the human brain exhibit neoepitopes of a carbohydrate nature. Front Immunol 12(June):9–12. https://doi.org/10.3389/fimmu.2021.618193
Article
CAS
Google Scholar
Navarro PP, Genoud C, Castaño-Díez D et al (2018) Cerebral Corpora amylacea are dense membranous labyrinths containing structurally preserved cell organelles. Sci Rep 8(1):1–13. https://doi.org/10.1038/s41598-018-36223-4
Article
CAS
Google Scholar
Cisse S, Perry G, Lacoste-Royal G, Cabana T, Gauvreau D (1993) Immunochemical identification of ubiquitin and heat-shock proteins in corpora amylacea from normal aged and Alzheimer’s disease brains. Acta Neuropathol 85(3):233–240. https://doi.org/10.1007/BF00227716
Article
CAS
PubMed
Google Scholar
Pirici I, Mărgăritescu C, Mogoantă L et al (2014) Corpora amylacea in the brain form highly branched threedimensional lattices. Rom J Morphol Embryol 55:1071–1077
PubMed
Google Scholar
Manich G, Cabezón I, Augé E, Pelegrí C, Vilaplana J (2016) Periodic acid-Schiff granules in the brain of aged mice: from amyloid aggregates to degenerative structures containing neo-epitopes. Ageing Res Rev 27:42–55. https://doi.org/10.1016/j.arr.2016.03.001
Article
CAS
PubMed
Google Scholar
Singhrao SK, Chukkapalli S, Poole S, Velsko I, Crean SJ, Kesavalu L (2017) Chronic porphyromonas gingivalis infection accelerates the occurrence of age-related granules in ApoE−/− mice brains. J Oral Microbiol 9(1):1–10. https://doi.org/10.1080/20002297.2016.1270602
Article
CAS
Google Scholar
Tseng J-H, Xie L, Song S et al (2017) The deacetylase HDAC6 mediates endogenous neuritic tau pathology. Cell Rep 20(9):2169–2183. https://doi.org/10.1016/j.celrep.2017.07.082
Article
CAS
PubMed
PubMed Central
Google Scholar
Manich G, Cabezón I, Camins A, et al. Clustered granules present in the hippocampus of aged mice result from a degenerative process affecting astrocytes and their surrounding neuropil. Age (Omaha). 2014;36(4). doi:https://doi.org/10.1007/s11357-014-9690-8
Wirak DO, Bayney R, Ramabhadran TV, et al (1991) Deposits of amyloid β protein in the central nervous system of transgenic mice. Science (80). 253(5017):323–325. doi:https://doi.org/10.1126/science.1857970
Sinadinos C, Valles-Ortega J, Boulan L et al (2014) Neuronal glycogen synthesis contributes to physiological aging. Aging Cell 13(5):935–945. https://doi.org/10.1111/acel.12254
Article
CAS
PubMed
PubMed Central
Google Scholar
Wirak D, Bayney R, Ramabhadran TV, et al (1992) Response: age-associated inclusions in normal and transgenic mouse brain . Science (80). 255(5050):1445–1445. doi:https://doi.org/10.1126/science.255.5050.1445
Riba M, Augé E, Campo-Sabariz J, et al (2019) Corpora amylacea act as containers that remove waste products from the brain. doi:https://doi.org/10.1073/pnas.1913741116
Wander CM, Tseng JH, Song S, et al (2020) The accumulation of tau-immunoreactive hippocampal granules and corpora amylacea implicates reactive glia in tau pathogenesis during aging. iScience 23(7):101255. doi:https://doi.org/10.1016/j.isci.2020.101255
Pisa D, Alonso R, Marina AI, Rábano A, Carrasco L (2018) Human and microbial proteins from corpora amylacea of Alzheimer’s disease. 8:9880. doi:https://doi.org/10.1038/s41598-018-28231-1
Szendrei GI, Lee VM, Otvos L (1993) Recognition of the minimal epitope of monoclonal antibody Tau-1 depends upon the presence of a phosphate group but not its location. J Neurosci Res 34(2):243–249. https://doi.org/10.1002/jnr.490340212
Article
CAS
PubMed
Google Scholar
Jucker M, Walker LC, Martin LJ et al (1992) Age-associated inclusions in normal and transgenic mouse brain. Science (80-) 255(5050):1443–1445. https://doi.org/10.1126/science.1542796
Article
CAS
Google Scholar
Jucker M, Ingram DK (1994) Age-related fibrillar material in mouse brain: assessing its potential as a biomarker of aging and as a model of human neurodegenerative disease. Ann N Y Acad Sci 719(1):238–247. https://doi.org/10.1111/j.1749-6632.1994.tb56832.x
Article
CAS
PubMed
Google Scholar
Robertson TA, Dutton NS, Martins RN, Roses AD, Kakulas BA, Papadimitriou JM (1997) Age-related congophilic inclusions in the brains of apolipoprotein e- deficient mice. Neuroscience 82(1):171–180. https://doi.org/10.1016/S0306-4522(97)00284-4
Article
Google Scholar
Oddo S, Caccamo A, Shepherd JD et al (2003) Triple-transgenic model of Alzheimer’s disease with plaques and tanglesintracellular Aβ and synaptic dysfunction. Neuron 39(3):409–421. https://doi.org/10.1016/S0896-6273(03)00434-3
Article
CAS
PubMed
Google Scholar
Baglietto-Vargas D, Forner S, Cai L et al (2021) Generation of a humanized Aβ expressing mouse demonstrating aspects of Alzheimer’s disease-like pathology. Nat Commun 12(1):2421. https://doi.org/10.1038/s41467-021-22624-z
Article
CAS
PubMed
PubMed Central
Google Scholar
Allen B, Ingram E, Takao M et al (2002) Abundant tau filaments and neurodegeneration in mice transgenic for human P301S tau. J Neuropathol Exp Neurol 22(21):9340–9351
CAS
Google Scholar
Yoshiyama Y, Higuchi M, Zhang B et al (2007) Synapse loss and microglial activation precede tangles in a P301S Tauopathy mouse model. Neuron 53(3):337–351. https://doi.org/10.1016/j.neuron.2007.01.010
Article
CAS
PubMed
Google Scholar
Vollmers HP, Brändlein S (2006) Natural IgM antibodies: the orphaned molecules in immune surveillance. Adv Drug Deliv Rev 58(5–6):755–765. https://doi.org/10.1016/j.addr.2005.08.007
Article
CAS
PubMed
Google Scholar
Manich G, Augé E, Cabezón I, Pallàs M, Vilaplana J, Pelegrí C (2015) Neo-epitopes emerging in the degenerative hippocampal granules of aged mice can be recognized by natural IgM auto-antibodies. Immun Ageing 12(1):1–7. https://doi.org/10.1186/s12979-015-0050-z
Article
CAS
Google Scholar
Patel H, Martinez P, Perkins A et al (2022) Pathological tau and reactive astrogliosis are associated with distinct functional deficits in a mouse model of tauopathy. Neurobiol Aging 109:52–63. https://doi.org/10.1016/j.neurobiolaging.2021.09.006
Article
CAS
PubMed
Google Scholar
Jucker M, Walker LC, Kuo H, Tian M, Ingram DK (1994) Age-related fibrillar deposits in brains of C57BL/6 mice: a review of localization, staining characteristics, and strain specificity. Mol Neurobiol 9(1–3):125–133. https://doi.org/10.1007/BF02816112
Article
CAS
PubMed
Google Scholar
Augé E, Pelegrí C, Manich G et al (2018) Astrocytes and neurons produce distinct types of polyglucosan bodies in Lafora disease. Glia 66(10):2094–2107. https://doi.org/10.1002/glia.23463
Article
PubMed
PubMed Central
Google Scholar
Liddelow SA, Guttenplan KA, Clarke LE et al (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541(7638):481–487. https://doi.org/10.1038/nature21029
Article
CAS
PubMed
PubMed Central
Google Scholar
Clarke LE, Liddelow SA, Chakraborty C, Münch AE, Heiman M, Barres BA (2018) Normal aging induces A1-like astrocyte reactivity. doi:https://doi.org/10.1073/pnas.1800165115
Flowers S, Rebeck G (2020) APOE in the normal brain. Neurobiol Dis 136. doi:https://doi.org/10.1016/j.nbd.2019.104724
Huynh TPV, Wang C, Tran AC et al (2019) Lack of hepatic apoE does not influence early Aβ deposition: observations from a new APOE knock-in model. Mol Neurodegener 14(1):1–23. https://doi.org/10.1186/s13024-019-0337-1
Article
CAS
Google Scholar
Jack CR, Dickson DW, Parisi JE et al (2002) Antemortem MRI findings correlate with hippocampal neuropathology in typical aging and dementia. Neurology 58(5):750–757. https://doi.org/10.1212/WNL.58.5.750
Article
PubMed
Google Scholar
Braak H, Del TK (2018) Spreading of tau pathology in sporadic Alzheimer’s disease along cortico-cortical top-down connections. Cereb Cortex 28(9):3372–3384. https://doi.org/10.1093/cercor/bhy152
Article
PubMed
PubMed Central
Google Scholar
Jacobs HIL, Hedden T, Schultz AP et al (2018) Structural tract alterations predict downstream tau accumulation in amyloid-positive older individuals. Nat Neurosci 21(3):424–431. https://doi.org/10.1038/s41593-018-0070-z
Article
CAS
PubMed
PubMed Central
Google Scholar
Adams JN, Maass A, Harrison TM, Baker SL, Jagust WJ (2019) Cortical tau deposition follows patterns of entorhinal functional connectivity in aging. Elife 8:1–22. https://doi.org/10.7554/eLife.49132
Article
Google Scholar
Montine TJ, Phelps CH, Beach TG et al (2012) National Institute on Aging–Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease: a practical approach. Acta Neuropathol 123(1):1–11. https://doi.org/10.1007/s00401-011-0910-3
Article
CAS
PubMed
Google Scholar
Abushakra S, Schaerer J, Tolar M, et al. APOE ε4/ε4 homozygotes with early Alzheimer ’ s disease show accelerated hippocampal atrophy and cortical thinning that correlates with cognitive decline. 2020;(September):1–9. doi:https://doi.org/10.1002/trc2.12117
Calderón-Garcidueñas L, González-Maciel A, Reynoso-Robles R, et al (2018) Alzheimer’s disease and alpha-synuclein pathology in the olfactory bulbs of infants, children, teens and adults ≤ 40 years in Metropolitan Mexico City. APOE4 carriers at higher risk of suicide accelerate their olfactory bulb pathology. Environ Res 166(June):348–362. doi:https://doi.org/10.1016/j.envres.2018.06.027
Masao Sakai, Austin J, Witmer F, Trueb L (2021) Studies of corpora amylacea. 80220
Kocherhans S, Madhusudan A, Doehner J et al (2010) Reduced reelin expression accelerates amyloid- plaque formation and tau pathology in transgenic Alzheimer’s disease mice. J Neurosci 30(27):9228–9240. https://doi.org/10.1523/JNEUROSCI.0418-10.2010
Article
CAS
PubMed
PubMed Central
Google Scholar
Manich G, Mercader C, Del Valle J et al (2011) Characterization of amyloid-β granules in the hippocampus of SAMP8 mice. J Alzheimer’s Dis 25(3):535–546. https://doi.org/10.3233/JAD-2011-101713
Article
CAS
Google Scholar
Shi Y, Manis M, Long J et al (2019) Microglia drive APOE-dependent neurodegeneration in a tauopathy mouse model. J Exp Med 216(11):2546–2561. https://doi.org/10.1084/jem.20190980
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu T, Dejanovic B, Gandham VD et al (2019) Complement C3 Is activated in human AD brain and is required for neurodegeneration in mouse models of amyloidosis and tauopathy. Cell Rep 28(8):2111-2123.e6. https://doi.org/10.1016/j.celrep.2019.07.060
Article
CAS
PubMed
Google Scholar
Li J, Pan L, Pembroke WG et al (2021) Conservation and divergence of vulnerability and responses to stressors between human and mouse astrocytes. Nat Commun 12(1):1–20. https://doi.org/10.1038/s41467-021-24232-3
Article
CAS
Google Scholar
Ittner LM, Götz J (2011) Amyloid-β and tau–a toxic pas de deux in Alzheimer’s disease. Nat Rev Neurosci 12(2):65–72. https://doi.org/10.1038/nrn2967
Article
CAS
PubMed
Google Scholar
Bloom GS (2014) Amyloid-β and Tau. JAMA Neurol 71(4):505. https://doi.org/10.1001/jamaneurol.2013.5847
Article
PubMed
Google Scholar
Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Tredici K (2006) Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol 112(4):389–404. https://doi.org/10.1007/s00401-006-0127-z
Article
PubMed
PubMed Central
Google Scholar
La JR, Visani AV, Baker SL et al (2020) Prospective longitudinal atrophy in Alzheimer’s disease correlates with the intensity and topography of baseline tau-PET. Sci Transl Med 12(524):1–13. https://doi.org/10.1126/scitranslmed.aau5732
Article
CAS
Google Scholar
Lin YT, Seo J, Gao F et al (2018) APOE4 causes widespread molecular and cellular alterations associated with Alzheimer’s disease phenotypes in human iPSC-derived brain cell types. Neuron 98(6):1141-1154.e7. https://doi.org/10.1016/j.neuron.2018.05.008
Article
CAS
PubMed
PubMed Central
Google Scholar
Giorgetti A, Busardò FP, Tittarelli R, Auwärter V, Giorgetti R (2020) Post-mortem toxicology: a systematic review of death cases involving synthetic cannabinoid receptor agonists. Front Psychiatry 11(May):1–22. https://doi.org/10.3389/fpsyt.2020.00464
Article
Google Scholar
Zhang Z, Gong Q, Feng X, Zhang D, Quan L (2017) Astrocytic clasmatodendrosis in the cerebral cortex of methamphetamine abusers. Forensic Sci Res 2(3):139–144. https://doi.org/10.1080/20961790.2017.1280890
Article
PubMed
PubMed Central
Google Scholar
Pisa D, Alonso R, Rábano A, Carrasco L (2016) Corpora amylacea of brain tissue from neurodegenerative diseases are stained with specific antifungal antibodies. Front Neurosci 10(March):1–12. https://doi.org/10.3389/fnins.2016.00086
Article
Google Scholar
Puri R, Suzuki T, Yamakawa K, Ganesh S (2009) Hyperphosphorylation and aggregation of Tau in laforin-deficient mice, an animal model for lafora disease. J Biol Chem 284(34):22657–22663. https://doi.org/10.1074/jbc.M109.009688
Article
CAS
PubMed
PubMed Central
Google Scholar
Sochocka M, Zwolińska K, Leszek J (2017) The infectious etiology of Alzheimer’s disease. Curr Neuropharmacol 15(7):996–1009. https://doi.org/10.2174/1570159x15666170313122937
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu C, Owen JE, Gislason T, Benediktsdottir B, Robinson SR (2021) Quantitative analysis of size and regional distribution of corpora amylacea in the hippocampal formation of obstructive sleep apnoea patients. Sci Rep 11(1):1–14. https://doi.org/10.1038/s41598-021-99795-8
Article
CAS
Google Scholar
Wharton SB, Minett T, Drew D et al (2016) Epidemiological pathology of Tau in the ageing brain: application of staging for neuropil threads (BrainNet Europe protocol) to the MRC cognitive function and ageing brain study. Acta Neuropathol Commun 4:11. https://doi.org/10.1186/s40478-016-0275-x
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu AKL, Goldfinger MH, Questari HE, Pearce RKB, Gentleman SM (2016) ARTAG in the basal forebrain: widening the constellation of astrocytic tau pathology. Acta Neuropathol Commun 4(1):59. https://doi.org/10.1186/s40478-016-0330-7
Article
CAS
PubMed
PubMed Central
Google Scholar
Kovacs G, Dickson DW (2015) Aging-related tau astrogliopathy (ARTAG). Acta Neuropsychiatr 131(1):87–102. https://doi.org/10.1007/s00401-015-1509-x.Aging-related
Article
Google Scholar
Kovacs GG, Xie SX, Robinson JL et al (2018) Sequential stages and distribution patterns of aging-related tau astrogliopathy (ARTAG) in the human brain. Acta Neuropathol Commun 6(1):50. https://doi.org/10.1186/s40478-018-0552-y
Article
CAS
PubMed
PubMed Central
Google Scholar
Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82(4):239–259. https://doi.org/10.1007/BF00308809
Article
CAS
PubMed
Google Scholar