Vinters HV (2015) Emerging concepts in alzheimer’s disease. Annu Rev Pathol Mech Dis. https://doi.org/10.1146/annurev-pathol-020712-163927
Article
Google Scholar
Boulouis G, Charidimou A, Greenberg SM (2016) Sporadic cerebral amyloid angiopathy: pathophysiology, neuroimaging features, and clinical implications. Semin Neurol. https://doi.org/10.1055/s-0036-1581993
Article
PubMed
Google Scholar
Prince M, Albanese E, Guerchet M, Prina M (2014) Alzheimer’s Disease International. Dementia and risk reduction: an analysis of protective and modifiable factors. Alzheimer’s Dis. Int
Hanger HC, Wilkinson TJ, Fayez-Iskander N, Sainsbury R (2007) The risk of recurrent stroke after intracerebral haemorrhage. J Neurol Neurosurg & Psychiatry 78:836–840. https://doi.org/10.1136/jnnp.2006.106500
Article
CAS
Google Scholar
Charidimou A, Boulouis G, Gurol ME, Ayata C, Bacskai BJ, Frosch MP, Viswanathan A, Greenberg SM (2017) Emerging concepts in sporadic cerebral amyloid angiopathy. Brain 140:1829–1850. https://doi.org/10.1093/brain/awx047
Article
PubMed
PubMed Central
Google Scholar
Lane C, Hardy J, Schott JM (2018) Alzheimer’s disease. Eur. J. Neurol.
Vinters HV (1987) Cerebral amyloid angiopathy a critical review. Stroke. https://doi.org/10.1161/01.STR.18.2.311
Article
PubMed
Google Scholar
Jäkel L, De Kort AM, Klijn CJM, Schreuder FHBM, (2021) Prevalence of cerebral amyloid angiopathy: A systematic review and meta-analysis. Alzheimers Dement
Revesz T, Holton JL, Lashley T, Plant G, Frangione B, Rostagno A, Ghiso J (2009) Genetics and molecular pathogenesis of sporadic and hereditary cerebral amyloid angiopathies. Acta Neuropathol 118:321–321. https://doi.org/10.1007/s00401-009-0555-7
Article
CAS
Google Scholar
Arvanitakis Z, Leurgans SE, Wang Z, Wilson RS, Bennett DA, Schneider JA (2011) Cerebral amyloid angiopathy pathology and cognitive domains in older persons. Ann Neurol. https://doi.org/10.1002/ana.22112
Article
PubMed
Google Scholar
Suzuki N, Iwatsubo T, Odaka A, Ishibashi Y, Kitada C, Ihara Y (1994) High tissue content of soluble β1–40 is linked to cerebral amyloid angiopathy. Am. J. Pathol
Viswanathan A, Greenberg SM (2011) Cerebral amyloid angiopathy in the elderly. Ann Neurol 70:871–880. https://doi.org/10.1002/ana.22516
Article
CAS
PubMed
PubMed Central
Google Scholar
Greenberg SM, Bacskai BJ, Hernandez-Guillamon M, Pruzin J, Sperling R, van Veluw SJ (2020) Cerebral amyloid angiopathy and Alzheimer disease — one peptide, two pathways. Nat Rev Neurol 16:30–42. https://doi.org/10.1038/s41582-019-0281-2
Article
CAS
PubMed
Google Scholar
Maat-Schieman MLC, Radder CM, Haan J, Roos RAC, van Duinen SG (1994) Hereditary cerebral hemorrhage with amyloidosis (Dutch): a model for congophilic plaque formation without neurofibrillary pathology. Acta Neuropathol. https://doi.org/10.1007/BF00310382
Article
PubMed
Google Scholar
Manousopoulou A, Gatherer M, Smith C, Nicoll JAR, Woelk CH, Johnson M, Kalaria R, Attems J, Garbis SD, Carare RO (2017) Systems proteomic analysis reveals that clusterin and tissue inhibitor of metalloproteinases 3 increase in leptomeningeal arteries affected by cerebral amyloid angiopathy. Neuropathol Appl Neurobiol 43:492–504. https://doi.org/10.1111/nan.12342
Article
CAS
PubMed
Google Scholar
Hondius DC, Eigenhuis KN, Morrema THJ, van der Schors RC, van Nierop P, Bugiani M, Li KW, Hoozemans JJM, Smit AB, Rozemuller AJM (2018) Proteomics analysis identifies new markers associated with capillary cerebral amyloid angiopathy in Alzheimer’s disease. Acta Neuropathol Commun 6:46. https://doi.org/10.1186/s40478-018-0540-2
Article
CAS
PubMed
PubMed Central
Google Scholar
Endo Y, Hasegawa K, Nomura R, Arishima H, Kikuta KI, Yamashita T, Inoue Y, Ueda M, Ando Y, Wilson MR et al (2019) Apolipoprotein E and clusterin inhibit the early phase of amyloid-β aggregation in an in vitro model of cerebral amyloid angiopathy. Acta Neuropathol Commun. https://doi.org/10.1186/s40478-019-0662-1
Article
PubMed
PubMed Central
Google Scholar
Inoue Y, Ueda M, Tasaki M, Takeshima A, Nagatoshi A, Masuda T, Misumi Y, Kosaka T, Nomura T, Mizukami M et al (2017) Sushi repeat-containing protein 1: a novel disease-associated molecule in cerebral amyloid angiopathy. Acta Neuropathol 134:605–617. https://doi.org/10.1007/s00401-017-1720-z
Article
CAS
PubMed
Google Scholar
Drummond E, Nayak S, Faustin A, Pires G, Hickman RA, Askenazi M, Cohen M, Haldiman T, Kim C, Han X et al (2017) Proteomic differences in amyloid plaques in rapidly progressive and sporadic Alzheimer’s disease. Acta Neuropathol. https://doi.org/10.1007/s00401-017-1691-0
Article
PubMed
PubMed Central
Google Scholar
Xiong F, Ge W, Ma C (2019) Quantitative proteomics reveals distinct composition of amyloid plaques in Alzheimer’s disease. Alzheimer’s Dement. https://doi.org/10.1016/j.jalz.2018.10.006
Article
Google Scholar
Taylor MR (1997) Lactadherin (formerly BA46), a membrane-associated glycoprotein expressed in human milk and breast carcinomas, promotes Arg-Gly-Asp (RGD)- dependent cell adhesion. DNA Cell Biol. https://doi.org/10.1089/dna.1997.16.861
Article
PubMed
Google Scholar
Ni YQ, Zhan JK, Liu YS (2020)Roles and mechanisms of MFG-E8 in vascular aging-related diseases. Ageing Res Rev
Hanayama R, Tanaka M, Miyasaka K, Aozasa K, Koike M, Uchiyama Y, Nagata S (2004) Autoimmune disease and impaired uptake of apoptotic cells in MFG-E8-deficient mice. Science (80-. ). 304, 1147–1150, doi:https://doi.org/10.1126/science.1094359.
Silvestre JS, Théry C, Hamard G, Boddaert J, Aguilar B, Delcayre A, Houbron C, Tamarat R, Blanc-Brude O, Heeneman S et al (2005) Lactadherin promotes VEGF-dependent neovascularization. Nat Med 11:499–506. https://doi.org/10.1038/nm1233
Article
CAS
PubMed
Google Scholar
Uchiyama A, Yamada K, Ogino S, Yokoyama Y, Takeuchi Y, Udey MC, Ishikawa O, Motegi SI (2014) MFG-E8 regulates angiogenesis in cutaneous wound healing. Am J Pathol 184:1981–1990. https://doi.org/10.1016/j.ajpath.2014.03.017
Article
CAS
PubMed
PubMed Central
Google Scholar
Fuller AD, Van Eldik LJ (2008) MFG-E8 regulates microglial phagocytosis of apoptotic neurons. J Neuroimmune Pharmacol 3:246–256. https://doi.org/10.1007/s11481-008-9118-2
Article
PubMed
PubMed Central
Google Scholar
Fricker M, Neher JJ, Zhao JW, Théry C, Tolkovsky AM, Brown GC (2012) MFG-E8 mediates primary phagocytosis of viable neurons during neuroinflammation. J Neurosci 32:2657–2666. https://doi.org/10.1523/JNEUROSCI.4837-11.2012
Article
CAS
PubMed
PubMed Central
Google Scholar
Dasgupta SK, Abdel-Monem H, Niravath P, Le A, Bellera RV, Langlois K, Nagata S, Rumbaut RE, Thiagarajan P (2009) Lactadherin and clearance of platelet-derived microvesicles. Blood 113:1332–1339. https://doi.org/10.1182/blood-2008-07-167148
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou Y, Cai W, Zhao Z, Hilton T, Wang M, Yeon J, Liu W, Zhang F, Shi FD, Wu X et al (2018) Lactadherin promotes microvesicle clearance to prevent coagulopathy and improves survival of severe TBI mice. Blood 131:563–572. https://doi.org/10.1182/blood-2017-08-801738
Article
CAS
PubMed
PubMed Central
Google Scholar
Boddaert J, Kinugawa K, Lambert JC, Boukhtouche F, Zoll J, Merval R, Blanc-Brude O, Mann D, Berr C, Vilar J et al (2007) Evidence of a role for lactadherin in Alzheimer’s disease. Am J Pathol 170:921–929. https://doi.org/10.2353/ajpath.2007.060664
Article
CAS
PubMed
PubMed Central
Google Scholar
Li E, Noda M, Doi Y, Parajuli B, Kawanokuchi J, Sonobe Y, Takeuchi H, Mizuno T, Suzumura A (2012) The neuroprotective effects of milk fat globule-EGF factor 8 against oligomeric amyloid β toxicity. J Neuroinflammation 9:636. https://doi.org/10.1186/1742-2094-9-148
Article
CAS
Google Scholar
Sturchler-Pierrat C, Abramowski D, Duke M, Wiederhold KH, Mistl C, Rothacher S, Ledermann B, Bürki K, Frey P, Paganetti PA et al (1997) Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.94.24.13287
Article
PubMed
PubMed Central
Google Scholar
Greenberg SM, Vonsattel JPG (1997) Diagnosis of cerebral amyloid angiopathy: Sensitivity and specificity of cortical biopsy. Stroke. https://doi.org/10.1161/01.STR.28.7.1418
Article
PubMed
Google Scholar
Thal DR, Ghebremedhin E, Rüb U, Yamaguchi H, Del Tredici K, Braak H (2002) Two types of sporadic cerebral amyloid angiopathy. J Neuropathol Exp Neurol. https://doi.org/10.1093/jnen/61.3.282
Article
PubMed
Google Scholar
Hyman BT, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Carrillo MC, Dickson DW, Duyckaerts C, Frosch MP, Masliah E et al (2012) National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimer’s Dement. https://doi.org/10.1016/j.jalz.2011.10.007
Article
Google Scholar
Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Tredici K (2006) Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol. https://doi.org/10.1007/s00401-006-0127-z
Article
PubMed
PubMed Central
Google Scholar
Mirra, S.S.; Heyman, A.; McKeel, D.; Sumi, S.M.; Crain, B.J.; Brownlee, L.M.; Vogel, F.S.; Hughes, J.P.; van Belle, G.; Berg, L.; et al. The consortium to establish a registry for Alzheimer’s disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 1991, doi:https://doi.org/10.1212/wnl.41.4.479.
Linn J, Halpin A, Demaerel P, Ruhland J, Giese AD, Dichgans M, Van Buchem MA, Bruckmann H, Greenberg SM (2010) Prevalence of superficial siderosis in patients with cerebral amyloid angiopathy. Neurology 74:1346–1350. https://doi.org/10.1212/WNL.0b013e3181dad605
Article
CAS
PubMed
PubMed Central
Google Scholar
McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR, Kawas CH, Klunk WE, Koroshetz WJ, Manly JJ, Mayeux R et al (2011) The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. https://doi.org/10.1016/j.jalz.2011.03.005
Article
Google Scholar
Wang M, Fu Z, Wu J, Zhang J, Jiang L, Khazan B, Telljohann R, Zhao M, Krug AW, Pikilidou M et al (2012) MFG-E8 activates proliferation of vascular smooth muscle cells via integrin signaling. Aging Cell. https://doi.org/10.1111/j.1474-9726.2012.00813.x
Article
PubMed
Google Scholar
Harr SD, Uint L, Hollister R, Hyman BT, Mendez AJ (1996) Brain expression of apolipoproteins E, J, and A-I in Alzheimer’s disease. J Neurochem. https://doi.org/10.1046/j.1471-4159.1996.66062429.x
Article
PubMed
Google Scholar
Verbeek MM, Otte-Höller I, Veerhuis R, Ruiter DJ, De Waal RMW (1998) Distribution of Aβ-associated proteins in cerebrovascular amyloid of Alzheimer’s disease. Acta Neuropathol. https://doi.org/10.1007/s004010050944
Article
PubMed
Google Scholar
Camacho J, Moliné T, Bonaterra-Pastra A, Cajal SRY, Martínez-Sáez E, Hernández-Guillamon M (2019) Brain ApoA-I, ApoJ and ApoE immunodetection in cerebral amyloid angiopathy. Front Neurol. https://doi.org/10.3389/fneur.2019.00187
Article
PubMed
PubMed Central
Google Scholar
Jäkel L, Kuiperij HB, Gerding LP, Custers EEM, Van Den Berg E, Jolink WMT, Schreuder FHBM, Küsters B, Klijn CJM, Verbeek MM (2020) Disturbed balance in the expression of MMP9 and TIMP3 in cerebral amyloid angiopathy-related intracerebral haemorrhage. Acta Neuropathol Commun. https://doi.org/10.1186/s40478-020-00972-z
Article
PubMed
PubMed Central
Google Scholar
Hanayama R, Tanaka M, Miwa K, Shinohara A, Iwamatsu A, Nagata S (2002) Identification of a factor that links apoptotic cells to phagocytes. Nature 417:182–187. https://doi.org/10.1038/417182a
Article
CAS
PubMed
Google Scholar
Xiao Y, Li G, Chen Y, Zuo Y, Rashid K, He T, Feng H, Zhang JH, Liu F (2018) Milk fat globule-epidermal growth factor-8 pretreatment attenuates apoptosis and inflammation via the integrin-β3 pathway after surgical brain injury in rats. Front Neurol 9:1–11. https://doi.org/10.3389/fneur.2018.00096
Article
Google Scholar
Huang W, Wu J, Yang H, Xiong Y, Jiang R, Cui T, Ye D (2017) Milk fat globule-EGF factor 8 suppresses the aberrant immune response of systemic lupus erythematosus-derived neutrophils and associated tissue damage. Cell Death Differ. https://doi.org/10.1038/cdd.2016.115
Article
PubMed
PubMed Central
Google Scholar
Deroide N, Li X, Lerouet D, Van Vré E, Baker L, Harrison J, Poittevin M, Masters L, Nih L, Margaill I et al (2013) MFGE8 inhibits inflammasome-induced IL-1β production and limits postischemic cerebral injury. J Clin Invest 123:1176–1181. https://doi.org/10.1172/JCI65167
Article
CAS
PubMed
PubMed Central
Google Scholar
Choi, J. Il; Kang, H.Y.; Han, C.; Woo, D.H.; Kim, J.H.; Park, D.H. Milk fat globule-epidermal growth factor VIII ameliorates brain injury in the subacute phase of cerebral ischemia in an animal model. J. Korean Neurosurg. Soc. 2020, 63, 163–170, doi:https://doi.org/10.3340/jkns.2019.0188.
Cheyuo C, Jacob A, Wu R, Zhou M, Qi L, Dong W, Ji Y, Chaung WW, Wang H, Nicastro J et al (2012) Recombinant human MFG-E8 attenuates cerebral ischemic injury: Its role in anti-inflammation and anti-apoptosis. Neuropharmacology. https://doi.org/10.1016/j.neuropharm.2011.09.018
Article
PubMed
Google Scholar
Cheyuo C, Aziz M, Yang WL, Jacob A, Zhou M, Wang P (2015) Milk fat globule-EGF factor VIII attenuates CNS injury by promoting neural stem cell proliferation and migration after cerebral ischemia. PLoS ONE 10:1–17. https://doi.org/10.1371/journal.pone.0122833
Article
CAS
Google Scholar
Gao YY, Zhang ZH, Zhuang Z, Lu Y, Wu LY, Ye Z, Zhang XS, Chen CL, Li W, Hang CH (2018) Recombinant milk fat globule-EGF factor-8 reduces apoptosis via integrin β3/FAK/PI3K/AKT signaling pathway in rats after traumatic brain injury. Cell Death Dis. https://doi.org/10.1038/s41419-018-0939-5
Article
PubMed
PubMed Central
Google Scholar
Gao YY, Tao T, Wu D, Zhuang Z, Lu Y, Wu LY, Liu GJ, Zhou Y, Zhang DD, Wang H et al (2021) MFG-E8 attenuates inflammation in subarachnoid hemorrhage by driving microglial M2 polarization. Exp Neurol. https://doi.org/10.1016/j.expneurol.2020.113532
Article
PubMed
Google Scholar
Migrino RQ, Karamanova N, Truran S, Serrano GE, Davies HA, Madine J, Beach TG (2020) Cerebrovascular medin is associated with Alzheimer’s disease and vascular dementia. Alzheimer’s Dement. Diagnosis, Assess. Dis. Monit. https://doi.org/10.1002/dad2.12072.
Miura Y, Tsumoto H, Iwamoto M, Yamaguchi Y, Ko P, Soejima Y, Yoshida S, Toda T, Arai T, Hamamatsu A et al (2019) Age-associated proteomic alterations in human aortic media. Geriatr Gerontol Int 19:1054–1062. https://doi.org/10.1111/ggi.13757
Article
PubMed
Google Scholar
Migrino RQ, Davies HA, Truran S, Karamanova N, Franco DA, Beach TG, Serrano GE, Truong D, Nikkhah M, Madine J (2017) Amyloidogenic medin induces endothelial dysfunction and vascular inflammation through the receptor for advanced glycation endproducts. Cardiovasc Res. https://doi.org/10.1093/cvr/cvx135
Article
PubMed
PubMed Central
Google Scholar
Degenhardt K, Wagner J, Skodras A, Candlish M, Koppelmann AJ, Wild K, Maxwell R, Rotermund C, Von Zweydorf F, Gloeckner CJ et al (2020) Medin aggregation causes cerebrovascular dysfunction in aging wild-type mice. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.2011133117
Article
PubMed
PubMed Central
Google Scholar
Karamanova N, Truran S, Serrano GE, Beach TG, Madine J, Weissig V, Davies HA, Veldhuizen J, Nikkhah M, Hansen M et al (2020) Endothelial Immune Activation by Medin: Potential Role in Cerebrovascular Disease and Reversal by Monosialoganglioside-Containing Nanoliposomes. J Am Heart Assoc. https://doi.org/10.1161/JAHA.119.014810
Article
PubMed
PubMed Central
Google Scholar
Chiang HY, Chu PH, Lee TH (2019) MFG-E8 mediates arterial aging by promoting the proinflammatory phenotype of vascular smooth muscle cells. J Biomed Sci 26:1–14. https://doi.org/10.1186/s12929-019-0559-0
Article
CAS
Google Scholar
Wang M, Wang H, Lakatta E (2013) Milk Fat Globule Epidermal Growth Factor VIII Signaling in Arterial Wall Remodeling. Curr Vasc Pharmacol 11:768–776. https://doi.org/10.2174/1570161111311050014
Article
CAS
PubMed
PubMed Central
Google Scholar
Fu Z, Wang M, Gucek M, Zhang J, Wu J, Jiang L, Monticone RE, Khazan B, Telljohann R, Mattison J et al (2009) Milk fat globule protein epidermal growth factor-8: A pivotal relay element within the angiotensin II and monocyte chemoattractant protein-1 signaling cascade mediating vascular smooth muscle cells invasion. Circ Res. https://doi.org/10.1161/CIRCRESAHA.108.187088
Article
PubMed
PubMed Central
Google Scholar
Yamaguchi H, Takagi J, Miyamae T, Yokota S, Fujimoto T, Nakamura S, Ohshima S, Naka T, Nagata S (2008) Milk fat globule EGF factor 8 in the serum of human patients of systemic lupus erythematosus. J Leukoc Biol. https://doi.org/10.1189/jlb.1107730
Article
PubMed
Google Scholar
Yamamoto N, Yamaguchi H, Ohmura K, Yokoyama T, Yoshifuji H, Yukawa N, Kawabata D, Fujii T, Morita S, Nagata S et al (2014) Serum milk fat globule epidermal growth factor 8 elevation may subdivide systemic lupus erythematosus into two pathophysiologically distinct subsets. Lupus. https://doi.org/10.1177/0961203314523870
Article
PubMed
Google Scholar
Kishi C, Motegi SI, Ishikawa O (2017) Elevated serum MFG-E8 level is possibly associated with the presence of high-intensity cerebral lesions on magnetic resonance imaging in patients with systemic lupus erythematosus. J Dermatol 44:783–788. https://doi.org/10.1111/1346-8138.13791
Article
CAS
PubMed
Google Scholar
Smith EE, Gurol ME, Eng JA, Engel CR, Nguyen TN, Rosand J, Greenberg SM (2004) White matter lesions, cognition, and recurrent hemorrhage in lobar intracerebral hemorrhage. Neurology. https://doi.org/10.1212/01.WNL.0000142966.22886.20
Article
PubMed
PubMed Central
Google Scholar
Verbeek MM, Kremer BPH, Rikkert MO, Van Domburg PHMF, Skehan ME, Greenberg SM (2009) Cerebrospinal fluid amyloid β40 is decreased in cerebral amyloid angiopathy. Ann Neurol. https://doi.org/10.1002/ana.21694
Article
PubMed
PubMed Central
Google Scholar
Olsson B, Lautner R, Andreasson U, Öhrfelt A, Portelius E, Bjerke M, Hölttä M, Rosén C, Olsson C, Strobel G et al (2016) CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: a systematic review and meta-analysis. Lancet Neurol. https://doi.org/10.1016/S1474-4422(16)00070-3
Article
PubMed
Google Scholar
Charidimou A, Friedrich JO, Greenberg SM, Viswanathan A (2018) Core cerebrospinal fluid biomarker profile in cerebral amyloid angiopathy: A meta-analysis. Neurology. https://doi.org/10.1212/WNL.0000000000005030
Article
PubMed
PubMed Central
Google Scholar
Tapiola T, Alafuzoff I, Herukka SK, Parkkinen L, Hartikainen P, Soininen H, Pirttilä T (2009) Cerebrospinal fluid β-amyloid 42 and tau proteins as biomarkers of Alzheimer-type pathologic changes in the brain. Arch Neurol. https://doi.org/10.1001/archneurol.2008.596
Article
PubMed
Google Scholar
Seppälä TT, Nerg O, Koivisto AM, Rummukainen J, Puli L, Zetterberg H, Pyykkö OT, Helisalmi S, Alafuzoff I, Hiltunen M et al (2012) CSF biomarkers for Alzheimer disease correlate with cortical brain biopsy findings. Neurology. https://doi.org/10.1212/WNL.0b013e3182563bd0
Article
PubMed
Google Scholar
Tarasoff-Conway JM, Carare RO, Osorio RS, Glodzik L, Butler T, Fieremans E, Axel L, Rusinek H, Nicholson C, Zlokovic BV et al (2015) Clearance systems in the brain—implications for Alzheimer disease. Nat Rev Neurol 11:457–470. https://doi.org/10.1038/nrneurol.2015.119
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuiperij HB, Hondius DC, Kersten I, Versleijen AAM, Rozemuller AJM, Greenberg SM, Schreuder FHBM, Klijn CJM, Verbeek MM (2020) Apolipoprotein D: a potential biomarker for cerebral amyloid angiopathy. Neuropathol Appl Neurobiol. https://doi.org/10.1111/nan.12595
Article
PubMed
Google Scholar
Davis J, Van Nostrand WE (1996) Enhanced pathologic properties of Dutch-type mutant amyloid β-protein. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.93.7.2996
Article
PubMed
PubMed Central
Google Scholar
Previti, M. Lou; Zhang, W.; Van Nostrand, W.E. Dexamethasone diminishes the pro-inflammatory and cytotoxic effects of amlyoid β-protein in cerebrovascular smooth muscle cells. J. Neuroinflammation 2006, doi:https://doi.org/10.1186/1742-2094-3-18.