Al-bataineh M et al (2004) AMPK regulates the vacuolar proton-ATPase via 14–3–3 proteins (1109.11). FASEB J. https://doi.org/10.1096/FASEBJ.28.1_SUPPLEMENT.1109.11
Article
Google Scholar
Allison DW et al (1998) Role of actin in anchoring postsynaptic receptors in cultured hippocampal neurons: differential attachment of NMDA versus AMPA receptors. J Neurosci 18(7):2423–2436. https://doi.org/10.1523/jneurosci.18-07-02423.1998
Article
CAS
PubMed
PubMed Central
Google Scholar
Alquezar C, Arya S, Kao AW (2021) ‘Tau post-translational modifications: dynamic transformers of tau function, degradation, and aggregation. Front Neurol. https://doi.org/10.3389/fneur.2020.595532
Article
PubMed
PubMed Central
Google Scholar
Altman J, Das GD (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124(3):319–335. https://doi.org/10.1002/cne.901240303
Article
CAS
PubMed
Google Scholar
Alzamora R et al (2013) AMP-activated protein kinase regulates the vacuolar H+-ATPase via direct phosphorylation of the A subunit (ATP6V1A) in the kidney. Am J Physiol Renal Physiol 305(7):F943. https://doi.org/10.1152/ajprenal.00303.2013
Article
CAS
PubMed
PubMed Central
Google Scholar
Ando K et al (2013) Clathrin adaptor CALM/PICALM is associated with neurofibrillary tangles and is cleaved in Alzheimer’s brains. Acta Neuropathol 125(6):861–878. https://doi.org/10.1007/s00401-013-1111-z
Article
CAS
PubMed
Google Scholar
Ando K et al (2016) ‘Level of PICALM, a key component of clathrin-mediated endocytosis, is correlated with levels of phosphotau and autophagy-related proteins and is associated with tau inclusions in AD, PSP and pick disease. Neurobiol Dis 94:32–43. https://doi.org/10.1016/j.nbd.2016.05.017
Article
CAS
PubMed
Google Scholar
Ando K et al (2020) Picalm reduction exacerbates tau pathology in a murine tauopathy model. Acta Neuropathol 139(4):773–789. https://doi.org/10.1007/s00401-020-02125-x
Article
CAS
PubMed
Google Scholar
Ando K, Kudo Y, Takahashi M (2005) Negative regulation of neurotransmitter release by calpain: a possible involvement of specific SNAP-25 cleavage. J Neurochem 94(3):651–658. https://doi.org/10.1111/j.1471-4159.2005.03160.x
Article
CAS
PubMed
Google Scholar
Andreadis A, Brown WM, Kosik KS (1992) Structure and novel exons of the human.tau. gene. Biochemistry 31(43):10626–10633. https://doi.org/10.1021/bi00158a027
Article
CAS
PubMed
Google Scholar
Andreasen TJ et al (1983) Purification of a novel calmodulin binding protein from bovine cerebral cortex membranes. Biochemistry 22(20):4615–4618. https://doi.org/10.1021/bi00289a001
Article
CAS
PubMed
Google Scholar
Anggono V, Huganir RL (2012) Regulation of AMPA receptor trafficking and synaptic plasticity. Curr Opin Neurobiol. https://doi.org/10.1016/j.conb.2011.12.006
Article
PubMed
PubMed Central
Google Scholar
Arbel-Ornath M et al (2017) Soluble oligomeric amyloid-β induces calcium dyshomeostasis that precedes synapse loss in the living mouse brain. Mol Neurodegener 12(1):27. https://doi.org/10.1186/s13024-017-0169-9
Article
CAS
PubMed
PubMed Central
Google Scholar
Arendash GW et al (2004) Multi-metric behavioral comparison of APPsw and P301L models for Alzheimer’s Disease: linkage of poorer cognitive performance to tau pathology in forebrain. Brain Res 1012(1–2):29–41. https://doi.org/10.1016/j.brainres.2004.02.081
Article
CAS
PubMed
Google Scholar
Arendt T et al (2003) Reversible paired helical filament-like phosphorylation of tau is an adaptive process associated with neuronal plasticity in hibernating animals. J Neurosci 23(18):6972–6981. https://doi.org/10.1523/jneurosci.23-18-06972.2003
Article
CAS
PubMed
PubMed Central
Google Scholar
Arriagada PV et al (1992) Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 42(3 Pt 1):631–639. https://doi.org/10.1212/wnl.42.3.631
Article
CAS
PubMed
Google Scholar
Arriagada PV, Marzloff K, Hyman BT (1992) Distribution of Alzheimer-type pathologic changes in nondemented elderly individuals matches the pattern in Alzheimer’s disease. Neurology 42(9):1681–1688. https://doi.org/10.1212/wnl.42.9.1681
Article
CAS
PubMed
Google Scholar
Ball MJ et al (1985) A new definition of alzheimer’s disease: a hippocampal dementia. Lancet 325(8419):14–16. https://doi.org/10.1016/S0140-6736(85)90965-1
Article
Google Scholar
Bamburg JR et al (2010) ADF/Cofilin-actin rods in neurodegenerative diseases. Curr Alzheimer Res 7(3):241–250. https://doi.org/10.2174/156720510791050902
Article
CAS
PubMed
PubMed Central
Google Scholar
Barbosa AC et al (2008) MEF2C, a transcription factor that facilitates learning and memory by negative regulation of synapse numbers and function. Proc Nat Acad Sci 105(27):9391–9396. https://doi.org/10.1073/pnas.0802679105
Article
PubMed
PubMed Central
Google Scholar
Barghorn S, Mandelkow E (2002) Toward a unified scheme for the aggregation of tau into Alzheimer paired helical filaments. Biochemistry 41(50):14885–14896. https://doi.org/10.1021/bi026469j
Article
CAS
PubMed
Google Scholar
Barnes CA, Rao G, Houston FP (2000) LTP induction threshold change in old rats at the perforant path-granule cell synapse. Neurobiol Aging 21(5):613–620. https://doi.org/10.1016/S0197-4580(00)00163-9
Article
CAS
PubMed
Google Scholar
Barnett JH et al (2016) ‘The paired associates learning (PAL) test: 30 years of CANTAB translational neuroscience from laboratory to bedside in dementia research. Curr Top Behav Neurosci. https://doi.org/10.1007/7854_2015_5001
Article
PubMed
Google Scholar
de Barreda EG, Avila J (2011) Tau regulates the subcellular localization of calmodulin. Biochem Biophys Res Commun 408(3):500–504. https://doi.org/10.1016/j.bbrc.2011.04.082
Article
CAS
PubMed
Google Scholar
Bartos JA et al (2010) Postsynaptic clustering and activation of Pyk2 by PSD-95. J Neurosci 30(2):449–463. https://doi.org/10.1523/JNEUROSCI.4992-08.2010
Article
CAS
PubMed
PubMed Central
Google Scholar
Bateman RJ et al (2012) Clinical and biomarker changes in dominantly inherited Alzheimer’s disease . N Engl J Med 367(9):795–804. https://doi.org/10.1056/NEJMoa1202753
Article
CAS
PubMed
PubMed Central
Google Scholar
Baxter HC et al (2002) Immunolocalisation of 14–3-3 isoforms in normal and scrapie-infected murine brain. Neuroscience 109(1):5–14. https://doi.org/10.1016/S0306-4522(01)00492-4
Article
CAS
PubMed
Google Scholar
Beattie EC et al (2000) Regulation of AMPA receptor endocytosis by a signaling mechanism shared with LTD. Nat Neurosci 3(12):1291–1300. https://doi.org/10.1038/81823
Article
CAS
PubMed
Google Scholar
Bennett MC et al (1999) Degradation of α-synuclein by proteasome. J Biol Chem 274(48):33855–33858. https://doi.org/10.1074/jbc.274.48.33855
Article
CAS
PubMed
Google Scholar
Bellen HJ, Tong C, Tsuda H (2010) 100 years of Drosophila research and its impact on vertebrate neuroscience: a history lesson for the future. Nat Rev Neurosci. https://doi.org/10.1038/nrn2839
Article
PubMed
PubMed Central
Google Scholar
Bernstein BW, Bamburg JR (1982) Tropomyosin binding to F-actin protects the F-actin from disassembly by brain actin-depolymerizing factor (ADF). Cell Motil 2(1):1–8. https://doi.org/10.1002/cm.970020102
Article
CAS
PubMed
Google Scholar
Bernstein BW, Bamburg JR (1989) Cycling of actin assembly in synaptosomes and neurotransmitter release. Neuron 3(2):257–265. https://doi.org/10.1016/0896-6273(89)90039-1
Article
CAS
PubMed
Google Scholar
Bi X et al (1997) Characterization of calpain-mediated proteolysis of GluR1 subunits of α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors in rat brain. J Neurochem 68(4):1484–1494. https://doi.org/10.1046/j.1471-4159.1997.68041484.x
Article
CAS
PubMed
Google Scholar
Bliss TV, Collingridge GL (2013) Expression of NMDA receptor-dependent LTP in the hippocampus: bridging the divide. Mol Brain 6(1):5. https://doi.org/10.1186/1756-6606-6-5
Article
CAS
PubMed
PubMed Central
Google Scholar
Bloom GS (2014) Amyloid-β and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol 71(4):505–508. https://doi.org/10.1001/jamaneurol.2013.5847
Article
PubMed
Google Scholar
Boczek T et al (2015) Regulation of GAP43/calmodulin complex formation via calcineurin-dependent mechanism in differentiated PC12 cells with altered PMCA isoforms composition. Mol Cell Biochem 407(1–2):251–262. https://doi.org/10.1007/s11010-015-2473-4
Article
CAS
PubMed
PubMed Central
Google Scholar
Boekhoorn K et al (2006) Improved long-term potentiation and memory in young tau-P301L transgenic mice before onset of hyperphosphorylation and tauopathy. J Neurosci 26(13):3514–3523. https://doi.org/10.1523/JNEUROSCI.5425-05.2006
Article
CAS
PubMed
PubMed Central
Google Scholar
Boggs JM et al (2011) Myelin basic protein binds microtubules to a membrane surface and to actin filaments in vitro: Effect of phosphorylation and deimination. Biochim Biophys Acta Biomembranes 1808(3):761–773. https://doi.org/10.1016/j.bbamem.2010.12.016
Article
CAS
Google Scholar
Boggs JM, Rangaraj G (2000) Interaction of lipid-bound myelin basic protein with actin filaments and calmodulin. Biochemistry 39(26):7799–7806. https://doi.org/10.1021/bi0002129
Article
CAS
PubMed
Google Scholar
Bolsover SR (2005) Calcium signalling in growth cone migration. Cell Calcium. https://doi.org/10.1016/j.ceca.2005.01.007
Article
PubMed
Google Scholar
Braak H et al (2011) Stages of the pathologic process in alzheimer disease: Age categories from 1 to 100 years. J Neuropathol Exp Neurol 70(11):960–969. https://doi.org/10.1097/NEN.0b013e318232a379
Article
CAS
PubMed
Google Scholar
Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82(4):239–259. https://doi.org/10.1007/BF00308809
Article
CAS
PubMed
Google Scholar
Braak H, Del Tredici K (2011) The pathological process underlying Alzheimer’s disease in individuals under thirty. Acta Neuropathol 121(2):171–181. https://doi.org/10.1007/s00401-010-0789-4
Article
PubMed
Google Scholar
Brandt R, Léger J, Lee G (1995) Interaction of tau with the neural plasma membrane mediated by tau’s amino-terminal projection domain. J Cell Biol 131(5):1327–1340. https://doi.org/10.1083/jcb.131.5.1327
Article
CAS
PubMed
Google Scholar
Bridi JC, Hirth F (2018) Mechanisms of α-Synuclein induced synaptopathy in parkinson’s disease. Front Neurosci. https://doi.org/10.3389/fnins.2018.00080
Article
PubMed
PubMed Central
Google Scholar
Bright J et al (2015) Human secreted tau increases amyloid-beta production. Neurobiol Aging 36(2):693–709. https://doi.org/10.1016/j.neurobiolaging.2014.09.007
Article
CAS
PubMed
Google Scholar
Briner A, Götz J, Polanco JC (2020) Fyn kinase controls tau aggregation in vivo. Cell Rep 32(7):108045. https://doi.org/10.1016/j.celrep.2020.108045
Article
CAS
PubMed
Google Scholar
Brodsky FM et al (2001) Biological basket weaving: formation and function of clathrin-coated vesicles. Annu Rev Cell Dev Biol. https://doi.org/10.1146/annurev.cellbio.17.1.517
Article
PubMed
Google Scholar
Brown JT et al (2011) Altered intrinsic neuronal excitability and reduced Na+ currents in a mouse model of Alzheimer’s disease. Neurobiol Aging 32(11):2109.e1-2109.e14. https://doi.org/10.1016/j.neurobiolaging.2011.05.025
Article
CAS
Google Scholar
Brunello CA et al (2020) Mechanisms of secretion and spreading of pathological tau protein. Cell Mol Life Sci. https://doi.org/10.1007/s00018-019-03349-1
Article
PubMed
Google Scholar
Bryce NS et al (2003) Specification of actin filament function and molecular composition by tropomyosin isoforms. Mol Biol Cell 14(3):1002–1016. https://doi.org/10.1091/mbc.E02-04-0244
Article
CAS
PubMed
PubMed Central
Google Scholar
Burnashev N et al (1992) Divalent ion permeability of AMPA receptor channels is dominated by the edited form of a single subunit. cell.com. https://www.cell.com/neuron/pdf/0896-6273(92)90120-3.pdf. Accessed 11 May 2020.
Busche MA et al (2008) Clusters of hyperactive neurons near amyloid plaques in a mouse model of Alzheimer’s disease. Science 321(5896):1686–1689. https://doi.org/10.1126/science.1162844
Article
CAS
PubMed
Google Scholar
Busche MA et al (2012) Critical role of soluble amyloid-β for early hippocampal hyperactivity in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 109(22):8740–8745. https://doi.org/10.1073/pnas.1206171109
Article
PubMed
PubMed Central
Google Scholar
Busche MA et al (2019) Tau impairs neural circuits, dominating amyloid-β effects, in Alzheimer models in vivo. Nat Neurosci 22(1):57–64. https://doi.org/10.1038/s41593-018-0289-8
Article
CAS
PubMed
Google Scholar
Cabrales Fontela Y et al (2017) Multivalent cross-linking of actin filaments and microtubules through the microtubule-associated protein Tau. Nat Commun 8(1):1–12. https://doi.org/10.1038/s41467-017-02230-8
Article
CAS
Google Scholar
Calafate S et al (2016) Loss of Bin1 promotes the propagation of tau pathology. Cell Rep 17(4):931–940. https://doi.org/10.1016/j.celrep.2016.09.063
Article
CAS
PubMed
Google Scholar
Camero S et al (2014) Tau protein provides DNA with thermodynamic and structural features which are similar to those found in histone-DNA complex. J Alzheimer’s Dis 39(3):649–660. https://doi.org/10.3233/JAD-131415
Article
CAS
Google Scholar
Canobbio I et al (2015) The focal adhesion kinase Pyk2 links Ca2+ signalling to Src family kinase activation and protein tyrosine phosphorylation in thrombin-stimulated platelets. Biochem J 469(2):199–210. https://doi.org/10.1042/BJ20150048
Article
CAS
PubMed
Google Scholar
Carlisle HJ, Kennedy MB (2005) Spine architecture and synaptic plasticity. Trends Neurosci. https://doi.org/10.1016/j.tins.2005.01.008
Article
PubMed
Google Scholar
Carmichael RE et al (2018) MEF2A regulates mGluR-dependent AMPA receptor trafficking independently of Arc/Arg3.1. Sci Rep. https://doi.org/10.1038/s41598-018-23440-0
Article
PubMed
PubMed Central
Google Scholar
Carter CJ (2007) Convergence of genes implicated in Alzheimer’s disease on the cerebral cholesterol shuttle: APP, cholesterol, lipoproteins, and atherosclerosis. Neurochem Int. https://doi.org/10.1016/j.neuint.2006.07.007
Article
PubMed
Google Scholar
Cavallucci V et al (2013) Calcineurin inhibition rescues early synaptic plasticity deficits in a mouse model of Alzheimer’s disease. Neuromolecular Med 15(3):541–548. https://doi.org/10.1007/s12017-013-8241-2
Article
CAS
PubMed
Google Scholar
Chamberlain LH et al (1995) Distinct effects of α-SNAP, 14–3-3 proteins, and calmodulin on priming and triggering of regulated exocytosis. J Cell Biol 130(5):1063–1070. https://doi.org/10.1083/jcb.130.5.1063
Article
CAS
PubMed
Google Scholar
Chamberlain LH, Burgoyne RD (1998) Cysteine string protein functions directly in regulated exocytosis. Mol Biol Cell 9(8):2259–2267. https://doi.org/10.1091/mbc.9.8.2259
Article
CAS
PubMed
PubMed Central
Google Scholar
Chandra S et al (2005) α-Synuclein cooperates with CSPα in preventing neurodegeneration. Cell 123(3):383–396. https://doi.org/10.1016/j.cell.2005.09.028
Article
CAS
PubMed
Google Scholar
Chapuis J et al (2013) Increased expression of BIN1 mediates Alzheimer genetic risk by modulating tau pathology. Mol Psychiatry 18(11):1225–1234. https://doi.org/10.1038/mp.2013.1
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen JJ et al (2019) Compromised function of the ESCRT pathway promotes endolysosomal escape of tau seeds and propagation of tau aggregation. J Biol Chem 294(50):18952–18966. https://doi.org/10.1074/jbc.RA119.009432
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen LY et al (2007) Changes in synaptic morphology accompany actin signaling during LTP. J Neurosci 27(20):5363–5372. https://doi.org/10.1523/JNEUROSCI.0164-07.2007
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen Y et al (2010) ApoE4 reduces glutamate receptor function and synaptic plasticity by selectively impairing ApoE receptor recycling. Proc Natl Acad Sci USA 107(26):12011–12016. https://doi.org/10.1073/pnas.0914984107
Article
PubMed
PubMed Central
Google Scholar
Chin LS, Vavalle JP, Li A (2002) Staring, a novel E3 ubiquitin-protein ligase that targets syntaxin 1 for degradation. J Biol Chem 277(38):35071–35079. https://doi.org/10.1074/jbc.M203300200
Article
CAS
PubMed
Google Scholar
Cingolani LA, Goda Y (2008) Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy. Nat Rev Neurosci. https://doi.org/10.1038/nrn2373
Article
PubMed
Google Scholar
Cirrito JR et al (2008) Endocytosis is required for synaptic activity-dependent release of amyloid-β in vivo. Neuron 58(1):42–51. https://doi.org/10.1016/j.neuron.2008.02.003
Article
CAS
PubMed
PubMed Central
Google Scholar
Clayton EL et al (2009) The phospho-dependent dynamin-syndapin interaction triggers activity-dependent bulk endocytosis of synaptic vesicles. J Neurosci 29(24):7706–7717. https://doi.org/10.1523/JNEUROSCI.1976-09.2009
Article
CAS
PubMed
PubMed Central
Google Scholar
Clayton EL et al (2010) Dynamin i phosphorylation by GSK3 controls activity-dependent bulk endocytosis of synaptic vesicles. Nat Neurosci 13(7):845–851. https://doi.org/10.1038/nn.2571
Article
CAS
PubMed
PubMed Central
Google Scholar
Cohen NJ, Squire LR (1980) Preserved learning and retention of pattern-analyzing skill in amnesia: dissociation of knowing how and knowing that. Science (New York, NY) 210(4466):207–210. https://doi.org/10.1126/science.7414331
Article
CAS
Google Scholar
Cole CJ et al (2012) MEF2 negatively regulates learning-induced structural plasticity and memory formation. Nat Neurosci 15:1255. https://doi.org/10.1038/nn.3189
Article
CAS
PubMed
Google Scholar
Colledge M et al (2003) Ubiquitination regulates PSD-95 degradation and AMPA receptor surface expression. Neuron 40(3):595–607. https://doi.org/10.1016/S0896-6273(03)00687-1
Article
CAS
PubMed
PubMed Central
Google Scholar
Conner SD, Schmid SL (2003) Regulated portals of entry into the cell. Nature. https://doi.org/10.1038/nature01451
Article
PubMed
Google Scholar
Cooper JM et al (2020) LRP1 mediates tau endocytosis in a process that is modulated by apolipoprotein E. Alzheimer’s Dementia 16(S3):e045959. https://doi.org/10.1002/alz.045959
Article
Google Scholar
Corder E et al (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261(5123):921–923. https://doi.org/10.1126/science.8346443
Article
CAS
PubMed
Google Scholar
Coria F et al (1993) Prevalence of age-associated memory impairment and dementia in a rural community. J Neurol Neurosurg Psychiatry 56(9):973–976. https://doi.org/10.1136/jnnp.56.9.973
Article
CAS
PubMed
PubMed Central
Google Scholar
Corneveaux JJ et al (2010) Evidence for an association between KIBRA and late-onset Alzheimer’s disease. Neurobiol Aging 31(6):901–909. https://doi.org/10.1016/j.neurobiolaging.2008.07.014
Article
CAS
PubMed
Google Scholar
Cracco JB et al (2005) Protein synthesis-dependent LTP in isolated dendrites of CA1 pyramidal cells. Hippocampus 15(5):551–556. https://doi.org/10.1002/hipo.20078
Article
CAS
PubMed
Google Scholar
Crary JF et al (2006) Atypical protein kinase C in neurodegenerative disease I: PKMζ aggregates with limbic neurofibrillary tangles and AMPA receptors in Alzheimer disease. J Neuropathol Exp Neurol 65(4):319–326. https://doi.org/10.1097/01.jnen.0000218442.07664.04
Article
CAS
PubMed
Google Scholar
Cutler RG et al (2004) Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease. Proc Natl Acad Sci USA 101(7):2070–2075. https://doi.org/10.1073/pnas.0305799101
Article
CAS
PubMed
PubMed Central
Google Scholar
Dateki M et al (2005) Nervous System Specific Neurochondrin Gene Disruption Neurochondrin negatively regulates CaMKII phosphorylation and nervous system specific gene disruption results in epileptic seizure. J Biol Chem 280(21):20503–20508. https://doi.org/10.1074/jbc.M414033200
Article
CAS
PubMed
Google Scholar
Davis RL (1996) Physiology and biochemistry of Drosophila learning mutants. Physiol Rev. https://doi.org/10.1152/physrev.1996.76.2.299
Article
PubMed
Google Scholar
de Calignon A et al (2012) Propagation of tau pathology in a model of early Alzheimer’s disease. Neuron 73(4):685–697. https://doi.org/10.1016/j.neuron.2011.11.033
Article
CAS
PubMed
PubMed Central
Google Scholar
Deane R et al (2004) LRP/amyloid β-peptide interaction mediates differential brain efflux of Aβ isoforms. Neuron 43(3):333–344. https://doi.org/10.1016/j.neuron.2004.07.017
Article
CAS
PubMed
Google Scholar
Decker JM et al (2015) Pro-aggregant Tau impairs mossy fiber plasticity due to structural changes and Ca(++) dysregulation. Acta Neuropathol Commun 3:23. https://doi.org/10.1186/s40478-015-0193-3
Article
CAS
PubMed
PubMed Central
Google Scholar
Decker JM et al (2016) The Tau/A152T mutation, a risk factor for frontotemporal-spectrum disorders, leads to NR 2B receptor-mediated excitotoxicity. EMBO Rep 17(4):552–569. https://doi.org/10.15252/embr.201541439
Article
CAS
PubMed
PubMed Central
Google Scholar
Decker JM, Mandelkow EM (2019) Presynaptic pathophysiology encoded in different domains of tau—hyper-versus hypoexcitability? Adv Exp Med Biol. https://doi.org/10.1007/978-981-32-9358-8_8
Article
PubMed
Google Scholar
DeLorenzo RJ, Freedman SD (1977) Calcium-dependent phosphorylation of synaptic vesicle proteins and its possible role in mediating neurotransmitter release and vesicle function. Biochem Biophys Res Commun 77(3):1036–1043. https://doi.org/10.1016/S0006-291X(77)80082-X
Article
CAS
PubMed
Google Scholar
Deng W, Aimone JB, Gage FH (2010) New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci 11(5):339–350. https://doi.org/10.1038/nrn2822
Article
CAS
PubMed
PubMed Central
Google Scholar
Denny J (2006) Molecular mechanisms, biological actions, and neuropharmacology of the growth-associated protein GAP-43. Curr Neuropharmacol 4(4):293–304. https://doi.org/10.2174/157015906778520782
Article
CAS
PubMed
PubMed Central
Google Scholar
Derivery E et al (2009) The Arp2/3 activator WASH controls the fission of endosomes through a large multiprotein complex. Dev Cell 17(5):712–723. https://doi.org/10.1016/j.devcel.2009.09.010
Article
CAS
PubMed
Google Scholar
Despres C et al (2017) Identification of the tau phosphorylation pattern that drives its aggregation. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1708448114
Article
PubMed
PubMed Central
Google Scholar
Dev KK et al (1999) The protein kinase Cα binding protein PICK1 interacts with short but not long form alternative splice variants of AMPA receptor subunits. Neuropharmacology 38(5):635–644. https://doi.org/10.1016/S0028-3908(98)00230-5
Article
CAS
PubMed
Google Scholar
DeVos SL et al (2013) Antisense reduction of tau in adult mice protects against Seizures. J Neurosci 33(31):12887–12897. https://doi.org/10.1523/JNEUROSCI.2107-13.2013
Article
CAS
PubMed
PubMed Central
Google Scholar
DeVos SL et al (2018) Synaptic tau seeding precedes tau pathology in human Alzheimer’s disease brain. Front Neurosci. https://doi.org/10.3389/FNINS.2018.00267
Article
PubMed
PubMed Central
Google Scholar
DiAntonio A et al (2001) Ubiquitination-dependent mechanisms regulate synaptic growth and function. Nature 412(6845):449–452. https://doi.org/10.1038/35086595
Article
CAS
PubMed
Google Scholar
Diao J et al (2013) ‘Native α-synuclein induces clustering of synaptic-vesicle mimics via binding to phospholipids and synaptobrevin-2/VAMP2. Elife 2:e00592. https://doi.org/10.7554/eLife.00592
Article
PubMed
PubMed Central
Google Scholar
Dillon C, Goda Y (2005) The actin cytoskeleton: integrating form and function at the synapse. Annu Rev Neurosci 28(1):25–55. https://doi.org/10.1146/annurev.neuro.28.061604.135757
Article
CAS
PubMed
Google Scholar
Ding TT et al (2002) Annular α-synuclein protofibrils are produced when spherical protofibrils are incubated in solution or bound to brain-derived membranes. Biochemistry 41(32):10209–10217. https://doi.org/10.1021/bi020139h
Article
CAS
PubMed
Google Scholar
Dobrowolski Z, Baryłko B, Drabikowski W (1986) Interaction of tropomyosin with myelin basic protein and its effect on the ATPase activity of actomyosin. Eur J Cell Biol 41(1):65–71
CAS
PubMed
Google Scholar
Dourlen P et al (2019) The new genetic landscape of Alzheimer’s disease: from amyloid cascade to genetically driven synaptic failure hypothesis? Acta Neuropathol. https://doi.org/10.1007/s00401-019-02004-0
Article
PubMed
PubMed Central
Google Scholar
Dräger NM et al (2017) Bin1 directly remodels actin dynamics through its BAR domain. EMBO Rep 18(11):2051–2066. https://doi.org/10.15252/embr.201744137
Article
CAS
PubMed
PubMed Central
Google Scholar
Dreyling MH et al (1996) The t(10;11)(p13;q14) in the U937 cell line results in the fusion of the AF10 gene and CALM, encoding a new member of the AP-3 clathrin assembly protein family. Proc Natl Acad Sci USA 93(10):4804–4809. https://doi.org/10.1073/pnas.93.10.4804
Article
CAS
PubMed
PubMed Central
Google Scholar
Dubos A et al (2015) Conditional depletion of intellectual disability and Parkinsonism candidate gene ATP6AP2 in fly and mouse induces cognitive impairment and neurodegeneration. Hum Mol Genet 24(23):6736–6755. https://doi.org/10.1093/hmg/ddv380
Article
CAS
PubMed
PubMed Central
Google Scholar
Dumanchin C et al (1998) Segregation of a missense mutation in the microtubule-associated protein tau gene with familial frontotemporal dementia and parkinsonism. Hum Mol Genet 7(11):1825–1829. https://doi.org/10.1093/hmg/7.11.1825
Article
CAS
PubMed
Google Scholar
Durakoglugil MS et al (2009) Reelin signaling antagonizes β-amyloid at the synapse. Proc Natl Acad Sci USA 106(37):15938–15943. https://doi.org/10.1073/pnas.0908176106
Article
PubMed
PubMed Central
Google Scholar
Dyer CA et al (1995) Cytoskeleton in myelin-basic-protein deficient shiverer oligodendrocytes. Dev Neurosci 17(1):53–62. https://doi.org/10.1159/000111273
Article
CAS
PubMed
Google Scholar
Ehlers MD (2000) Reinsertion or degradation of AMPA receptors determined by activity-dependent endocytic sorting. Neuron 28(2):511–525. https://doi.org/10.1016/S0896-6273(00)00129-X
Article
CAS
PubMed
Google Scholar
Ehlers MD (2003) Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system. Nat Neurosci 6(3):231–242. https://doi.org/10.1038/nn1013
Article
CAS
PubMed
Google Scholar
Elie A et al (2015) Tau co-organizes dynamic microtubule and actin networks. Sci Rep 5(1):1–10. https://doi.org/10.1038/srep09964
Article
CAS
Google Scholar
Engmann O et al (2011) Cyclin-dependent kinase 5 activator p25 Is generated during memory formation and is reduced at an early stage in Alzheimer’s disease. Biol Psychiat 70(2):159–168. https://doi.org/10.1016/j.biopsych.2011.04.011
Article
CAS
PubMed
Google Scholar
Esposito A et al (2007) α-Synuclein and its disease-related mutants interact differentially with the microtubule protein tau and associate with the actin cytoskeleton. Neurobiol Dis 26(3):521–531. https://doi.org/10.1016/j.nbd.2007.01.014
Article
CAS
PubMed
Google Scholar
Evans DA et al (1989) Prevalence of Alzheimer’s disease in a community population of older persons. Higher than previously reported. JAMA 262(18):2551–2556
Article
CAS
PubMed
Google Scholar
Evans DA et al (1997) Education and other measures of socioeconomic status and risk of incident Alzheimer disease in a defined population of older persons. Arch Neurol 54(11):1399–1405. https://doi.org/10.1001/archneur.1997.00550230066019
Article
CAS
PubMed
Google Scholar
Evans GJO, Morgan A (2002) Phosphorylation-dependent interaction of the synaptic vesicle proteins cysteine string protein and synaptotagmin I. Biochem J 364(2):343–347. https://doi.org/10.1042/BJ20020123
Article
CAS
PubMed
PubMed Central
Google Scholar
Ewers H et al (2014) A septin-dependent diffusion barrier at dendritic spine necks. PLoS ONE 9(12):e113916. https://doi.org/10.1371/journal.pone.0113916
Article
CAS
PubMed
PubMed Central
Google Scholar
Fá M et al (2016) Extracellular tau oligomers produce an immediate impairment of LTP and memory. Sci Rep 6:19393. https://doi.org/10.1038/srep19393
Article
CAS
PubMed
PubMed Central
Google Scholar
Fein JA et al (2008) Co-localization of amyloid beta and tau pathology in Alzheimer’s disease synaptosomes. Am J Pathol 172(6):1683–1692. https://doi.org/10.2353/AJPATH.2008.070829
Article
CAS
PubMed
PubMed Central
Google Scholar
Fernández-Chacón R et al (2004) The synaptic vesicle protein CSPα prevents presynaptic degeneration. Neuron. 42(2): 237–251. https://doi.org/10.1016/S0896-6273(04)00190-4
Article
PubMed
Google Scholar
Ferguson SM et al (2007) A selective activity-dependent requirement for dynamin 1 in synaptic vesicle endocytosis. Science 316(5824):570–574. https://doi.org/10.1126/science.1140621
Article
CAS
PubMed
Google Scholar
Ferguson SM, De Camilli P (2012) Dynamin, a membrane-remodelling GTPase. Nat Rev Mol Cell Biol. https://doi.org/10.1038/nrm3266
Article
PubMed
PubMed Central
Google Scholar
Fichou Y et al (2019) The elusive tau molecular structures: Can we translate the recent breakthroughs into new targets for intervention? Acta Neuropathol Commun. https://doi.org/10.1186/s40478-019-0682-x
Article
PubMed
PubMed Central
Google Scholar
Fitzpatrick AWP et al (2017) Cryo-EM structures of tau filaments from Alzheimer’s disease. Nature 547:185. https://doi.org/10.1038/nature23002
Article
CAS
PubMed
PubMed Central
Google Scholar
Fiuza M et al (2017) PICK1 regulates AMPA receptor endocytosis via direct interactions with AP2 α-appendage and dynamin. J Cell Biol. 216(10):3323–3338. https://doi.org/10.1083/jcb.201701034
Article
CAS
PubMed
PubMed Central
Google Scholar
Fontaine SN et al (2016) DnaJ/Hsc70 chaperone complexes control the extracellular release of neurodegenerative-associated proteins. EMBO J 35(14):1537–1549. https://doi.org/10.15252/embj.201593489
Article
CAS
PubMed
PubMed Central
Google Scholar
Frandemiche ML et al (2014) Activity-dependent tau protein translocation to excitatory synapse is disrupted by exposure to amyloid-beta oligomers. J Neurosci 34(17)
Frid K et al (2015) Aggregation of MBP in chronic demyelination. Ann Clin Transl Neurol 2(7):711–721. https://doi.org/10.1002/acn3.207
Article
CAS
PubMed
PubMed Central
Google Scholar
Friedhoff P et al (1998) A nucleated assembly mechanism of Alzheimer paired helical filaments. Proc Natl Acad Sci USA 95(26):15712–15717. https://doi.org/10.1073/pnas.95.26.15712
Article
CAS
PubMed
PubMed Central
Google Scholar
Frost B, Jacks RL, Diamond MI (2009) Propagation of Tau misfolding from the outside to the inside of a cell. J Biol Chem 284(19):12845–12852. https://doi.org/10.1074/jbc.M808759200
Article
CAS
PubMed
PubMed Central
Google Scholar
Fulga TA et al (2006) Abnormal bundling and accumulation of F-actin mediates tau-induced neuronal degeneration in vivo. Nat Cell Biol 9:139. https://doi.org/10.1038/ncb1528
Article
CAS
PubMed
Google Scholar
Fünfschilling U et al (2007) Survival of adult neurons lacking cholesterol synthesis in vivo. BMC Neurosci. https://doi.org/10.1186/1471-2202-8-1
Article
PubMed
PubMed Central
Google Scholar
Galiano MR et al (2006) Myelin basic protein functions as a microtubule stabilizing protein in differentiated oligodendrocytes. J Neurosci Res 84(3):534–541. https://doi.org/10.1002/jnr.20960
Article
CAS
PubMed
Google Scholar
Galletta BJ, Mooren OL, Cooper JA (2010) Actin dynamics and endocytosis in yeast and mammals. Curr Opin Biotechnol. https://doi.org/10.1016/j.copbio.2010.06.006
Article
PubMed
PubMed Central
Google Scholar
Galloway PG et al (1987) Hirano bodies contain tau protein. Brain Res 403(2):337–340. https://doi.org/10.1016/0006-8993(87)90071-0
Article
CAS
PubMed
Google Scholar
Gao X et al (2015) Human Hsp70 disaggregase reverses Parkinson’s-linked α-synuclein amyloid fibrils. Mol Cell 59(5):781–793. https://doi.org/10.1016/j.molcel.2015.07.012
Article
CAS
PubMed
PubMed Central
Google Scholar
Georgieva ER et al (2014) Tau binds to lipid membrane surfaces via short amphipathic helices located in its microtubule-binding repeats. Biophys J 107(6):1441–1452. https://doi.org/10.1016/j.bpj.2014.07.046
Article
CAS
PubMed
PubMed Central
Google Scholar
Gerges NZ et al (2006) Dual role of the exocyst in AMPA receptor targeting and insertion into the postsynaptic membrane. EMBO J 25(8):1623–1634. https://doi.org/10.1038/sj.emboj.7601065
Article
CAS
PubMed
PubMed Central
Google Scholar
Giannakopoulos P, Herrmann FR, Bussière T et al (2003) ‘Tangle and neuron numbers, but not amyloid load, predict cognitive status in Alzheimer’s disease. Neurology 60(9):1495LP – 1500. https://doi.org/10.1212/01.WNL.0000063311.58879.01
Article
Google Scholar
Giasson BI et al (2003) Initiation and synergistic fibrillization of tau and alpha-synuctein. Science 300(5619):636–640. https://doi.org/10.1126/science.1082324
Article
CAS
PubMed
Google Scholar
Gibson PH, Tomlinson BE (1977) Numbers of Hirano bodies in the hippocampus of normal and demented people with Alzheimer’s disease. J Neurol Sci 33(1–2):199–206. https://doi.org/10.1016/0022-510X(77)90193-9
Article
CAS
PubMed
Google Scholar
Girard M et al (2005) Non-stoichiometric relationship between clathrin heavy and light chains revealed by quantitative comparative proteomics of clathrin-coated vesicles from brain and liver. Mol Cell Proteomics 4(8):1145–1154. https://doi.org/10.1074/mcp.M500043-MCP200
Article
CAS
PubMed
Google Scholar
Go GW, Mani A (2012) Low-density lipoprotein receptor (LDLR) family orchestrates cholesterol homeostasis. Yale J Biol Med 19–28
Goate A et al (1991) Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 349(6311):704–706. https://doi.org/10.1038/349704a0
Article
CAS
PubMed
Google Scholar
Goedert M et al (1989) ‘Cloning and sequencing of the cDNA encoding an isoform of microtubule-associated protein tau containing four tandem repeats: differential expression of tau protein mRNAs in human brain. EMBO J 8(2):393–399
Article
CAS
PubMed
PubMed Central
Google Scholar
Goedert M et al (1989) Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron 3(4):519–526. https://doi.org/10.1016/0896-6273(89)90210-9
Article
CAS
PubMed
Google Scholar
Goedert M et al (1994) Epitope mapping of monoclonal antibodies to the paired helical filaments of Alzheimer’s disease: identification of phosphorylation sites in tau protein. Biochem J 301(3):871–877. https://doi.org/10.1042/bj3010871
Article
CAS
PubMed
PubMed Central
Google Scholar
Goedert M, Spillantini MG, Crowther RA (1992) ‘Cloning of a big tau microtubule-associated protein characteristic of the peripheral nervous system. Proc Natl Acad Sci USA 89(5):1983–1987. https://doi.org/10.1073/PNAS.89.5.1983
Article
CAS
PubMed
PubMed Central
Google Scholar
Gomez TS et al (2012) Trafficking defects in WASH-knockout fibroblasts originate from collapsed endosomal and lysosomal networks. Mol Biol Cell 23(16):3215–3228. https://doi.org/10.1091/mbc.e12-02-0101
Article
CAS
PubMed
PubMed Central
Google Scholar
Gomez TS, Billadeau DD (2009) A FAM21-containing WASH complex regulates retromer-dependent sorting. Dev Cell 17(5):699–711. https://doi.org/10.1016/j.devcel.2009.09.009
Article
CAS
PubMed
PubMed Central
Google Scholar
Gómez-Isla T et al (1996) ‘Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease. J Neurosci 16(14):4491–4500
Article
PubMed
PubMed Central
Google Scholar
Gómez-Ramos A et al (2008) Extracellular tau promotes intracellular calcium increase through M1 and M3 muscarinic receptors in neuronal cells. Mol Cell Neurosci 37(4):673–681. https://doi.org/10.1016/J.MCN.2007.12.010
Article
PubMed
Google Scholar
Goode BL et al (2000) Structural and Functional Differences between 3-Repeat and 4-Repeat Tau Isoforms implications for normal tau function and the onset of neurodegenerative disease. J Biol Chem 275:38182–38189. https://doi.org/10.1074/jbc.M007489200
Article
CAS
PubMed
Google Scholar
Goto S et al (1985) Dephosphorylation of microtubule-associated protein 2, τ factor, and tubulin by calcineurin. J Neurochem 45(1):276–283. https://doi.org/10.1111/j.1471-4159.1985.tb05504.x
Article
CAS
PubMed
Google Scholar
Götz J et al (1995) Somatodendritic localization and hyperphosphorylation of tau protein in transgenic mice expressing the longest human brain tau isoform. EMBO J 14(7):1304–1313
Article
PubMed
PubMed Central
Google Scholar
Gourlay CW et al (2004) A role for the actin cytoskeleton in cell death and aging in yeast. J Cell Biol 164(6):803–809. https://doi.org/10.1083/jcb.200310148
Article
CAS
PubMed
PubMed Central
Google Scholar
Granseth B et al (2006) Clathrin-mediated endocytosis is the dominant mechanism of vesicle retrieval at hippocampal synapses. Neuron 51(6):773–786. https://doi.org/10.1016/j.neuron.2006.08.029
Article
CAS
PubMed
Google Scholar
Grant SGN et al (1992) Impaired long-term potentiation, spatial learning, and hippocampal development in fyn mutant mice. Science 258(5090):1903–1910. https://doi.org/10.1126/science.1361685
Article
CAS
PubMed
Google Scholar
Grundke-Iqbal I et al (1986) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 83(13):4913–4917. https://doi.org/10.1073/PNAS.83.13.4913
Article
CAS
PubMed
PubMed Central
Google Scholar
Gu J et al (2010) ADF/cofilin-mediated actin dynamics regulate AMPA receptor trafficking during synaptic plasticity. Nat Neurosci 13(10):1208–1215. https://doi.org/10.1038/nn.2634
Article
CAS
PubMed
PubMed Central
Google Scholar
Guntupalli S, Widagdo J, Anggono V (2016) Amyloid-β-induced dysregulation of AMPA receptor trafficking. Neural Plast. https://doi.org/10.1155/2016/3204519
Article
PubMed
PubMed Central
Google Scholar
Guo JL, Lee VM-Y (2011) Seeding of normal tau by pathological tau conformers drives pathogenesis of Alzheimer-like tangles. J Biol Chem 286(17):15317–15331. https://doi.org/10.1074/jbc.M110.209296
Article
CAS
PubMed
PubMed Central
Google Scholar
Gupta HV et al (2015) A splice site mutation in ATP6AP2 causes X-linked intellectual disability, epilepsy, and parkinsonism. Parkinsonism Relat Disord. https://doi.org/10.1016/j.parkreldis.2015.10.001
Article
PubMed
Google Scholar
Hamilton RL (2006) Lewy bodies in Alzheimer’s disease: a neuropathological review of 145 cases using α-synuclein immunohistochemistry. Brain Pathol 10(3):378–384. https://doi.org/10.1111/j.1750-3639.2000.tb00269.x
Article
PubMed Central
Google Scholar
Hanley JG, Henley JM (2005) PICK1 is a calcium-sensor for NMDA-induced AMPA receptor trafficking. EMBO J 24(18):3266–3278. https://doi.org/10.1038/sj.emboj.7600801
Article