Anderson L, Henderson C, Adachi Y (2001) Phosphorylation and rapid relocalization of 53BP1 to nuclear foci upon DNA damage. Mol Cell Biol 21:1719–1729. https://doi.org/10.1128/MCB.21.5.1719-1729.2001
Article
CAS
PubMed
PubMed Central
Google Scholar
Andorfer C, Acker CM, Kress Y, Hof PR, Duff K, Davies P (2005) Cell-cycle reentry and cell death in transgenic mice expressing nonmutant human tau isoforms. J Neurosci Off J Soc Neurosci 25:5446–5454. https://doi.org/10.1523/JNEUROSCI.4637-04.2005
Article
CAS
Google Scholar
Andorfer C, Kress Y, Espinoza M, de Silva R, Tucker KL, Barde Y-A, Duff K, Davies P (2003) Hyperphosphorylation and aggregation of tau in mice expressing normal human tau isoforms. J Neurochem 86:582–590. https://doi.org/10.1046/j.1471-4159.2003.01879.x
Article
CAS
PubMed
Google Scholar
Ano Bom AP, Rangel LP, Costa DC, de Oliveira GA, Sanches D, Braga CA, Gava LM, Ramos CH, Cepeda AO, Stumbo AC, De Moura Gallo CV, Cordeiro Y, Silva JL (2012) Mutant p53 aggregates into prion-like amyloid oligomers and fibrils: implications for cancer. J Biol Chem 287:28152–28162. https://doi.org/10.1074/jbc.M112.340638
Article
CAS
PubMed
PubMed Central
Google Scholar
Ayed A, Mulder FA, Yi GS, Lu Y, Kay LE, Arrowsmith CH (2001) Latent and active p53 are identical in conformation. Nat Struct Biol 8:756–760. https://doi.org/10.1038/nsb0901-756
Article
CAS
PubMed
Google Scholar
Bargonetti J, Manfredi JJ, Chen X, Marshak DR, Prives C A proteolytic fragment from the central region of p53 has marked sequence-specific DNA-binding activity wlien generated from wild-type but not from oncogenic mutant p53 protein. Genes Dev. 1993;7(12B):2565-74. https://doi.org/10.1101/gad.7.12b.2565
Beaudoin GMJ, Lee S-H, Singh D, Yuan Y, Ng Y-G, Reichardt LF, Arikkath J (2012) Culturing pyramidal neurons from the early postnatal mouse hippocampus and cortex. Nat Protoc 7:1741–1754. https://doi.org/10.1038/nprot.2012.099
Article
CAS
PubMed
Google Scholar
Bell S, Klein C, Müller L, Hansen S, Buchner J (2002) p53 contains large unstructured regions in its native state. J Mol Biol 322:917–927. https://doi.org/10.1016/S0022-2836(02)00848-3
Article
CAS
PubMed
Google Scholar
Berger Z, Roder H, Hanna A, Carlson A, Rangachari V, Yue M, Wszolek Z, Ashe K, Knight J, Dickson D, Andorfer C, Rosenberry TL, Lewis J, Hutton M, Janus C (2007) Accumulation of pathological tau species and memory loss in a conditional model of tauopathy. J Neurosci Off J Soc Neurosci 27:3650–3662. https://doi.org/10.1523/JNEUROSCI.0587-07.2007
Article
CAS
Google Scholar
Billings LM, Oddo S, Green KN, McGaugh JL, LaFerla FM (2005) Intraneuronal Abeta causes the onset of early Alzheimer's disease-related cognitive deficits in transgenic mice. Neuron 45:675–688. https://doi.org/10.1016/j.neuron.2005.01.040
Article
CAS
PubMed
Google Scholar
Biza KV, Nastou KC, Tsiolaki PL, Mastrokalou CV, Hamodrakas SJ, Iconomidou VA (2017) The amyloid interactome: exploring protein aggregation. PLoS One 12:e0173163. https://doi.org/10.1371/journal.pone.0173163
Article
CAS
PubMed
PubMed Central
Google Scholar
Bourdon JC, Fernandes K, Murray-Zmijewski F, Liu G, Diot A, Xirodimas DP, Saville MK, Lane DP (2005) p53 isoforms can regulate p53 transcriptional activity. Genes Dev 19:2122–2137. https://doi.org/10.1101/gad.1339905
Article
CAS
PubMed
PubMed Central
Google Scholar
Brundin P, Melki R, Kopito R (2010) Prion-like transmission of protein aggregates in neurodegenerative diseases. Nat Rev Mol Cell Biol 11:301–307. https://doi.org/10.1038/nrm2873
Article
CAS
PubMed
PubMed Central
Google Scholar
Buizza L, Cenini G, Lanni C, Ferrari-Toninelli G, Prandelli C, Govoni S, Buoso E, Racchi M, Barcikowska M, Styczynska M, Szybinska A, Butterfield DA, Memo M, Uberti D (2012) Conformational altered p53 as an early marker of oxidative stress in Alzheimer's disease. PLoS One 7:e29789. https://doi.org/10.1371/journal.pone.0029789
Article
CAS
PubMed
PubMed Central
Google Scholar
Castillo-Carranza DL, Guerrero-Muñoz MJ, Sengupta U, Gerson JE, Kayed R (2018) α-Synuclein oligomers induce a unique toxic tau strain. Biol Psychiatry 84:499–508. https://doi.org/10.1016/j.biopsych.2017.12.018
Article
CAS
PubMed
PubMed Central
Google Scholar
Cenini G, Sultana R, Memo M, Butterfield DA (2008) Elevated levels of pro-apoptotic p53 and its oxidative modification by the lipid peroxidation product, HNE, in brain from subjects with amnestic mild cognitive impairment and Alzheimer's disease. J Cell Mol Med 12:987–994. https://doi.org/10.1111/j.1582-4934.2008.00163.x
Article
CAS
PubMed
PubMed Central
Google Scholar
Cho EC, Yen Y (2016) Novel regulators and molecular mechanisms of p53R2 and its disease relevance. Biochimie 123:81–84. https://doi.org/10.1016/j.biochi.2016.01.008
Article
CAS
PubMed
Google Scholar
Ciccia A, Elledge SJ (2010) The DNA damage response: making it safe to play with knives. Mol Cell 40:179–204. https://doi.org/10.1016/j.molcel.2010.09.019
Article
CAS
PubMed
PubMed Central
Google Scholar
Clavaguera F, Akatsu H, Fraser G, Crowther RA, Frank S, Hench J, Probst A, Winkler DT, Reichwald J, Staufenbiel M, Ghetti B, Goedert M, Tolnay M (2013) Brain homogenates from human tauopathies induce tau inclusions in mouse brain. Proc Natl Acad Sci U S A 110:9535–9540. https://doi.org/10.1073/pnas.1301175110
Article
PubMed
PubMed Central
Google Scholar
Clavaguera F, Bolmont T, Crowther RA, Abramowski D, Frank S, Probst A, Fraser G, Stalder AK, Beibel M, Staufenbiel M, Jucker M, Goedert M, Tolnay M (2009) Transmission and spreading of tauopathy in transgenic mouse brain. Nat Cell Biol 11:909–913. https://doi.org/10.1038/ncb1901
Article
CAS
PubMed
PubMed Central
Google Scholar
Clinton LK, Blurton-Jones M, Myczek K, Trojanowski JQ, LaFerla FM (2010) Synergistic interactions between Abeta, tau, and alpha-synuclein: acceleration of neuropathology and cognitive decline. J Neurosci 30:7281–7289. https://doi.org/10.1523/JNEUROSCI.0490-10.2010
Article
CAS
PubMed
PubMed Central
Google Scholar
Coppede F, Migliore L (2015) DNA damage in neurodegenerative diseases. Mutat Res 776:84–97. https://doi.org/10.1016/j.mrfmmm.2014.11.010
Article
CAS
PubMed
Google Scholar
Cotman C (1998) Apoptosis decision cascades and neuronal degeneration in Alzheimer’s disease. Neurobiol Aging 19:S29–S32
Article
CAS
PubMed
Google Scholar
Cotman C, Su J (1996) Mechanisms of neuronal death in Alzheimer's disease. Brain Pathol 6:493–506
Article
CAS
PubMed
Google Scholar
Cowan CM, Quraishe S, Mudher A (2012) What is the pathological significance of tau oligomers? Biochem Soc Trans 40:693–697. https://doi.org/10.1042/BST20120135
Article
CAS
PubMed
Google Scholar
Dasari AKR, Kayed R, Wi S, Lim KH (2019) Tau interacts with the C-terminal region of α-Synuclein, promoting formation of toxic aggregates with distinct molecular conformations. Biochemistry 58:2814–2821. https://doi.org/10.1021/acs.biochem.9b00215
Article
CAS
PubMed
Google Scholar
Dawson R, Muller L, Dehner A, Klein C, Kessler H, Buchner J (2003) The N-terminal domain of p53 is natively unfolded. J Mol Biol 332:1131–1141. https://doi.org/10.1016/j.jmb.2003.08.008
Article
CAS
PubMed
Google Scholar
de la Monte SM, Sohn YK, Wands JR (1997) Correlates of p53 and Fas (CD95)-mediated apoptosis in AD. J Neurol Sci 152:73–83
Article
PubMed
Google Scholar
Eftekharzadeh B, Daigle JG, Kapinos LE, Coyne A, Schiantarelli J, Carlomagno Y, Cook C, Miller SJ, Dujardin S, Amaral AS, Grima JC, Bennett RE, Tepper K, DeTure M, Vanderburg CR, Corjuc BT, DeVos SL, Gonzalez JA, Chew J, Vidensky S, Gage FH, Mertens J, Troncoso J, Mandelkow E, Salvatella X, Lim RYH, Petrucelli L, Wegmann S, Rothstein JD, Hyman BT (2018) Tau protein disrupts Nucleocytoplasmic transport in Alzheimer's disease. Neuron 99:925–940 e927. https://doi.org/10.1016/j.neuron.2018.07.039
Article
CAS
PubMed
PubMed Central
Google Scholar
El-Deiry WS, Kern SE, Pietenpo JA, Kinzler KW, Vogelstein B (1992) Definition of a consensus binding site for p53. Nature 1:45–49
CAS
Google Scholar
Falcon B, Cavallini A, Angers R, Glover S, Murray TK, Barnham L, Jackson S, O'Neill MJ, Isaacs AM, Hutton ML, Szekeres PG, Goedert M, Bose S (2015) Conformation determines the seeding potencies of native and recombinant tau aggregates. J Biol Chem 290:1049–1065. https://doi.org/10.1074/jbc.M114.589309
Article
CAS
PubMed
Google Scholar
Fan J, Dawson TM, Dawson VL (2017) Cell death mechanisms of Neurodegeneration. Adv Neurobiol 15:403–425. https://doi.org/10.1007/978-3-319-57193-5_16
Article
PubMed
Google Scholar
Finlay CA, Hinds PW, Levine AJ (1989) The p53 proto-oncogene can act as a suppressor of transformation. Cell 57:1083–1093
Article
CAS
PubMed
Google Scholar
Forget KJ, Tremblay G, Roucou X (2013) p53 aggregates penetrate cells and induce the co-aggregation of intracellular p53. PLoS One 8:e69242. https://doi.org/10.1371/journal.pone.0069242
Article
CAS
PubMed
PubMed Central
Google Scholar
Frost B, Hemberg M, Lewis J, Feany MB (2014) Tau promotes neurodegeneration through global chromatin relaxation. Nat Neurosci 17:357–366. https://doi.org/10.1038/nn.3639
Article
CAS
PubMed
PubMed Central
Google Scholar
Gerson JE, Sengupta U, Kayed R (2017) Tau oligomers as pathogenic seeds: preparation and propagation in vitro and in vivo. Methods Mol Biol 1523:141–157. https://doi.org/10.1007/978-1-4939-6598-4_9
Article
CAS
PubMed
Google Scholar
Ghag G, Bhatt N, Cantu DV, Guerrero-Munoz MJ, Ellsworth A, Sengupta U, Kayed R (2018) Soluble tau aggregates, not large fibrils, are the toxic species that display seeding and cross-seeding behavior. Protein Sci 27:1901–1909. https://doi.org/10.1002/pro.3499
Article
CAS
PubMed
PubMed Central
Google Scholar
Ghosh S, Ghosh D, Ranganathan S, Anoop A, SK P, Jha NN, Padinhateeri R, Maji SK (2014) Investigating the intrinsic aggregation potential of evolutionarily conserved segments in p53. Biochemistry 53:5995–6010. https://doi.org/10.1021/bi500825d
Article
CAS
PubMed
Google Scholar
Giannakakou P, Sackett DL, Ward Y, Webster K, Blagosklonny M, Fojo T (2000) P53 is associated with cellular microtubules and is transported to the nucleus by dynein. Nat Cell Biol 2:709–717
Article
CAS
PubMed
Google Scholar
Gilman CP, Chan SL, Guo Z, Zhu X, Greig N, Mattson MP (2003) p53 is present in synapses where it mediates mitochondrial dysfunction and synaptic degeneration in response to DNA damage, and oxidative and excitotoxic insults. NeuroMolecular Med 3:159–172. https://doi.org/10.1385/NMM:3:3:159
Article
CAS
PubMed
Google Scholar
Glenner GG, Wong CW (2012) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. 1984. Biochem Biophys Res Commun 425:534–539. https://doi.org/10.1016/j.bbrc.2012.08.020
Article
CAS
PubMed
Google Scholar
Guerrero-Muñoz MJ, Gerson J, Castillo-Carranza DL (2015) Tau oligomers: the toxic player at synapses in Alzheimer’s disease. Front Cell Neurosci 9. https://doi.org/10.3389/fncel.2015.00464
Guo J-P, Arai T, Miklossy J, McGeer PL (2006) AB and tau form soluble complexes that may promote self aggregation of both into the insoluble forms observed in Alzheimer’s disease. Proc Natl Acad Sci U S A 103:1953–1958
Article
CAS
PubMed
PubMed Central
Google Scholar
Higashimoto Y, Asanomi Y, Takakusagi S, Lewis MS, Uosaki K, Durell SR, Anderson CW, Appella E, Sakaguchi K (2006) Unfolding, aggregation, and amyloid formation by the tetramerization domain from mutant p53 associated with lung cancer. Biochemistry 45:1608–1619. https://doi.org/10.1021/bi051192j
Article
CAS
PubMed
Google Scholar
Hupp TR (1999) Regulation of p53 protein function through alterations in protein-folding pathways. Cell Mol Life Sci 55:88–95. https://doi.org/10.1007/s000180050272
Article
CAS
PubMed
Google Scholar
Iba M, McBride JD, Guo JL, Zhang B, Trojanowski JQ, Lee VM-Y (2015) Tau pathology spread in PS19 tau transgenic mice following locus coeruleus (LC) injections of synthetic tau fibrils is determined by the LC's afferent and efferent connections. Acta Neuropathol 130:349–362. https://doi.org/10.1007/s00401-015-1458-4
Article
CAS
PubMed
PubMed Central
Google Scholar
Ishimaru D, Andrade LR, Teixeira LS, Quesado PA, Maiolino LM, Lopez PM, Cordeiro Y, Costa LT, Heckl WM, Weissmüller G, Foguel D, Silva JL (2003) Fibrillar aggregates of the tumor suppressor p53 Core domain. Biochemistry 42:9022–9027
Article
CAS
PubMed
Google Scholar
Iwabuchi K, Li B, Massa HF, Trask BJ, Date T, Fields S (1998) Stimulation of p53-mediated transcriptional activation by the p53-binding proteins, 53BP1 and 53BP2. J Biol Chem 273:26061–26068. https://doi.org/10.1074/jbc.273.40.26061
Article
CAS
PubMed
Google Scholar
Jeppesen DK, Bohr VA, Stevnsner T (2011) DNA repair deficiency in neurodegeneration. Prog Neurobiol 94:166–200. https://doi.org/10.1016/j.pneurobio.2011.04.013
Article
CAS
PubMed
PubMed Central
Google Scholar
Joerger AC, Fersht AR (2008) Structural biology of the tumor suppressor p53. Annu Rev Biochem 77:557–582. https://doi.org/10.1146/annurev.biochem.77.060806.091238
Article
CAS
PubMed
Google Scholar
Kamada R, Toguchi Y, Nomura T, Imagawa T, Sakaguchi K (2016) Tetramer formation of tumor suppressor protein p53: structure, function, and applications. Biopolymers 106:598–612. https://doi.org/10.1002/bip.22772
Article
CAS
PubMed
Google Scholar
Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW (1991) Participation of p53 protein in the cellular response to DNA damage. Cancer Res 51:6304–6311
CAS
PubMed
Google Scholar
Kaufman SK, Sanders DW, Thomas TL, Ruchinskas AJ, Vaquer-Alicea J, Sharma AM, Miller TM, Diamond MI (2016) Tau prion strains dictate patterns of cell pathology, progression rate, and regional vulnerability in vivo. Neuron 92:796–812. https://doi.org/10.1016/j.neuron.2016.09.055
Article
CAS
PubMed
PubMed Central
Google Scholar
Kayed R (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300(5618):486–489
Article
CAS
PubMed
Google Scholar
Kayed R, Head E, Sarsoza F, Saing T, Cotman CW, Necula M, Margol L, Wu J, Breydo L, Thompson JL, Rasool S, Gurlo T, Butler P, Glabe CG (2007) Fibril specific, conformation dependent antibodies recognize a generic epitope common to amyloid fibrils and fibrillar oligomers that is absent in prefibrillar oligomers. Mol Neurodegener 2:18. https://doi.org/10.1186/1750-1326-2-18
Article
CAS
PubMed
PubMed Central
Google Scholar
Kenzelmann Broz D, Attardi LD (2010) In vivo analysis of p53 tumor suppressor function using genetically engineered mouse models. Carcinogenesis 31:1311–1318. https://doi.org/10.1093/carcin/bgp331
Article
CAS
PubMed
Google Scholar
Kitamura Y, Shimohama S, Kamoshima W, Matsuoka Y, Nomura Y, Taniguchi T (1997) Changes of P53 in the brains of patients with Alzheimer’s disease. Biochem Biophys Res Commun 232:418–421
Article
CAS
PubMed
Google Scholar
Ko LJ, Prives C (1996) p53: puzzle and paradigm. Genes Dev 10:1054–1072
Article
CAS
PubMed
Google Scholar
Kopeikina KJ, Carlson GA, Pitstick R, Ludvigson AE, Peters A, Luebke JI, Koffie RM, Frosch MP, Hyman BT, Spires-Jones TL (2011) Tau accumulation causes mitochondrial distribution deficits in neurons in a mouse model of tauopathy and in human Alzheimer’s disease brain. Am J Pathol 179:2071–2082. https://doi.org/10.1016/j.ajpath.2011.07.004
Article
CAS
PubMed
PubMed Central
Google Scholar
Kosik KS, Joachim CL, Selkoe DJ (1986) Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc Natl Acad Sci U S A 83:4044–4048
Article
CAS
PubMed
PubMed Central
Google Scholar
Lane DP (1992) p53, Guardian of the genome. Nature 358:15–16
Article
CAS
PubMed
Google Scholar
Lane DP, Benchimol S (1990) p53: oncogene or anti-oncogene? Genes Dev 4:1–8
Article
CAS
PubMed
Google Scholar
Lanni C, Racchi M, Mazzini G, Ranzenigo A, Polotti R, Sinforiani E, Olivari L, Barcikowska M, Styczynska M, Kuznicki J, Szybinska A, Govoni S, Memo M, Uberti D (2008) Conformationally altered p53: a novel Alzheimer’s disease marker? Mol Psychiatry 13:641–647. https://doi.org/10.1038/sj.mp.4002060
Article
CAS
PubMed
Google Scholar
Lasagna-Reeves CA, Castillo-Carranza DL, Guerrero-Muoz MJ, Jackson GR, Kayed R (2010) Preparation and characterization of neurotoxic tau oligomers. Biochemistry 49:10039–10041. https://doi.org/10.1021/bi1016233
Article
CAS
PubMed
Google Scholar
Lasagna-Reeves CA, Castillo-Carranza DL, Sengupta U, Sarmiento J, Troncoso J, Jackson GR, Kayed R (2012) Identification of oligomers at early stages of tau aggregation in Alzheimer’s disease. FASEB J 26:1946–1959. https://doi.org/10.1096/fj.11-199851
Article
CAS
PubMed
PubMed Central
Google Scholar
Lasagna-Reeves CA, Clos AL, Castillo-Carranza D, Sengupta U, Guerrero-Munoz M, Kelly B, Wagner R, Kayed R (2013) Dual role of p53 amyloid formation in cancer; loss of function and gain of toxicity. Biochem Biophys Res Commun 430:963–968. https://doi.org/10.1016/j.bbrc.2012.11.130
Article
CAS
PubMed
Google Scholar
Lasagna-Reeves CAK, R. (2013) Molecular mechanisms of amyloid oligomers toxicity. J Alzheimers Dis 33:S67–S78
PubMed
Google Scholar
Lassmann H, Bancher C, Breitschopf H, Wegiel J, Bobinski M, Jellinger K, Wisniewski H (1995) Cell death in Alzheimer’s disease evaluated by DNA fragmentation in situ. Acta Neuropathol 89:35–41
Article
CAS
PubMed
Google Scholar
Lee AS, Galea C, DiGiammarino EL, Jun B, Murti G, Ribeiro RC, Zambetti G, Schultz CP, Kriwacki RW (2003) Reversible amyloid formation by the p53 Tetramerization domain and a Cancer-associated mutant. J Mol Biol 327:699–709. https://doi.org/10.1016/s0022-2836(03)00175-x
Article
CAS
PubMed
Google Scholar
Lee H, Mok KH, Muhandiram R, Park KH, Suk JE, Kim DH, Chang J, Sung YC, Choi KY, Han KH (2000) Local structural elements in the mostly unstructured transcriptional activation domain of human p53. J Biol Chem 275:29426–29432. https://doi.org/10.1074/jbc.M003107200
Article
CAS
PubMed
Google Scholar
Lee S, Woo T, Lee SJ, Kim JS, Ha NC, Park BJ (2013) Extracellular p53 fragment reenters KRas mutated cells through the caveolin1 dependent early endosomal system. Oncotarget 4:2523–2531
Article
PubMed
PubMed Central
Google Scholar
Lewis J, Dickson DW, Lin WL, Chisholm L, Corral A, Jones G, Yen SH, Sahara N, Skipper L, Yager D, Eckman C, Hardy J, Hutton M, McGowan E (2001) Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science 293:1487–1491. https://doi.org/10.1126/science.1058189
Article
CAS
PubMed
Google Scholar
Lo Cascio F, Kayed R (2018) Azure C targets and modulates toxic tau oligomers. ACS Chem Neurosci 9:1317–1326. https://doi.org/10.1021/acschemneuro.7b00501
Article
CAS
PubMed
Google Scholar
Lo Cascio F, Puangmalai N, Ellsworth A, Bucchieri F, Pace A, Palumbo Piccionello A, Kayed R (2019) Toxic tau oligomers modulated by novel Curcumin derivatives. Sci Rep 9:19011. https://doi.org/10.1038/s41598-019-55419-w
Article
CAS
PubMed
PubMed Central
Google Scholar
Löbrich M, Shibata A, Beucher A, Fisher A, Ensminger M, Goodarzi AA, Barton O, Jeggo PA (2010) gammaH2AX foci analysis for monitoring DNA double-strand break repair: strengths, limitations and optimization. Cell Cycle (Georgetown, Tex) 9:662–669. https://doi.org/10.4161/cc.9.4.10764
Article
Google Scholar
Madabhushi R, Pan L, Tsai LH (2014) DNA damage and its links to neurodegeneration. Neuron 83:266–282. https://doi.org/10.1016/j.neuron.2014.06.034
Article
CAS
PubMed
PubMed Central
Google Scholar
Maeda S, Sahara N, Saito Y, Murayama M, Yoshiike Y, Kim H, Miyasaka T, Murayama S, Ikai A, Takashima A (2007) Granular tau oligomers as intermediates of tau filaments. Biochemistry 46:3856–3861. https://doi.org/10.1021/bi061359o
Article
CAS
PubMed
Google Scholar
McLean CA, Cherny RA, Fraser FW, Fuller SJ, Smith MJ, Beyreuther K, Bush AI, Masters CL (1999) Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann Neurol 46:860–866. https://doi.org/10.1002/1531-8249(199912)46:6<860::aid-ana8>3.0.co;2-m
Article
CAS
PubMed
Google Scholar
McShea A, Wahl AF, Smith MA (1999) Re-entry into the cell cycle: a mechanism for neurodegeneration in Alzheimer disease. Med Hypotheses 52:525–527. https://doi.org/10.1054/mehy.1997.0680
Article
CAS
PubMed
Google Scholar
Mee T, Okorokov AL, Metcalfe S, Milner J (1999) Proteolytic cleavage of p53 mutants in response to mismatched DNA. Br J Cancer 81:212–218. https://doi.org/10.1038/sj.bjc.6690679
Article
CAS
PubMed
PubMed Central
Google Scholar
Moll UM, LaQuaglia M, Benard J, Riou G (1995) Wildtype p53 protein undergoes cytoplasmic sequestration in undifferentiated neuroblastomas but not in differentiated tumors. Proc Natl Acad Sci U S A 92:4407–4411
Article
CAS
PubMed
PubMed Central
Google Scholar
Moll UM, Ostermeyer AG, Haladay R, Winkfield B, Frazier M, Zambetti G (1996) Cytoplasmic sequestration of WT p53 impairs G1 checkpoint after DNA damage. Mol Cell Biol 16:1126–1137
Article
CAS
PubMed
PubMed Central
Google Scholar
Momand J, Zambetti GP, Olson DC, George D, Levine AJ (1992) The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69:1237–1245. https://doi.org/10.1016/0092-8674(92)90644-r
Article
CAS
PubMed
Google Scholar
Montalbano M, McAllen S, Sengupta U, Puangmalai N, Bhatt N, Ellsworth A, Kayed R (2019) Tau oligomers mediate aggregation of RNA-binding proteins Musashi1 and Musashi2 inducing Lamin alteration. Aging Cell 18:e13035. https://doi.org/10.1111/acel.13035
Article
CAS
PubMed
PubMed Central
Google Scholar
Morales R, Green KM, Soto C (2009) Cross currents in protein Misfolding disorders: interactions and therapy. CNS Neurol Disord Drug Targets 8:363–371
Article
CAS
PubMed
PubMed Central
Google Scholar
Morales R, Moreno-Gonzalez I, Soto C (2013) Cross-seeding of misfolded proteins: implications for etiology and pathogenesis of protein misfolding diseases. PLoS Pathog 9:e1003537. https://doi.org/10.1371/journal.ppat.1003537
Article
CAS
PubMed
PubMed Central
Google Scholar
Mullaart E, Boerrigter ME, Ravid R, Swaab DF, Vijg J (1990) Increased levels of DNA breaks in cerebral cortex of Alzheimer’s disease patients. Neurobiol Aging 11:169–173. https://doi.org/10.1016/0197-4580(90)90542-8
Article
CAS
PubMed
Google Scholar
Ohyagi Y, Asahara H, Chui D, Tsuruta Y, Sakae N, Miyoshi K, Yamada T, Kikuchi H, Taniwaki T, Murai H, Ikezoe K, Furuya H, Kawarabayashi T, Shoji M, Checler F, Iwaki T, Makifuchi T, Takeda K, Kira J, Tabira T (2004) Intracellular AB42 activates p53 promoter: a pathway to neurodegeneration in Alzheimer’s disease. FASEB J:2005;19(2):255-57. https://doi.org/10.1096/fj.04-2637fje
Oldfield CJ, Meng J, Yang JY, Yang MQ, Uversky VN, Dunker AK (2008) Flexible nets: disorder and induced fit in the associations of p53 and 14-3-3 with their partners. BMC Genomics 9(Suppl 1):S1. https://doi.org/10.1186/1471-2164-9-S1-S1
Article
CAS
PubMed
PubMed Central
Google Scholar
Oliner JD, Kinzler KW, Meltzer PS, George DL, Vogelstein B (1992) Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 358:80–83. https://doi.org/10.1038/358080a0
Article
CAS
PubMed
Google Scholar
Paonessa F, Evans LD, Solanki R, Larrieu D, Wray S, Hardy J, Jackson SP, Livesey FJ (2019) Microtubules deform the nuclear membrane and disrupt Nucleocytoplasmic transport in tau-mediated Frontotemporal dementia. Cell Rep 26:582–593 e585. https://doi.org/10.1016/j.celrep.2018.12.085
Article
CAS
PubMed
PubMed Central
Google Scholar
Puangmalai N, Bhatt N, Montalbano M, Sengupta U, Gaikwad S, Ventura F, McAllen S, Ellsworth A, Garcia S, Kayed R (2020) Internalization mechanisms of brain-derived tau oligomers from patients with Alzheimer’s disease, progressive supranuclear palsy and dementia with Lewy bodies. Cell Death Dis 11:314. https://doi.org/10.1038/s41419-020-2503-3
Article
CAS
PubMed
PubMed Central
Google Scholar
Rangel LP, Costa DC, Vieira TC, Silva JL (2014) The aggregation of mutant p53 produces prion-like properties in cancer. Prion 8:75–84. https://doi.org/10.4161/pri.27776
Article
CAS
PubMed
PubMed Central
Google Scholar
Rass U, Ahel I, West SC (2007) Defective DNA repair and neurodegenerative disease. Cell 130:991–1004. https://doi.org/10.1016/j.cell.2007.08.043
Article
CAS
PubMed
Google Scholar
Reddy PH (2011) Abnormal tau, mitochondrial dysfunction, impaired axonal transport of mitochondria, and synaptic deprivation in Alzheimer's disease. Brain Res 1415:136–148. https://doi.org/10.1016/j.brainres.2011.07.052
Article
CAS
PubMed
PubMed Central
Google Scholar
Rigacci S, Bucciantini M, Relini A, Pesce A, Gliozzi A, Berti A, Stefani M (2008) The (1-63) region of the p53 transactivation domain aggregates in vitro into cytotoxic amyloid assemblies. Biophys J 94:3635–3646. https://doi.org/10.1529/biophysj.107.122283
Article
CAS
PubMed
PubMed Central
Google Scholar
Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273:5858–5868. https://doi.org/10.1074/jbc.273.10.5858
Article
CAS
PubMed
Google Scholar
Rossi G, Dalpra L, Crosti F, Lissoni S, Sciacca FL, Catania M, Di Fede G, Mangieri M, Giaccone G, Croci D, Tagliavini F (2008) A new function of microtubule-associated protein tau: involvement in chromosome stability. Cell Cycle 7:1788–1794. https://doi.org/10.4161/cc.7.12.6012
Article
CAS
PubMed
Google Scholar
Sahara N, DeTure M, Ren Y, Ebrahim A-S, Kang D, Knight J, Volbracht C, Pedersen JT, Dickson DW, Yen S-H, Lewis J (2013) Characteristics of TBS-extractable hyperphosphorylated tau species: aggregation intermediates in rTg4510 mouse brain. J Alzheimers Dis 33:249–263. https://doi.org/10.3233/JAD-2012-121093
Article
CAS
PubMed
PubMed Central
Google Scholar
Sanders DW, Kaufman SK, DeVos SL, Sharma AM, Mirbaha H, Li A, Barker SJ, Foley AC, Thorpe JR, Serpell LC, Miller TM, Grinberg LT, Seeley WW, Diamond MI (2014) Distinct tau prion strains propagate in cells and mice and define different tauopathies. Neuron 82:1271–1288. https://doi.org/10.1016/j.neuron.2014.04.047
Article
CAS
PubMed
PubMed Central
Google Scholar
Sayan BS, Sayan AE, Knight RA, Melino G, Cohen GM (2006) p53 is cleaved by caspases generating fragments localizing to mitochondria. J Biol Chem 281:13566–13573. https://doi.org/10.1074/jbc.M512467200
Article
CAS
PubMed
Google Scholar
Sengupta U, Guerrero-Muñoz MJ, Castillo-Carranza DL, Lasagna-Reeves CA, Gerson JE, Paulucci-Holthauzen AA, Krishnamurthy S, Farhed M, Jackson GR, Kayed R (2015) Pathological interface between oligomeric alpha-synuclein and tau in synucleinopathies. Biol Psychiatry 78:672–683. https://doi.org/10.1016/j.biopsych.2014.12.019
Article
CAS
PubMed
Google Scholar
Silva AR, Santos AC, Farfel JM, Grinberg LT, Ferretti RE, Campos AH, Cunha IW, Begnami MD, Rocha RM, Carraro DM, de Braganca Pereira CA, Jacob-Filho W, Brentani H (2014) Repair of oxidative DNA damage, cell-cycle regulation and neuronal death may influence the clinical manifestation of Alzheimer's disease. PLoS One 9:e99897. https://doi.org/10.1371/journal.pone.0099897
Article
CAS
PubMed
PubMed Central
Google Scholar
Simpson JE, Ince PG, Matthews FE, Shaw PJ, Heath PR, Brayne C, Garwood C, Higginbottom A, Wharton SB, Function MRCC, Ageing Neuropathology Study G (2015) A neuronal DNA damage response is detected at the earliest stages of Alzheimer's neuropathology and correlates with cognitive impairment in the Medical Research Council's cognitive function and ageing study ageing brain cohort. Neuropathol Appl Neurobiol 41:483–496. https://doi.org/10.1111/nan.12202
Article
CAS
PubMed
PubMed Central
Google Scholar
Sola M, Magrin C, Pedrioli G, Pinton S, Salvadè A, Papin S, Paganetti P (2020) Tau affects P53 function and cell fate during the DNA damage response. Commun Biol 3:1–15. https://doi.org/10.1038/s42003-020-0975-4
Article
Google Scholar
Spires TL, Orne JD, SantaCruz K, Pitstick R, Carlson GA, Ashe KH, Hyman BT (2006) Region-specific dissociation of neuronal loss and neurofibrillary pathology in a mouse model of tauopathy. Am J Pathol 168:1598–1607. https://doi.org/10.2353/ajpath.2006.050840
Article
CAS
PubMed
PubMed Central
Google Scholar
Steinerman JR, Irizarry M, Scarmeas N, Raju S, Brandt J, Albert M, Blacker D, Hyman B, Stern Y (2008) Distinct pools of beta-amyloid in Alzheimer disease-affected brain: a clinicopathologic study. Arch Neurol 65:906–912. https://doi.org/10.1001/archneur.65.7.906
Article
PubMed
PubMed Central
Google Scholar
Sultan A, Nesslany F, Violet M, Begard S, Loyens A, Talahari S, Mansuroglu Z, Marzin D, Sergeant N, Humez S, Colin M, Bonnefoy E, Buee L, Galas MC (2011) Nuclear tau, a key player in neuronal DNA protection. J Biol Chem 286:4566–4575. https://doi.org/10.1074/jbc.M110.199976
Article
CAS
PubMed
Google Scholar
Tepper K, Biernat J, Kumar S, Wegmann S, Timm T, Hübschmann S, Redecke L, Mandelkow E-M, Müller DJ, Mandelkow E (2014) Oligomer formation of tau protein Hyperphosphorylated in cells. J Biol Chem 289:34389–34407. https://doi.org/10.1074/jbc.M114.611368
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsigelny IF, Crews L, Desplats P, Shaked GM, Sharikov Y, Mizuno H, Spencer B, Rockenstein E, Trejo M, Platoshyn O, Yuan JX, Masliah E (2008) Mechanisms of hybrid oligomer formation in the pathogenesis of combined Alzheimer's and Parkinson's diseases. PLoS One 3:e3135. https://doi.org/10.1371/journal.pone.0003135
Article
CAS
PubMed
PubMed Central
Google Scholar
Uberti D, Lanni C, Carsana T, Francisconi S, Missale C, Racchi M, Govoni S, Memo M (2006) Identification of a mutant-like conformation of p53 in fibroblasts from sporadic Alzheimer’s disease patients. Neurobiol Aging 27:1193–1201. https://doi.org/10.1016/j.neurobiolaging.2005.06.013
Article
CAS
PubMed
Google Scholar
Uversky VN, Oldfield CJ, Dunker AK (2008) Intrinsically disordered proteins in human diseases: introducing the D2 concept. Annu Rev Biophys 37:215–246. https://doi.org/10.1146/annurev.biophys.37.032807.125924
Article
CAS
PubMed
Google Scholar
Vasconcelos B, Stancu IC, Buist A, Bird M, Wang P, Vanoosthuyse A, Van Kolen K, Verheyen A, Kienlen-Campard P, Octave JN, Baatsen P, Moechars D, Dewachter I (2016) Heterotypic seeding of tau fibrillization by pre-aggregated Abeta provides potent seeds for prion-like seeding and propagation of tau-pathology in vivo. Acta Neuropathol 131:549–569. https://doi.org/10.1007/s00401-015-1525-x
Article
CAS
PubMed
PubMed Central
Google Scholar
Vogelstein B, Lane DP, Levine AJ (2000) Surfing the p53 network. Nature 408:307–310
Article
CAS
PubMed
Google Scholar
Vulliet R, Halloran SM, Braun RK, Smith AJ, Lee G (1992) Proline-directed phosphorylation of human tau protein. J Biol Chem 267:22570–22574
CAS
PubMed
Google Scholar
Wiech M, Olszewski MB, Tracz-Gaszewska Z, Wawrzynow B, Zylicz M, Zylicz A (2012) Molecular mechanism of mutant p53 stabilization: the role of HSP70 and MDM2. PLoS One 7:e51426. https://doi.org/10.1371/journal.pone.0051426
Article
CAS
PubMed
PubMed Central
Google Scholar
Wolff A, Technau A, Ihling C, Technau-Ihling K, Erber R, Bosch FX, Brandner G (2001) Evidence that wild-type p53 in neuroblastoma cells is in a conformation refractory to integration into the transcriptional complex. Oncogene 20:1307–1317. https://doi.org/10.1038/sj.onc.1204251
Article
CAS
PubMed
Google Scholar
Wolff M, Mittag JJ, Herling TW, Genst ED, Dobson CM, Knowles TP, Braun D, Buell AK (2016) Quantitative thermophoretic study of disease-related protein aggregates. Sci Rep 6:22829. https://doi.org/10.1038/srep22829
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu JW, Hussaini SA, Bastille IM, Rodriguez GA, Mrejeru A, Rilett K, Sanders DW, Cook C, Fu H, Boonen RA, Herman M, Nahmani E, Emrani S, Figueroa YH, Diamond MI, Clelland CL, Wray S, Duff KE (2016) Neuronal activity enhances tau propagation and tau pathology in vivo. Nat Neurosci 19:1085–1092. https://doi.org/10.1038/nn.4328
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu J, Reumers J, Couceiro JR, De Smet F, Gallardo R, Rudyak S, Cornelis A, Rozenski J, Zwolinska A, Marine JC, Lambrechts D, Suh YA, Rousseau F, Schymkowitz J (2011) Gain of function of mutant p53 by coaggregation with multiple tumor suppressors. Nat Chem Biol 7:285–295. https://doi.org/10.1038/nchembio.546
Article
CAS
PubMed
Google Scholar
Yang Y, Geldmacher DS, Herrup K (2001) DNA replication precedes neuronal cell death in Alzheimer’s disease. J Neurosci Off J Soc Neurosci 21:2661–2668
Article
CAS
Google Scholar
Yonish-Rouach E, Grunwald D, Wilder S, Kimchi A, May E, Lawrence JJ, May P, Oren M (1993) p53-mediated cell death: relationship to cell cycle control. Mol Cell Biol 13:1415–1423. https://doi.org/10.1128/mcb.13.3.1415
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang P, Kishimoto Y, Grammatikakis I, Gottimukkala K, Cutler RG, Zhang S, Abdelmohsen K, Bohr VA, Misra Sen J, Gorospe M, Mattson MP (2019) Senolytic therapy alleviates Aβ-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer’s disease model. Nat Neurosci 22:719–728. https://doi.org/10.1038/s41593-019-0372-9
Article
CAS
PubMed
PubMed Central
Google Scholar