(2016) World Alzheimer Report 2016. http://www.alz.co.uk/research/WorldAlzheimerReport2016.pdf
DeTure MA, Dickson DW (2019) The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener 14:32. https://doi.org/10.1186/s13024-019-0333-5
Article
PubMed
PubMed Central
Google Scholar
Mo J-J, Li J-Y, Yang Z, Liu Z, Feng J-S (2017) Efficacy and safety of anti-amyloid-beta immunotherapy for Alzheimer’s disease: a systematic review and network meta-analysis. Ann Clin Transl Neurol 4:931–942. https://doi.org/10.1002/acn3.469
Article
PubMed
PubMed Central
CAS
Google Scholar
Piton M, Hirtz C, Desmetz C, Milhau J, Lajoix AD, Bennys K, Lehmann S, Gabelle A (2018) Alzheimer’s disease: advances in drug development. J Alzheimers Dis 65:3–13. https://doi.org/10.3233/JAD-180145
Article
PubMed
Google Scholar
Sevigny J, Chiao P, Bussière T, Weinreb PH, Williams L, Maier M, Dunstan R, Salloway S, Chen T, Ling Y, O’Gorman J, Qian F et al (2016) The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature 537:50–56. https://doi.org/10.1038/nature19323
Article
PubMed
CAS
Google Scholar
Paushter DH, Du H, Feng T, Hu F (2018) The lysosomal function of progranulin, a guardian against neurodegeneration. Acta Neuropathol 136:1–17. https://doi.org/10.1007/S00401-018-1861-8
Article
CAS
Google Scholar
Daniel R, He Z, Carmichael KP, Halper J, Bateman A (2000) Cellular localization of gene expression for progranulin. J Histochem Cytochem 48:999–1009. https://doi.org/10.1177/002215540004800713
Article
PubMed
CAS
Google Scholar
Bateman A, Belcourt D, Bennett H, Lazure C, Solomon S (1990) Granulins, a novel class of peptide from leukocytes. Biochem Biophys Res Commun 173:1161–1168. https://doi.org/10.1016/S0006-291X(05)80908-8
Article
CAS
Google Scholar
Bossu P, Salani F, Alberici A, Archetti S, Bellelli G, Galimberti D, Scarpini E, Spalletta G, Caltagirone C, Padovani A, Borroni B (2011) Loss of function mutations in the progranulin gene are related to pro-inflammatory cytokine dysregulation in frontotemporal lobar degeneration patients. J Neuroinflammation 8:65. https://doi.org/10.1186/1742-2094-8-65
Article
PubMed
PubMed Central
CAS
Google Scholar
Martens LH, Zhang J, Barmada SJ, Zhou P, Kamiya S, Sun B, Min S-W, Gan L, Finkbeiner S, Huang EJ, Farese RVJ (2012) Progranulin deficiency promotes neuroinflammation and neuron loss following toxin-induced injury. J Clin Invest 122:3955–3959. https://doi.org/10.1172/JCI63113
Article
PubMed
PubMed Central
CAS
Google Scholar
Van Damme P, Van Hoecke A, Lambrechts D, Vanacker P, Bogaert E, van Swieten J, Carmeliet P, Van Den Bosch L, Robberecht W (2008) Progranulin functions as a neurotrophic factor to regulate neurite outgrowth and enhance neuronal survival. J Cell Biol 181:37–41. https://doi.org/10.1083/jcb.200712039
Article
PubMed
PubMed Central
CAS
Google Scholar
Gass J, Lee WC, Cook C, Finch N, Stetler C, Jansen-West K, Lewis J, Link CD, Rademakers R, Nykjaer A, Petrucelli L (2012) Progranulin regulates neuronal outgrowth independent of sortilin. Mol Neurodegener 7:33. https://doi.org/10.1186/1750-1326-7-33
Article
PubMed
PubMed Central
CAS
Google Scholar
Tanaka Y, Matsuwaki T, Yamanouchi K, Nishihara M (2013) Increased lysosomal biogenesis in activated microglia and exacerbated neuronal damage after traumatic brain injury in progranulin-deficient mice. Neuroscience 250:8–19. https://doi.org/10.1016/j.neuroscience.2013.06.049
Article
CAS
Google Scholar
Tanaka Y, Suzuki G, Matsuwaki T, Hosokawa M, Serrano G, Beach TG, Yamanouchi K, Hasegawa M, Nishihara M (2017) Progranulin regulates lysosomal function and biogenesis through acidification of lysosomes. Hum Mol Genet 26:969–988. https://doi.org/10.1093/hmg/ddx011
Article
PubMed
CAS
Google Scholar
Baker M, Mackenzie IR, Pickering-Brown SM, Gass J, Rademakers R, Lindholm C, Snowden J, Adamson J, Sadovnick AD, Rollinson S, Cannon A, Dwosh E et al (2006) Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 442:916–919. https://doi.org/10.1038/nature05016
Article
CAS
Google Scholar
Mackenzie IRA (2007) The neuropathology and clinical phenotype of FTD with progranulin mutations. Acta Neuropathol 114:49–54. https://doi.org/10.1007/s00401-007-0223-8
Article
PubMed
Google Scholar
Ma Y, Matsuwaki T, Yamanouchi K, Nishihara M (2017) Involvement of progranulin in modulating neuroinflammatory responses but not neurogenesis in the hippocampus of aged mice. Exp Gerontol 95:1–8. https://doi.org/10.1016/j.exger.2017.05.003
Article
PubMed
CAS
Google Scholar
Arrant AE, Filiano AJ, Patel AR, Hoffmann MQ, Boyle NR, Kashyap SN, Onyilo VC, Young AH, Roberson ED (2018) Reduction of microglial progranulin does not exacerbate pathology or behavioral deficits in neuronal progranulin-insufficient mice. Neurobiol Dis 124:152–162. https://doi.org/10.1016/j.nbd.2018.11.011
Article
PubMed
CAS
Google Scholar
Minami SS, Min S-W, Krabbe G, Wang C, Zhou Y, Asgarov R, Li Y, Martens LH, Elia LP, Ward ME, Mucke L, Farese RVJ, Gan L (2014) Progranulin protects against amyloid beta deposition and toxicity in Alzheimer’s disease mouse models. Nat Med 20:1157–1164. https://doi.org/10.1038/nm.3672
Article
PubMed
PubMed Central
CAS
Google Scholar
Roberson ED, Filiano AJ, Martens LH, Young AH, Warmus BA, Zhou P, Diaz-Ramirez G, Jiao J, Zhang Z, Huang EJ, Gao FB, Farese RV (2013) Dissociation of frontotemporal dementia-related deficits and neuroinflammation in progranulin haploinsufficient mice. Ann Intern Med 158:5352–5362. https://doi.org/10.1523/JNEUROSCI.6103-11.2013
Article
CAS
Google Scholar
Takahashi H, Klein ZA, Bhagat SM, Kaufman AC, Kostylev MA, Ikezu T, Strittmatter SM (2017) Opposing effects of progranulin deficiency on amyloid and tau pathologies via microglial TYROBP network. Acta Neuropathol 133:785–807. https://doi.org/10.1007/s00401-017-1668-z
Article
PubMed
PubMed Central
CAS
Google Scholar
Yin F, Dumont M, Banerjee R, Ma Y, Li H, Lin MT, Beal MF, Nathan C, Thomas B, Ding A (2010) Behavioral deficits and progressive neuropathology in progranulin-deficient mice: a mouse model of frontotemporal dementia. FASEB J 24:4639–4647. https://doi.org/10.1096/fj.10-161471
Article
PubMed
PubMed Central
CAS
Google Scholar
Arrant AE, Filiano AJ, Unger DE, Young AH, Roberson ED (2017) Restoring neuronal progranulin reverses deficits in a mouse model of frontotemporal dementia. Brain 140:1447–1465. https://doi.org/10.1093/brain/awx060
Article
PubMed
PubMed Central
Google Scholar
Ward ME, Chen R, Huang H-Y, Ludwig C, Telpoukhovskaia M, Taubes A, Boudin H, Minami SS, Reichert M, Albrecht P, Gelfand JM, Cruz-Herranz A et al (2012) Possible involvement of lysosomal dysfunction in pathological changes of the brain in aged progranulin-deficient mice. Acta Neuropathol 287:32298–32306. https://doi.org/10.1126/scitranslmed.aah5642
Article
CAS
Google Scholar
Arrant AE, Onyilo VC, Unger DE, Roberson ED (2018) Progranulin gene therapy improves Lysosomal dysfunction and microglial pathology associated with Frontotemporal dementia and neuronal Ceroid Lipofuscinosis. J Neurosci 38:2341–2358. https://doi.org/10.1523/JNEUROSCI.3081-17.2018
Article
PubMed
PubMed Central
CAS
Google Scholar
Van Kampen JM, Baranowski D, Kay DG (2014) Progranulin gene delivery protects dopaminergic neurons in a mouse model of Parkinson’s disease. PLoS One 9(5);e97032. https://doi.org/10.1371/journal.pone.0097032
Article
CAS
Google Scholar
Van Kampen JM, Kay DG (2017) Progranulin gene delivery reduces plaque burden and synaptic atrophy in a mouse model of Alzheimer’s disease. PLoS One 12:(8):e0182896. https://doi.org/10.1371/journal.pone.0182896
Article
CAS
Google Scholar
Kamalainen A, Viswanathan J, Natunen T, Helisalmi S, Kauppinen T, Pikkarainen M, Pursiheimo J-P, Alafuzoff I, Kivipelto M, Haapasalo A, Soininen H, Herukka S-K, Hiltunen M (2013) GRN variant rs5848 reduces plasma and brain levels of granulin in Alzheimer’s disease patients. J Alzheimers Dis 33:23–27. https://doi.org/10.3233/JAD-2012-120946
Article
PubMed
CAS
Google Scholar
Morenas-Rodriguez E, Cervera-Carles L, Vilaplana E, Alcolea D, Carmona-Iragui M, Dols-Icardo O, Ribosa-Nogue R, Munoz-Llahuna L, Sala I, Belen Sanchez-Saudinos M, Blesa R, Clarimon J et al (2016) Progranulin protein levels in cerebrospinal fluid in primary neurodegenerative dementias. J Alzheimers Dis 50:539–546. https://doi.org/10.3233/JAD-150746
Article
PubMed
CAS
Google Scholar
Suarez-Calvet M, Capell A, Araque Caballero MA, Morenas-Rodriguez E, Fellerer K, Franzmeier N, Kleinberger G, Eren E, Deming Y, Piccio L, Karch CM et al (2018) CSF progranulin increases in the course of Alzheimer’s disease and is associated with sTREM2, neurodegeneration and cognitive decline. EMBO Mol med 10:(12). https://doi.org/10.15252/emmm.201809712
Article
CAS
Google Scholar
Gliebus G, Rosso A, Lippa CF (2009) Progranulin and beta-amyloid distribution: a case report of the brain from preclinical PS-1 mutation carrier. Am J Alzheimers Dis Other Dement 24:456–460. https://doi.org/10.1177/1533317509346209
Article
Google Scholar
Gowrishankar S, Yuan P, Wu Y, Schrag M, Paradise S, Grutzendler J, De Camilli P, Ferguson SM (2015) Massive accumulation of luminal protease-deficient axonal lysosomes at Alzheimer’s disease amyloid plaques. Proc Natl Acad Sci U S A 112:E3699–E3708. https://doi.org/10.1073/pnas.1510329112
Article
PubMed
PubMed Central
CAS
Google Scholar
Pereson S, Wils H, Kleinberger G, McGowan E, Vandewoestyne M, Van Broeck B, Joris G, Cuijt I, Deforce D, Hutton M, Van Broeckhoven C, Kumar-Singh S (2009) Progranulin expression correlates with dense-core amyloid plaque burden in Alzheimer disease mouse models. J Pathol 219:173–181. https://doi.org/10.1002/path.2580
Article
PubMed
CAS
Google Scholar
Satoh J-I, Kino Y, Kawana N, Yamamoto Y, Ishida T, Saito Y, Arima K (2014) TMEM106B expression is reduced in Alzheimer’s disease brains. Alzheimers Res Ther 6:17. https://doi.org/10.1186/alzrt247
Article
PubMed
PubMed Central
CAS
Google Scholar
Mao Q, Wang D, Li Y, Kohler M, Wilson J, Parton Z, Shmaltsuyeva B, Gursel D, Rademakers R, Weintraub S, Mesulam MM, Xia H, Bigio EH (2017) Disease and region specificity of granulin immunopositivities in Alzheimer disease and frontotemporal lobar degeneration. J Neuropathol Exp Neurol 76:957–968. https://doi.org/10.1093/jnen/nlx085
Article
PubMed
PubMed Central
CAS
Google Scholar
Liu B, Mosienko V, Vaccari Cardoso B, Prokudina D, Huentelman M, Teschemacher AG, Kasparov S (2018) Glio- and neuro-protection by prosaposin is mediated by orphan G-protein coupled receptors GPR37L1 and GPR37. Glia 66:2414–2426. https://doi.org/10.1002/glia.23480
Article
PubMed
PubMed Central
Google Scholar
Meyer RC, Giddens MM, Coleman BM, Hall RA (2014) The protective role of prosaposin and its receptors in the nervous system. Brain Res 1585:1–12. https://doi.org/10.1016/j.brainres.2014.08.022
Article
PubMed
PubMed Central
CAS
Google Scholar
Nabeka H, Saito S, Li X, Shimokawa T, Khan MSI, Yamamiya K, Kawabe S, Doihara T, Hamada F, Kobayashi N, Matsuda S (2017) Interneurons secrete prosaposin, a neurotrophic factor, to attenuate kainic acid-induced neurotoxicity. IBRO reports 3:17–32. https://doi.org/10.1016/j.ibror.2017.07.001
Article
PubMed
PubMed Central
Google Scholar
Nicholson AM, Finch NA, Almeida M, Perkerson RB, van Blitterswijk M, Wojtas A, Cenik B, Rotondo S, Inskeep V, Almasy L, Dyer T, Peralta J et al (2016) Prosaposin is a regulator of progranulin levels and oligomerization. Nat Commun 7:11992. https://doi.org/10.1038/ncomms11992
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhou X, Sullivan PM, Sun L, Hu F (2017) The interaction between progranulin and prosaposin is mediated by granulins and the linker region between saposin B and C. J Neurochem 143:236–243. https://doi.org/10.1111/jnc.14110
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhou X, Sun L, Bastos de Oliveira F, Qi X, Brown WJ, Smolka MB, Sun Y, Hu F (2015) Prosaposin facilitates sortilin-independent lysosomal trafficking of progranulin. J Cell Biol 210:991–1002. https://doi.org/10.1083/jcb.201502029
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhou X, Sun L, Bracko O, Choi JW, Jia Y, Nana AL, Brady OA, Hernandez JCC, Nishimura N, Seeley WW, Hu F (2017) Impaired prosaposin lysosomal trafficking in frontotemporal lobar degeneration due to progranulin mutations. Nat Commun 8:15277. https://doi.org/10.1038/ncomms15277
Article
PubMed
PubMed Central
CAS
Google Scholar
Nabeka H, Uematsu K, Takechi H, Shimokawa T, Yamamiya K, Li C, Doihara T, Saito S, Kobayashi N, Matsuda S (2014) Prosaposin overexpression following kainic acid-induced neurotoxicity. PLoS One 9:e110534. https://doi.org/10.1371/journal.pone.0110534
Article
PubMed
PubMed Central
CAS
Google Scholar
Andersson A, Remnestal J, Nellgard B, Vunk H, Kotol D, Edfors F, Uhlen M, Schwenk JM, Ilag LL, Zetterberg H, Blennow K, Manberg A et al (2019) Development of parallel reaction monitoring assays for cerebrospinal fluid proteins associated with Alzheimer’s disease. Clin Chim Acta 494:79–93. https://doi.org/10.1016/j.cca.2019.03.243
Article
PubMed
CAS
Google Scholar
Beach TG, Adler CH, Sue LI, Serrano G, Shill HA, Walker DG, Lue L, Roher AE, Dugger BN, Maarouf C, Birdsill AC, Intorcia A et al (2015) Arizona study of aging and neurodegenerative disorders and brain and body donation program. Neuropathology 35:354–389. https://doi.org/10.1111/neup.12189
Article
PubMed
PubMed Central
Google Scholar
McKeith IG, Dickson DW, Lowe J, Emre M, O’Brien JT, Feldman H, Cummings J, Duda JE, Lippa C, Perry EK, Aarsland D, Arai H et al (2005) Diagnosis and management of dementia with Lewy bodies: third report of the DLB consortium. Neurology 65:1863–1872. https://doi.org/10.1212/01.wnl.0000187889.17253.b1
Article
CAS
Google Scholar
Newell KL, Hyman BT, Growdon JH, Hedley-Whyte ET (1999) Application of the National Institute on Aging NIA-Reagan institute criteria for the neuropathological diagnosis of Alzheimer disease. J Neuropathol Exp Neurol 58:1147–1155
Article
CAS
Google Scholar
Beach TG, Sue LI, Walker DG, Sabbagh MN, Serrano G, Dugger BN, Mariner M, Yantos K, Henry-Watson J, Chiarolanza G, Hidalgo JA, Souders L (2012) Striatal amyloid plaque density predicts Braak neurofibrillary stage and clinicopathological Alzheimer’s disease: implications for amyloid imaging. J Alzheimers Dis 28:869–876. https://doi.org/10.3233/JAD-2011-111340
Article
PubMed
PubMed Central
CAS
Google Scholar
Beach TG, Adler CH, Lue L, Sue LI, Bachalakuri J, Henry-Watson J, Sasse J, Boyer S, Shirohi S, Brooks R, Eschbacher J, White CL et al (2009) Unified staging system for Lewy body disorders: correlation with nigrostriatal degeneration, cognitive impairment and motor dysfunction. Acta Neuropathol 117:613–634. https://doi.org/10.1007/s00401-009-0538-8
Article
PubMed
PubMed Central
Google Scholar
Hixson JE, Vernier DT (1990) Restriction isotyping of human apolipoprotein E by gene amplification and cleavage with HhaI. J Lipid Res 31:545–548
PubMed
CAS
Google Scholar
Walker DG, Tang TM, Lue L-F (2018) Increased expression of toll-like receptor 3, an anti-viral signaling molecule, and related genes in Alzheimer’s disease brains. Exp Neurol 309:91–106. https://doi.org/10.1016/j.expneurol.2018.07.016
Article
PubMed
PubMed Central
CAS
Google Scholar
Walker DG, Whetzel AM, Serrano G, Sue LI, Beach TG, Lue LF (2015) Association of CD33 polymorphism rs3865444 with Alzheimer’s disease pathology and CD33 expression in human cerebral cortex. Neurobiol Aging 36:571–582. https://doi.org/10.1016/j.neurobiolaging.2014.09.023
Article
PubMed
CAS
Google Scholar
Hu X, Hu ZL, Li Z, Ruan CS, Qiu WY, Pan A, Li CQ, Cai Y, Shen L, Chu Y, Tang BS, Cai H et al (2017) Sortilin fragments deposit at senile plaques in human cerebrum. Front Neuroanat 11:45. https://doi.org/10.3389/fnana.2017.00045
Walker DG, Lue L-F, Beach TG, Tooyama I (2019) Microglial Phenotyping in neurodegenerative disease brains: identification of reactive microglia with an antibody to variant of CD105/Endoglin. Cells 8:(7). https://doi.org/10.3390/cells8070766
Article
Google Scholar
Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675
Article
CAS
Google Scholar
Stauffer W, Sheng H, Lim HN (2018) EzColocalization: an ImageJ plugin for visualizing and measuring colocalization in cells and organisms. Sci Rep 8:15764. https://doi.org/10.1038/s41598-018-33592-8
Article
PubMed
PubMed Central
CAS
Google Scholar
Lee BR, Kamitani T (2011) Improved immunodetection of endogenous alpha-synuclein. PLoS One 6:e23939. https://doi.org/10.1371/journal.pone.0023939
Article
PubMed
PubMed Central
CAS
Google Scholar
Preterre C, Corbille A-G, Balloy G, Letournel F, Neunlist M, Derkinderen P (2015) Optimizing Western blots for the detection of endogenous alpha-Synuclein in the enteric nervous system. J Park Dis 5:765–772. https://doi.org/10.3233/JPD-150670
Article
CAS
Google Scholar
Sasaki A, Arawaka S, Sato H, Kato T (2015) Sensitive western blotting for detection of endogenous Ser129-phosphorylated alpha-synuclein in intracellular and extracellular spaces. Sci Rep 5:14211. https://doi.org/10.1038/srep14211
Article
PubMed
PubMed Central
CAS
Google Scholar
Amatruda TT 3rd, Sidell N, Ranyard J, Koeffler HP (1985) Retinoic acid treatment of human neuroblastoma cells is associated with decreased N-myc expression. Biochem Biophys Res Commun 126:1189–1195. https://doi.org/10.1016/0006-291x(85)90311-0
Article
PubMed
CAS
Google Scholar
Holler CJ, Taylor G, Deng Q, Kukar T (2017) Intracellular proteolysis of Progranulin generates stable, Lysosomal Granulins that are Haploinsufficient in patients with Frontotemporal dementia caused by GRN mutations. eNeuro 4(4). https://doi.org/10.1523/ENEURO.0100-17.2017
Article
Google Scholar
Mackenzie IRA, Baker M, Pickering-Brown S, Hsiung G-YR, Lindholm C, Dwosh E, Gass J, Cannon A, Rademakers R, Hutton M, Feldman HH (2006) The neuropathology of frontotemporal lobar degeneration caused by mutations in the progranulin gene. Brain 129:3081–3090. https://doi.org/10.1093/brain/awl271
Article
PubMed
Google Scholar
Lui H, Zhang J, Makinson SR, Cahill MK, Kelley KW, Huang HY, Shang Y, Oldham MC, Martens LH, Gao F, Coppola G, Sloan SA et al (2016) Progranulin deficiency promotes circuit-specific synaptic pruning by microglia via complement activation. Cell 165:921–935. https://doi.org/10.1016/j.cell.2016.04.001
Article
CAS
Google Scholar
Gotzl JK, Colombo A-V, Fellerer K, Reifschneider A, Werner G, Tahirovic S, Haass C, Capell A (2018) Early lysosomal maturation deficits in microglia triggers enhanced lysosomal activity in other brain cells of progranulin knockout mice. Mol Neurodegener 13:48. https://doi.org/10.1186/s13024-018-0281-5
Article
PubMed
PubMed Central
CAS
Google Scholar
Ahmed Z, Mackenzie IRA, Hutton ML, Dickson DW (2007) Progranulin in frontotemporal lobar degeneration and neuroinflammation. J Neuroinflammation 4:7. https://doi.org/10.1186/1742-2094-4-7
Article
PubMed
PubMed Central
CAS
Google Scholar
Hosokawa M, Arai T, Masuda-Suzukake M, Kondo H, Matsuwaki T, Nishihara M, Hasegawa M, Akiyama H (2015) Progranulin reduction is associated with increased tau phosphorylation in P301L tau transgenic mice. J Neuropathol Exp Neurol 74:158–165. https://doi.org/10.1097/NEN.0000000000000158
Article
PubMed
CAS
Google Scholar
Hu F, Padukkavidana T, Vaegter CB, Brady OA, Zheng Y, Mackenzie IR, Feldman HH, Nykjaer A, Strittmatter SM (2010) Sortilin-mediated endocytosis determines levels of the frontotemporal dementia protein, progranulin. Neuron 68:654–667. https://doi.org/10.1016/j.neuron.2010.09.034
Article
PubMed
PubMed Central
CAS
Google Scholar
Zheng Y, Brady OA, Meng PS, Mao Y, Hu F (2011) C-terminus of progranulin interacts with the beta-propeller region of sortilin to regulate progranulin trafficking. PLoS One 6:e21023. https://doi.org/10.1371/journal.pone.0021023
Article
CAS
Google Scholar
Zhou F-Q, Jiang J, Griffith CM, Patrylo PR, Cai H, Chu Y, Yan X-X (2018) Lack of human-like extracellular sortilin neuropathology in transgenic Alzheimer’s disease model mice and macaques. Alzheimers Res Ther 10:40. https://doi.org/10.1186/s13195-018-0370-2
Article
PubMed
PubMed Central
CAS
Google Scholar
Finch N, Carrasquillo MM, Baker M, Rutherford NJ, Coppola G, Dejesus-Hernandez M, Crook R, Hunter T, Ghidoni R, Benussi L, Crook J, Finger E et al (2011) TMEM106B regulates progranulin levels and the penetrance of FTLD in GRN mutation carriers. Neurology 76:467–474. https://doi.org/10.1212/WNL.0b013e31820a0e3b
Article
PubMed
CAS
Google Scholar
Beel S, Moisse M, Damme M, De Muynck L, Robberecht W, Van Den Bosch L, Saftig P, Van Damme P (2017) Progranulin functions as a cathepsin D chaperone to stimulate axonal outgrowth in vivo. Hum Mol Genet 26:2850–2863. https://doi.org/10.1093/hmg/ddx162
Article
PubMed
PubMed Central
CAS
Google Scholar
Neill T, Buraschi S, Goyal A, Sharpe C, Natkanski E, Schaefer L, Morrione A, Iozzo RV (2016) EphA2 is a functional receptor for the growth factor progranulin. J Cell Biol 215:687–703. https://doi.org/10.1083/jcb.201603079
Article
PubMed
PubMed Central
CAS
Google Scholar
Satoh J-I, Kino Y, Yamamoto Y, Kawana N, Ishida T, Saito Y, Arima K (2014) PLD3 is accumulated on neuritic plaques in Alzheimer’s disease brains. Alzheimers Res Ther 6:70. https://doi.org/10.1186/s13195-014-0070-5
Article
PubMed
PubMed Central
CAS
Google Scholar
Park B, Buti L, Lee S, Matsuwaki T, Spooner E, Brinkmann MM, Nishihara M, Ploegh HL (2011) Granulin is a soluble cofactor for toll-like receptor 9 signaling. Immunity 34:505–513. https://doi.org/10.1016/j.immuni.2011.01.018
Article
PubMed
CAS
Google Scholar