Ahmed M, Davis J, Aucoin D, Sato T, Ahuja S, Aimoto S et al (2010) Structural conversion of neurotoxic amyloid-beta(1-42) oligomers to fibrils. Nat Struct Mol Biol 17:561–567
Article
CAS
Google Scholar
Arendt T (2009) Synaptic degeneration in Alzheimer's disease. Acta Neuropathol 118:167–179
Article
Google Scholar
Bard F, Barbour R, Cannon C, Carretto R, Fox M, Games D et al (2003) Epitope and isotype specificities of antibodies to beta -amyloid peptide for protection against Alzheimer's disease-like neuropathology. Proc Natl Acad Sci U S A 100:2023–2028
Article
CAS
Google Scholar
Bastrikova N, Gardner GA, Reece JM, Jeromin A, Dudek SM (2008) Synapse elimination accompanies functional plasticity in hippocampal neurons. Proc Natl Acad Sci U S A 105:3123–3127
Article
CAS
Google Scholar
Bateman RJ, Xiong C, Benzinger TL, Fagan AM, Goate A, Fox NC et al (2012) Clinical and biomarker changes in dominantly inherited Alzheimer's disease. N Engl J Med 367:795–804
Article
CAS
Google Scholar
Bayer TA, Wirths O (2014) Focusing the amyloid cascade hypothesis on N-truncated Aβ peptides as drug targets against Alzheimer’s disease. Acta Neuropathol 127:787–801
Article
CAS
Google Scholar
Bilousova T, Miller CA, Poon WW, Vinters HV, Corrada M, Kawas C et al (2016) Synaptic Amyloid-β Oligomers Precede p-Tau and Differentiate High Pathology Control Cases. Am J Pathol 186:185–198
Article
CAS
Google Scholar
Brody DL, Jiang H, Wildburger N, Esparza TJ (2017) Non-canonical soluble amyloid-beta aggregates and plaque buffering: controversies and future directions for target discovery in Alzheimer's disease. Alzheimers Res Ther 9(1):62. https://doi.org/10.1186/s13195-017-0293-3
Article
CAS
PubMed
PubMed Central
Google Scholar
Chang WP, Huang X, Downs D, Cirrito JR, Koelsch G, Holtzman DM et al (2011) Beta-secretase inhibitor GRL-8234 rescues age-related cognitive decline in APP transgenic mice. FASEB J 25:775–784
Article
CAS
Google Scholar
Chen X, Lin R, Chang L, Xu S, Wei X, Zhang J et al (2013) Enhancement of long-term depression by soluble amyloid β protein in rat hippocampus is mediated by metabotropic glutamate receptor and involves activation of p38MAPK, STEP and caspase-3. Neuroscience 253:435–443
Article
CAS
Google Scholar
Dodel R, Balakrishnan K, Keyvani K, Deuster O, Neff F, Andrei-Selmer LC et al (2011) Naturally occurring autoantibodies against beta-amyloid: investigating their role in transgenic animal and in vitro models of Alzheimer's disease. J Neurosci 31:5847–5854
Article
CAS
Google Scholar
Eisele YS, Obermüller U, Heilbronner G, Baumann F, Kaeser SA, Wolburg H et al (2010) Peripherally applied Abeta-containing inoculates induce cerebral beta-amyloidosis. Science 330:980–982
Article
CAS
Google Scholar
Fowler SW, Chiang AC, Savjani RR, Larson ME, Sherman MA, Schuler DR et al (2014) Genetic modulation of soluble Aβ rescues cognitive and synaptic impairment in a mouse model of Alzheimer's disease. J Neurosci 34:7871–7885
Article
CAS
Google Scholar
Herskovits AZ, Locascio JJ, Peskind ER, Li G, Hyman BT. (2013) A Luminex assay detects amyloid β oligomers in Alzheimer's disease cerebrospinal fluid. PLoS one. 2013 Jul 2;8(7):e67898
Article
CAS
Google Scholar
Hsia AY, Masliah E, McConlogue L, Yu GQ, Tatsuno G, Hu K et al (1999) Plaque-independent disruption of neural circuits in Alzheimer's disease mouse models. Proc Natl Acad Sci U S A 96:3228–3233
Article
CAS
Google Scholar
Hu NW, Nicoll AJ, Zhang D, Mably AJ, O'Malley T, Purro SA et al (2014) mGlu5 receptors and cellular prion protein mediate amyloid-β-facilitated synaptic long-term depression in vivo. Nat Commun 5:3374
Article
Google Scholar
Iwatsubo T, Odaka A, Suzuki N, Mizusawa H, Nukina N, Ihara Y (1994) Visualization of A beta 42(43) and A beta 40 in senile plaques with end-specific A beta monoclonals: evidence that an initially deposited species is A beta 42(43). Neuron 13:45–53
Article
CAS
Google Scholar
Jack CR Jr, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW et al (2010) Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade. Lancet Neurol 9(1):119–128
Article
CAS
Google Scholar
Jansen WJ, Ossenkoppele R, Knol DL, Tijms BM, Scheltens P et al (2015) Prevalence of cerebral amyloid pathology in persons without dementia: a meta-analysis. JAMA 313:1924–1938
Article
Google Scholar
Janus C, Pearson J, McLaurin J, Mathews PM, Jiang Y, Schmidt SD et al (2000) A beta peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer's disease. Nature 408:979–982
Article
CAS
Google Scholar
Jin M, O'Nuallain B, Hong W, Boyd J, Lagomarsino VN, O'Malley TT, et al. (2018) An in vitro paradigm to assess potential anti-Aβ antibodies for Alzheimer's disease. Nat Commun. 2018 Jul 11;9(1):2676
Kakuda N, Miyasaka T, Iwasaki N, Nirasawa T, Wada-Kakuda S, Takahashi-Fujigasaki J et al (2017) Distinct deposition of amyloid-β species in brains with Alzheimer's disease pathology visualized with MALDI imaging mass spectrometry. Acta Neuropathol Commun 5(1):73. https://doi.org/10.1186/s40478-017-0477-x
Article
CAS
PubMed
PubMed Central
Google Scholar
Kakuda N, Shoji M, Arai H, Furukawa K, Ikeuchi T, Akazawa K et al (2012) Altered γ-secretase activity in mild cognitive impairment and Alzheimer's disease. EMBO Mol Med. 4:344–352
Article
CAS
Google Scholar
Kaneko N, Yamamoto R, Sato TA, Tanaka K (2014) Identification and quantification of amyloid beta-related peptides in human plasma using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Proc Jpn Acad Ser B Phys Biol Sci 90:104–117
Article
CAS
Google Scholar
Karlnoski RA, Rosenthal A, Alamed J, Ronan V, Gordon MN, Gottschall PE et al (2008) Deglycosylated anti-Abeta antibody dose-response effects on pathology and memory in APP transgenic mice. J NeuroImmune Pharmacol 3:187–197
Article
Google Scholar
Kasza Á, Penke B, Frank Z, Bozsó Z, Szegedi V, Hunya Á, et al. (2017) Studies for Improving a Rat Model of Alzheimer's Disease: Icv Administration of Well-Characterized β-Amyloid 1-42 Oligomers Induce Dysfunction in Spatial Memory. Molecules. 22(11). Pii: E2007
Klyubin I, Betts V, Welzel AT, Blennow K, Zetterberg H, Wallin A et al (2008) Amyloid beta protein dimer-containing human CSF disrupts synaptic plasticity: prevention by systemic passive immunization. J Neurosci 28:4231–4237
Article
CAS
Google Scholar
Klyubin I, Walsh DM, Lemere CA, Cullen WK, Shankar GM, Betts V et al (2005) Amyloid beta protein immunotherapy neutralizes Abeta oligomers that disrupt synaptic plasticity in vivo. Nat Med 11:556–561
Article
CAS
Google Scholar
Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M et al (1998) Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci U S A 95:6448–6453
Article
CAS
Google Scholar
Lannfelt L, Möller C, Basun H, Osswald G, Sehlin D, Satlin A et al (2014) Perspectives on future Alzheimer therapies: amyloid-β protofibrils - a new target for immunotherapy with BAN2401 in Alzheimer's disease. Alzheimers Res Ther 6(2):16. https://doi.org/10.1186/alzrt246
Article
PubMed
PubMed Central
Google Scholar
Larson J, Lynch G, Games D, Seubert P (1999) Alterations in synaptic transmission and long-term potentiation in hippocampal slices from young and aged PDAPP mice. Brain Res 840:23–35
Article
CAS
Google Scholar
Lesné S, Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang A et al (2006) A specific amyloid-beta protein assembly in the brain impairs memory. Nature 440:352–357
Article
Google Scholar
Levites Y, Das P, Price RW, Rochette MJ, Kostura LA, McGowan EM, Murphy MP, Golde TE (2006) Anti-Abeta42- and anti-Abeta40-specific mAbs attenuate amyloid deposition in an Alzheimer disease mouse model. J Clin Invest 116(1):193–201
Article
CAS
Google Scholar
Li S, Hong S, Shepardson NE, Walsh DM, Shankar GM, Selkoe D (2009) Soluble oligomers of amyloid Beta protein facilitate hippocampal long-term depression by disrupting neuronal glutamate uptake. Neuron 62:788–801
Article
CAS
Google Scholar
Li S, Jin M, Koeglsperger T, Shepardson NE, Shankar GM, Selkoe DJ (2011) Soluble Aβ oligomers inhibit long-term potentiation through a mechanism involving excessive activation of extrasynaptic NR2B-containing NMDA receptors. J Neurosci 31:6627–6638
Article
CAS
Google Scholar
Lichtenthaler SF, Haass C, Steiner H (2011) Regulated intramembrane proteolysis--lessons from amyloid precursor protein processing. J Neurochem 117:779–796
Article
CAS
Google Scholar
Lyons B, Friedrich M, Raftery M, Truscott R (2016) Amyloid Plaque in the Human Brain Can Decompose from Aβ(1-40/1-42) by Spontaneous Nonenzymatic Processes. Anal Chem 88(5):2675–2684
Article
CAS
Google Scholar
Ma T, Du X, Pick JE, Sui G, Brownlee M, Klann E (2012) Glucagon-like peptide-1 cleavage product GLP-1(9-36) amide rescues synaptic plasticity and memory deficits in Alzheimer's disease model mice. J Neurosci 32:13701–13708
Article
CAS
Google Scholar
Mc Donald JM, Savva GM, Brayne C, Welzel AT, Forster G, Shankar GM et al (2010) The presence of sodium dodecyl sulphate-stable Abeta dimers is strongly associated with Alzheimer-type dementia. Brain 133(Pt 5):1328–1341
Article
Google Scholar
Meyer-Luehmann M, Coomaraswamy J, Bolmont T, Kaeser S, Schaefer C, Kilger E et al (2006) Exogenous induction of cerebral beta-amyloidogenesis is governed by agent and host. Science 313:1781–1784
Article
CAS
Google Scholar
Miles LA, Crespi GA, Doughty L, Parker MW (2013) Bapineuzumab captures the N-terminus of the Alzheimer's disease amyloid-beta peptide in a helical conformation. Sci Rep 3:1302. https://doi.org/10.1038/srep01302
Article
CAS
PubMed
PubMed Central
Google Scholar
Morgan D, Diamond DM, Gottschall PE, Ugen KE, Dickey C, Hardy J et al (2000) A beta peptide vaccination prevents memory loss in an animal model of Alzheimer's disease. Nature 408:982–985
Article
CAS
Google Scholar
Mroczko B, Groblewska M, Litman-Zawadzka A, Kornhuber J, Lewczuk P (2018) Amyloid β oligomers (AβOs) in Alzheimer's disease. J Neural Transm (Vienna) 125:177–191
Article
CAS
Google Scholar
Mucke L, Masliah E, Yu GQ, Mallory M, Rockenstein EM, Tatsuno G et al (2000) High-level neuronal expression of abeta 1-42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J Neurosci 20:4050–4058
Article
CAS
Google Scholar
Mufson EJ, Malek-Ahmadi M, Snyder N, Ausdemore J, Chen K, Perez SE (2016) Braak stage and trajectory of cognitive decline in noncognitively impaired elders. Neurobiol Aging 43:101–110
Article
Google Scholar
Mullane K, Williams M (2013) Alzheimer's therapeutics: continued clinical failures question the validity of the amyloid hypothesis-but what lies beyond? Biochem Pharmacol 85:289–305
Article
CAS
Google Scholar
Nelson PT, Braak H, Markesbery WR (2009) Neuropathology and cognitive impairment in Alzheimer disease: a complex but coherent relationship. J Neuropathol Exp Neurol 68:1–14
Article
CAS
Google Scholar
Nisbet RM, Nigro J, Breheney K, Caine J, Hattarki MK, Nuttall SD (2013) Central amyloid-β-specific single chain variable fragment ameliorates Aβ aggregation and neurotoxicity. Protein Eng Des Sel 26:571–580
Article
CAS
Google Scholar
O'Brien RJ, Wong PC (2011) Amyloid precursor protein processing and Alzheimer's disease. Annu Rev Neurosci 34:185–204
Article
CAS
Google Scholar
Olsen KM, Sheng M (2012) NMDA receptors and BAX are essential for Aβ impairment of LTP. Sci rep 2:225. https://doi.org/10.1038/srep00225
Article
CAS
PubMed
PubMed Central
Google Scholar
O'Malley TT, Oktaviani NA, Zhang D, Lomakin A, O'Nuallain B, Linse S et al (2014) Aβ dimers differ from monomers in structural propensity, aggregation paths and population of synaptotoxic assemblies. Biochem J 461:413–426
Article
CAS
Google Scholar
Podlisny MB, Ostaszewski BL, Squazzo SL, Koo EH, Rydell RE, Teplow DB et al (1995) Aggregation of secreted amyloid beta-protein into sodium dodecyl sulfate-stable oligomers in cell culture. J Biol Chem 270:9564–9570
Article
CAS
Google Scholar
Qi-Takahara Y, Morishima-Kawashima M, Tanimura Y, Dolios G, Hirotani N, Horikoshi Y et al (2005) Longer forms of amyloid beta protein: implications for the mechanism of intramembrane cleavage by gamma-secretase. J Neurosci 25:436–445
Article
CAS
Google Scholar
Roher AE, Kokjohn TA, Clarke SG, Sierks MR, Maarouf CL, Serrano GE et al (2017) APP/Aβ structural diversity and Alzheimer's disease pathogenesis. Neurochem Int 110:1–13
Article
CAS
Google Scholar
Rostagno A, Neubert TA, Ghiso J (2018) Unveiling Brain Aβ Heterogeneity Through Targeted Proteomic Analysis. Methods Mol Biol 1779:23–43
Article
Google Scholar
Salgado-Puga K, Rodríguez-Colorado J, Prado-Alcalá RA, Peña-Ortega F (2017) Subclinical Doses of ATP-Sensitive Potassium Channel Modulators Prevent Alterations in Memory and Synaptic Plasticity Induced by Amyloid-β. J Alzheimers Dis 57:205–226
Article
CAS
Google Scholar
Salloway S, Sperling R, Fox NC, Blennow K, Klunk W, Raskind M et al (2014) Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer's disease. N Engl J Med 370:322–333
Article
CAS
Google Scholar
Sato M, Murakami K, Uno M, Nakagawa Y, Katayama S, Akagi K et al (2013) Site-specific inhibitory mechanism for amyloid β42 aggregation by catechol-type flavonoids targeting the Lys residues. J Biol Chem 288:23212–23224
Article
CAS
Google Scholar
Savage MJ, Kalinina J, Wolfe A, Tugusheva K, Korn R, Cash-Mason T et al (2014) A sensitive aβ oligomer assay discriminates Alzheimer's and aged control cerebrospinal fluid. J Neurosci 34:2884–2897
Article
CAS
Google Scholar
Selkoe DJ (2002) Alzheimer's disease is a synaptic failure. Science 298:789–791
Article
CAS
Google Scholar
Selkoe DJ. (2018) Light at the end of the amyloid tunnel. Biochemistry, 2018 Oct 1. doi: https://doi.org/10.1021/acs.biochem.8b00985
Article
CAS
Google Scholar
Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer's disease at 25 years. EMBO Mol Med 8:595–608
Article
CAS
Google Scholar
Sevigny J, Chiao P, Bussière T, Weinreb PH, Williams L, Maier M et al (2016) The antibody aducanumab reduces Aβ plaques in Alzheimer's disease. Nature 537:50–56
Article
CAS
Google Scholar
Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I et al (2008) Amyloid-beta protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nat Med 14:837–842
Article
CAS
Google Scholar
Shankar GM, Welzel AT, McDonald JM, Selkoe DJ, Walsh DM (2011) Isolation of low-n amyloid β-protein oligomers from cultured cells, CSF, and brain. Methods Mol Biol 670:33–44
Article
CAS
Google Scholar
Soares HD, Gasior M, Toyn JH, Wang JS, Hong Q, Berisha F et al (2016) The γ-Secretase Modulator, BMS-932481, Modulates Aβ Peptides in the Plasma and Cerebrospinal Fluid of Healthy Volunteers. J Pharmacol Exp Ther 358:138–150
Article
CAS
Google Scholar
Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM et al (2011) Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 7:280–292
Article
Google Scholar
Szczepankiewicz O, Linse B, Meisl G, Thulin E, Frohm B, Sala Frigerio C et al (2015) N-Terminal Extensions Retard Aβ42 Fibril Formation but Allow Cross-Seeding and Coaggregation with Aβ42. J Am Chem Soc 137:14673–14685
Article
CAS
Google Scholar
Takami M, Nagashima Y, Sano Y, Ishihara S, Morishima-Kawashima M, Funamoto S et al (2009) gamma-Secretase: successive tripeptide and tetrapeptide release from the transmembrane domain of beta-carboxyl terminal fragment. J Neurosci 29:13042–13052
Article
CAS
Google Scholar
Viola KL, Klein WL (2015) Amyloid β oligomers in Alzheimer's disease pathogenesis, treatment, and diagnosis. Acta Neuropathol 129:183–206
Article
CAS
Google Scholar
Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS et al (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416:535–539
Article
CAS
Google Scholar
Walsh DM, Thulin E, Minogue AM, Gustavsson N, Pang E, Teplow DB et al (2009) A facile method for expression and purification of the Alzheimer's disease-associated amyloid beta-peptide. FEBS J 276:1266–1281
Article
CAS
Google Scholar
Walsh DM, Townsend M, Podlisny MB, Shankar GM, Fadeeva JV, El Agnaf O et al (2005) Certain inhibitors of synthetic amyloid beta-peptide (Abeta) fibrillogenesis block oligomerization of natural Abeta and thereby rescue long-term potentiation. J Neurosci 25:2455–2462
Article
CAS
Google Scholar
Wang-Dietrich L, Funke SA, Kühbach K, Wang K, Besmehn A, Willbold S et al (2013) The amyloid-β oligomer count in cerebrospinal fluid is a biomarker for Alzheimer's disease. J Alzheimers Dis 34:985–994
Article
CAS
Google Scholar
Watt AD, Perez KA, Rembach A, Sherrat NA, Hung LW, Johanssen T et al (2013) Oligomers, fact or artefact? SDS-PAGE induces dimerization of β-amyloid in human brain samples. Acta Neuropathol 125:549–564
Article
CAS
Google Scholar
Webster SJ, Bachstetter AD, Nelson PT, Schmitt FA, Van Eldik LJ (2014) Using mice to model Alzheimer's dementia: an overview of the clinical disease and the preclinical behavioral changes in 10 mouse models. Front Genet 5:88. https://doi.org/10.3389/fgene.2014.00088
Article
CAS
PubMed
PubMed Central
Google Scholar
Welzel AT, Maggio JE, Shankar GM, Walker DE, Ostaszewski BL, Li S et al (2014) Secreted amyloid β-proteins in a cell culture model include N-terminally extended peptides that impair synaptic plasticity. Biochemistry 53:3908–3921
Article
CAS
Google Scholar
Wiegert JS, Oertner TG (2013) Long-term depression triggers the selective elimination of weakly integrated synapses. Proc Natl Acad Sci U S A 110(47):E4510–E4519
Article
CAS
Google Scholar
Wilcock DM, Alamed J, Gottschall PE, Grimm J, Rosenthal A, Pons J et al (2006) Deglycosylated anti-amyloid-beta antibodies eliminate cognitive deficits and reduce parenchymal amyloid with minimal vascular consequences in aged amyloid precursor protein transgenic mice. J Neurosci 26:5340–5346
Article
CAS
Google Scholar
Wolfe MS, Xia W, Ostaszewski BL, Diehl TS, Kimberly WT, Selkoe DJ (1999) Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and gamma-secretase activity. Nature 398:513–517
Article
CAS
Google Scholar
Yang T, Li S, Xu H, Walsh DM, Selkoe DJ (2017) Large Soluble Oligomers of Amyloid β-Protein from Alzheimer Brain Are Far Less Neuroactive Than the Smaller Oligomers to Which They Dissociate. J Neurosci 37:152–163
Article
CAS
Google Scholar
Yang T, O'Malley TT, Kanmert D, Jerecic J, Zieske LR, Zetterberg H et al (2015) A highly sensitive novel immunoassay specifically detects low levels of soluble Aβ oligomers in human cerebrospinal fluid. Alzheimers Res Ther 7(1):14
Article
Google Scholar
Zago W, Buttini M, Comery TA, Nishioka C, Gardai SJ, Seubert P et al (2012) Neutralization of soluble, synaptotoxic amyloid β species by antibodies is epitope specific. J Neurosci 32:2696–2702
Article
CAS
Google Scholar
Zeng H, Guo M, Martins-Taylor K, Wang X, Zhang Z, Park JW et al (2010) Specification of region-specific neurons including forebrain glutamatergic neurons from human induced pluripotent stem cells. PLoS One 5(7):e11853 Epub 2010/08/06
Article
Google Scholar
Zhang Y, Chen X, Liu J, Zhang Y (2015) The protective effects and underlying mechanism of an anti-oligomeric Aβ42 single-chain variable fragment antibody. Neuropharmacology 99:387–395
Article
CAS
Google Scholar
Zhang Y, Pak C, Han Y, Ahlenius H, Zhang Z, Chanda S et al (2013) Rapid single-step induction of functional neurons from human pluripotent stem cells. Neuron 78:785–798
Article
CAS
Google Scholar