Attems J, Jellinger K, Thal DR, Van Nostrand W (2011) Review: sporadic cerebral amyloid angiopathy. Neuropathol Appl Neurobiol 37:75–93. https://doi.org/10.1111/j.1365-2990.2010.01137.x
Article
PubMed
CAS
Google Scholar
Rudolf Thal D, Sue GriYn WT, I de Vos RA, Ghebremedhin E (2008) Cerebral amyloid angiopathy and its relationship to Alzheimer’s disease. Acta Neuropathol 115:599–609. https://doi.org/10.1007/s00401-008-0366-2
Article
CAS
Google Scholar
Attems J (2005) Sporadic cerebral amyloid angiopathy: pathology, clinical implications, and possible pathomechanisms. Acta Neuropathol 110:345–359. https://doi.org/10.1007/s00401-005-1074-9
Article
PubMed
CAS
Google Scholar
Richard E, Carrano A, Hoozemans JJ, Van Horssen J, Van Haastert ES, Eurelings LS, De Vries HE, Thal DR, Eikelenboom P, Van Gool WA, Rozemuller AJM (2010) Characteristics of dyshoric capillary cerebral amyloid angiopathy. J Neuropathol Exp Neurol 69:1158–1167. https://doi.org/10.1097/NEN.0b013e3181fab558
Article
PubMed
CAS
Google Scholar
van Veluw SJ, Kuijf HJ, Charidimou A, Viswanathan A, Biessels GJ, Rozemuller AJM, Frosch MP, Greenberg SM (2016) Reduced vascular amyloid burden at microhemorrhage sites in cerebral amyloid angiopathy. Acta Neuropathol:1–7. https://doi.org/10.1007/s00401-016-1635-0
Weller RO, Nicoll J a R (2003) Cerebral amyloid angiopathy: pathogenesis and effects on the ageing and Alzheimer brain. Neurol Res 25:611–616. https://doi.org/10.1179/016164103101202057
Article
PubMed
Google Scholar
Bakker ENTP, Bacskai BJ, Arbel-Ornath M, Aldea R, Bedussi B, Morris AWJ, Weller RO, Carare RO (2016) Lymphatic clearance of the brain: perivascular, Paravascular and significance for neurodegenerative diseases. Cell Mol Neurobiol 36:181–194. https://doi.org/10.1007/s10571-015-0273-8
Article
PubMed
PubMed Central
CAS
Google Scholar
Weller RO, Subash M, Preston SD, Mazanti I, Carare RO (2008) Perivascular drainage of amyloid-?? Peptides from the brain and its failure in cerebral amyloid angiopathy and Alzheimer’s disease. In: Brain Pathol, pp 253–266
Google Scholar
Attems J, Jellinger KA (2004) Only cerebral capillary amyloid angiopathy correlates with Alzheimer pathology?A pilot study. Acta Neuropathol 107:83–90. https://doi.org/10.1007/s00401-003-0796-9
Article
PubMed
Google Scholar
Eurelings LSM, Richard E, Carrano A, Eikelenboom P, van Gool WA, Rozemuller AJM (2010) Dyshoric capillary cerebral amyloid angiopathy mimicking Creutzfeldt–Jakob disease. J Neurol Sci 295:131–134. https://doi.org/10.1016/j.jns.2010.04.020
Article
PubMed
CAS
Google Scholar
Thal DR, Ghebremedhin E, Orantes M, Wiestler OD (2003) Vascular pathology in Alzheimer disease: correlation of cerebral amyloid Angiopathy and arteriosclerosis/Lipohyalinosis with cognitive decline. J Neuropathol Exp Neurol 62:1287–1301. https://doi.org/10.1093/jnen/62.12.1287
Article
PubMed
Google Scholar
Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259
Article
PubMed
CAS
Google Scholar
Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM, Vogel FS, Hughes JP, van Belle G, Berg L (1991) The consortium to establish a registry for Alzheimer’s disease (CERAD): part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 41:479–479. https://doi.org/10.1212/WNL.41.4.479
Article
PubMed
CAS
Google Scholar
Thal DR, Rüb U, Orantes M, Braak H (2002) Phases of Aβ-deposition in the human brain and its relevance for the development of AD. Neurology 58:1791–1800. https://doi.org/10.1212/WNL.58.12.1791
Article
PubMed
Google Scholar
Montine TJ, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Dickson DW, Duyckaerts C, Frosch MP, Masliah E, Mirra SS, Nelson PT, Schneider JA, Thal DR, Trojanowski JQ, Vinters HV, Hyman BT (2012) National institute on aging-Alzheimer’s association guidelines for the neuropathologic assessment of Alzheimer’s disease: a practical approach. Acta Neuropathol 123:1–11. https://doi.org/10.1007/s00401-011-0910-3
Article
PubMed
CAS
Google Scholar
Verwey NA, Hoozemans JJM, Korth C, van Royen MR, Prikulis I, Wouters D, HAM T, van Haastert ES, Schenk D, Scheltens P, Rozemuller AJM, Blankenstein MA, Veerhuis R (2013) Immunohistochemical characterization of novel monoclonal antibodies against the N-terminus of amyloid β-peptide. Amyloid 20:179–187. https://doi.org/10.3109/13506129.2013.797389
Article
PubMed
CAS
Google Scholar
Hondius DC, Van Nierop P, Li KW, Hoozemans JJM, Van Der Schors RC, Van Haastert ES, Van Der Vies SM, Rozemuller AJM, Smit AB (2016) Profiling the human hippocampal proteome at all pathologic stages of Alzheimer’s disease. Alzheimers Dement 12:654–668. https://doi.org/10.1016/j.jalz.2015.11.002
Article
PubMed
Google Scholar
Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.P.B.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372. https://doi.org/10.1038/nbt.1511
Article
PubMed
CAS
Google Scholar
Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M (2014) Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics 13:2513–2526. https://doi.org/10.1074/mcp.M113.031591
Article
PubMed
PubMed Central
CAS
Google Scholar
Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, Mann M, Cox J (2016) The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 13:731–740. https://doi.org/10.1038/nmeth.3901
Article
PubMed
CAS
Google Scholar
Arvanitakis Z, Leurgans SE, Wang Z, Wilson RS, Bennett DA, Schneider JA (2011) Cerebral amyloid angiopathy pathology and cognitive domains in older persons. Ann Neurol 69:320–327. https://doi.org/10.1002/ana.22112
Article
PubMed
Google Scholar
Boyle PA, Yu L, Nag S, Leurgans S, Wilson RS, Bennett DA, Schneider JA (2015) Cerebral amyloid angiopathy and cognitive outcomes in community-based older persons. Neurology 85:1930–1936. https://doi.org/10.1212/WNL.0000000000002175
Article
PubMed
PubMed Central
CAS
Google Scholar
Manousopoulou A, Gatherer M, Smith C, Nicoll JAR, Woelk CH, Johnson M, Kalaria R, Attems J, Garbis SD, Carare RO (2016) Systems proteomic analysis reveals that clusterin and tissue inhibitor of metalloproteinases 3 increase in leptomeningeal arteries affected by cerebral amyloid angiopathy. Neuropathol Appl Neurobiol. https://doi.org/10.1111/nan.12342
Verbeek MM, Otte-Höller I, Veerhuis R, Ruiter DJ, De Waal RMW (1998) Distribution of Aβ-associated proteins in cerebrovascular amyloid of Alzheimer’s disease. Acta Neuropathol 96:628–636. https://doi.org/10.1007/s004010050944
Article
PubMed
CAS
Google Scholar
Zhan SS, Veerhuis R, Kamphorst W, Eikelenboom P (1995) Distribution of beta amyloid associated proteins in plaques in Alzheimer’s disease and in the non-demented elderly. Neurodegeneration 4:291–297
Article
PubMed
CAS
Google Scholar
Montañola A, de Retana SF, López-Rueda A, Merino-Zamorano C, Penalba A, Fernández-Álvarez P, Rodríguez-Luna D, Malagelada A, Pujadas F, Montaner J, Hernández-Guillamon M (2016) ApoA1, ApoJ and ApoE plasma levels and genotype frequencies in cerebral amyloid Angiopathy. NeuroMolecular Med 18:99–108. https://doi.org/10.1007/s12017-015-8381-7
Article
PubMed
CAS
Google Scholar
Manousopoulou A, Gatherer M, Smith C, Nicoll JAR, Woelk CH, Johnson M, Kalaria R, Attems J, Garbis SD, Carare RO (2017) Systems proteomic analysis reveals that clusterin and tissue inhibitor of metalloproteinases 3 increase in leptomeningeal arteries affected by cerebral amyloid angiopathy. Neuropathol Appl Neurobiol 43:492–504. https://doi.org/10.1111/nan.12342
Article
PubMed
CAS
Google Scholar
Inoue Y, Ueda M, Tasaki M, Takeshima A, Nagatoshi A, Masuda T, Misumi Y, Kosaka T, Nomura T, Mizukami M, Matsumoto S, Yamashita T, Takahashi H, Kakita A, Ando Y (2017) Sushi repeat-containing protein 1: a novel disease-associated molecule in cerebral amyloid angiopathy. Acta Neuropathol 134:605–617. https://doi.org/10.1007/s00401-017-1720-z
Article
PubMed
CAS
Google Scholar
Engelhardt B, Liebner S (2014) Novel insights into the development and maintenance of the blood–brain barrier. Cell Tissue Res 355:687–699. https://doi.org/10.1007/s00441-014-1811-2
Article
PubMed
PubMed Central
CAS
Google Scholar
Ye X, Smallwood P, Nathans J (2011) Expression of the Norrie disease gene (Ndp) in developing and adult mouse eye, ear, and brain. Gene Expr Patterns. https://doi.org/10.1016/j.gep.2010.10.007
Xu Q, Wang Y, Dabdoub A, Smallwood PM, Williams J, Woods C, Kelley MW, Jiang L, Tasman W, Zhang K, Nathans J (2004) Vascular development in the retina and inner ear: control by Norrin and Frizzled-4, a high-affinity ligand-receptor pair. Cell 116:883–895. https://doi.org/10.1016/S0092-8674(04)00216-8
Article
PubMed
CAS
Google Scholar
Sproul AA, Jacob S, Pre D, Kim SH, Nestor MW, Navarro-Sobrino M, Santa-Maria I, Zimmer M, Aubry S, Steele JW, Kahler DJ, Dranovsky A, Arancio O, Crary JF, Gandy S, Noggle SA (2014) Characterization and molecular profiling of PSEN1 familial alzheimer’s disease iPSC-derived neural progenitors. PLoS One. https://doi.org/10.1371/journal.pone.0084547
Ohlmann A, Seitz R, Braunger B, Seitz D, Bösl MR, Tamm ER (2010) Norrin promotes vascular regrowth after oxygen-induced retinal vessel loss and suppresses retinopathy in mice. J Neurosci 30
Braunger BM, Tamm ER (2012) The different functions of Norrin. Adv Exp med biol. https://doi.org/10.1007/978-1-4614-0631-0_86
Sims KB (1993) NDP-related retinopathies. University of Washington, Seattle
Google Scholar
Seitz R, Hackl S, Seibuchner T, Tamm ER, Ohlmann A (2010) Norrin mediates neuroprotective effects on retinal ganglion cells via activation of the Wnt/-catenin signaling pathway and the induction of neuroprotective growth factors in Muller cells. J Neurosci 30:5998–6010. https://doi.org/10.1523/JNEUROSCI.0730-10.2010
Article
PubMed
CAS
Google Scholar
Ricard-Blum S (2011) The collagen family. Cold Spring Harb Perspect Biol 3:a004978–a004978. https://doi.org/10.1101/cshperspect.a004978
Article
PubMed
PubMed Central
Google Scholar
Kuo HJ, Maslen CL, Keene DR, Glanville RW (1997) Type VI collagen anchors endothelial basement membranes by interacting with type IV collagen. J Biol Chem 272:26522–26529
Article
PubMed
CAS
Google Scholar
Cheng JS, Dubal DB, Kim DH, Legleiter J, Cheng IH, Yu G-Q, Tesseur I, Wyss-Coray T, Bonaldo P, Mucke L (2009) Collagen VI protects neurons against Abeta toxicity. Nat Neurosci 12:119–121. https://doi.org/10.1038/nn.2240
Article
PubMed
PubMed Central
CAS
Google Scholar
Grau S, Baldi A, Bussani R, Tian X, Stefanescu R, Przybylski M, Richards P, Jones SA, Shridhar V, Clausen T, Ehrmann M (2005) Implications of the serine protease HtrA1 in amyloid precursor protein processing. Proc Natl Acad Sci 102:6021–6026. https://doi.org/10.1073/pnas.0501823102
Article
PubMed
PubMed Central
CAS
Google Scholar
Chu Q, Diedrich JK, Vaughan JM, Donaldson CJ, Nunn MF, Lee K-F, Saghatelian A (2016) HtrA1 proteolysis of ApoE in vitro is allele selective. J Am Chem Soc 138:9473–9478. https://doi.org/10.1021/jacs.6b03463
Article
PubMed
PubMed Central
CAS
Google Scholar
Hara K, Shiga A, Fukutake T, Nozaki H, Miyashita A, Yokoseki A, Kawata H, Koyama A, Arima K, Takahashi T, Ikeda M, Shiota H, Tamura M, Shimoe Y, Hirayama M, Arisato T, Yanagawa S, Tanaka A, Nakano I, Ikeda S, Yoshida Y, Yamamoto T, Ikeuchi T, Kuwano R, Nishizawa M, Tsuji S, Onodera O (2009) Association of HTRA1 mutations and familial ischemic cerebral small-vessel disease. N Engl J Med 360:1729–1739. https://doi.org/10.1056/NEJMoa0801560
Article
PubMed
CAS
Google Scholar
Tikka S, Baumann M, Siitonen M, Pasanen P, Pöyhönen M, Myllykangas L, Viitanen M, Fukutake T, Cognat E, Joutel A, Kalimo H (2014) CADASIL and CARASIL. Brain Pathol 24:525–544. https://doi.org/10.1111/bpa.12181
Article
PubMed
CAS
Google Scholar
Tumini E, Porcellini E, Chiappelli M, Conti CM, Beraudi A, Poli A, Caciagli F, Doyle R, Conti P, Licastro F (2007) The G51S purine nucleoside phosphorylase polymorphism is associated with cognitive decline in Alzheimer’s disease patients. Hum Psychopharmacol Clin Exp 22:75–80. https://doi.org/10.1002/hup.823
Article
CAS
Google Scholar
Ramirez A, van der Flier WM, Herold C, Ramonet D, Heilmann S, Lewczuk P, Popp J, Lacour A, Drichel D, Louwersheimer E, Kummer MP, Cruchaga C, Hoffmann P, Teunissen C, Holstege H, Kornhuber J, Peters O, Naj AC, Chouraki V, Bellenguez C, Gerrish A, Heun R, Frolich L, Hull M, Buscemi L, Herms S, Kolsch H, Scheltens P, Breteler MM, Ruther E, Wiltfang J, Goate A, Jessen F, Maier W, Heneka MT, Becker T, Nothen MM (2014) SUCLG2 identified as both a determinator of CSF a 1-42 levels and an attenuator of cognitive decline in Alzheimer’s disease. Hum Mol Genet 23:6644–6658. https://doi.org/10.1093/hmg/ddu372
Article
PubMed
PubMed Central
CAS
Google Scholar
Boche D, Zotova E, Weller RO, Love S, Neal JW, Pickering RM, Wilkinson D, Holmes C, Nicoll JAR (2008) Consequence of Abeta immunization on the vasculature of human Alzheimer’s disease brain. Brain 131:3299–3310. https://doi.org/10.1093/brain/awn261
Article
PubMed
CAS
Google Scholar
Sperling R, Salloway S, Brooks DJ, Tampieri D, Barakos J, Fox NC, Raskind M, Sabbagh M, Honig LS, Porsteinsson AP, Lieberburg I, Arrighi HM, Morris KA, Lu Y, Liu E, Gregg KM, Brashear HR, Kinney GG, Black R, Grundman M (2012) Amyloid-related imaging abnormalities in patients with Alzheimer’s disease treated with bapineuzumab: a retrospective analysis. Lancet Neurol 11:241–249. https://doi.org/10.1016/S1474-4422(12)70015-7
Article
PubMed
PubMed Central
CAS
Google Scholar
Banerjee G, Carare R, Cordonnier C, Greenberg SM, Schneider JA, Smith EE, Van Buchem M, Van Der Grond J, Verbeek MM, Werring DJ (2017) The increasing impact of cerebral amyloid angiopathy: essential new insights for clinical practice. J Neurol Neurosurg Psychiatry 88:982–994. https://doi.org/10.1136/jnnp-2016-314697
Article
PubMed
PubMed Central
Google Scholar