Amor S, Peferoen LA, Vogel DY, Breur M, van der Valk P, Baker D, et al. Inflammation in neurodegenerative diseases--an update. Immunology. 2014;142:151–66. doi:10.1111/imm.12233.
Article
PubMed Central
CAS
PubMed
Google Scholar
Querfurth HW, LaFerla FM. Alzheimer’s disease. N Engl J Med. 2010;362:329–44. doi:10.1056/NEJMra0909142.
Article
CAS
PubMed
Google Scholar
Selkoe DJ (2011) Alzheimer's disease. Cold Spring Harb Perspect Biol 3: doi:10.1101/cshperspect.a004457.
Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, et al. Inflammation and Alzheimer’s disease. Neurobiol Aging. 2000;21:383–421.
Article
PubMed Central
CAS
PubMed
Google Scholar
Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015;14:388–405. doi:10.1016/S1474-4422(15)70016-5.
Article
CAS
PubMed
Google Scholar
Heppner FL, Ransohoff RM, Becher B. Immune attack: the role of inflammation in Alzheimer disease. Nat Rev Neurosci. 2015;16:358–72. doi:10.1038/nrn3880.
Article
CAS
PubMed
Google Scholar
Wyss-Coray T. Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat Med. 2006;12:1005–15. doi:10.1038/nm1484.
CAS
PubMed
Google Scholar
Lucin KM, Wyss-Coray T. Immune activation in brain aging and neurodegeneration: too much or too little? Neuron. 2009;64:110–22. doi:10.1016/j.neuron.2009.08.039.
Article
PubMed Central
CAS
PubMed
Google Scholar
Heneka MT, Golenbock DT, Latz E. Innate immunity in Alzheimer's disease. Nat Immunol. 2015;16:229–36. doi:10.1038/ni.3102.
Article
CAS
PubMed
Google Scholar
Du Y, Dodel R, Hampel H, Buerger K, Lin S, Eastwood B, et al. Reduced levels of amyloid beta-peptide antibody in Alzheimer disease. Neurology. 2001;57:801–5.
Article
CAS
PubMed
Google Scholar
Geylis V, Kourilov V, Meiner Z, Nennesmo I, Bogdanovic N, Steinitz M. Human monoclonal antibodies against amyloid-beta from healthy adults. Neurobiol Aging. 2005;26:597–606. doi:10.1016/j.neurobiolaging.2004.06.008.
Article
CAS
PubMed
Google Scholar
Kellner A, Matschke J, Bernreuther C, Moch H, Ferrer I, Glatzel M. Autoantibodies against beta-amyloid are common in Alzheimer's disease and help control plaque burden. Ann Neurol. 2009;65:24–31. doi:10.1002/ana.21475.
Article
PubMed
Google Scholar
Maftei M, Thurm F, Schnack C, Tumani H, Otto M, Elbert T, et al. Increased levels of antigen-bound beta-amyloid autoantibodies in serum and cerebrospinal fluid of Alzheimer's disease patients. PLoS One. 2013;8:e68996. doi:10.1371/journal.pone.0068996.
Article
PubMed Central
CAS
PubMed
Google Scholar
Moir RD, Tseitlin KA, Soscia S, Hyman BT, Irizarry MC, Tanzi RE. Autoantibodies to redox-modified oligomeric Abeta are attenuated in the plasma of Alzheimer's disease patients. J Biol Chem. 2005;280:17458–63. doi:10.1074/jbc.M414176200.
Article
CAS
PubMed
Google Scholar
Mruthinti S, Buccafusco JJ, Hill WD, Waller JL, Jackson TW, Zamrini EY, et al. Autoimmunity in Alzheimer's disease: increased levels of circulating IgGs binding Abeta and RAGE peptides. Neurobiol Aging. 2004;25:1023–32. doi:10.1016/j.neurobiolaging.2003.11.001.
Article
CAS
PubMed
Google Scholar
Qu BX, Gong Y, Moore C, Fu M, German DC, Chang LY, et al. Beta-amyloid auto-antibodies are reduced in Alzheimer’s disease. J Neuroimmunol. 2014;274:168–73. doi:10.1016/j.jneuroim.2014.06.017.
Article
PubMed Central
CAS
PubMed
Google Scholar
Weksler ME, Relkin N, Turkenich R, LaRusse S, Zhou L, Szabo P. Patients with Alzheimer disease have lower levels of serum anti-amyloid peptide antibodies than healthy elderly individuals. Exp Gerontol. 2002;37:943–8.
Article
CAS
PubMed
Google Scholar
Gold M, Mengel D, Roskam S, Dodel R, Bach JP. Mechanisms of action of naturally occurring antibodies against beta-amyloid on microglia. J Neuroinflammation. 2013;10:5. doi:10.1186/1742-2094-10-5.
Article
PubMed Central
CAS
PubMed
Google Scholar
Neff F, Wei X, Nolker C, Bacher M, Du Y, Dodel R. Immunotherapy and naturally occurring autoantibodies in neurodegenerative disorders. Autoimmun Rev. 2008;7:501–7. doi:10.1016/j.autrev.2008.04.010.
Article
CAS
PubMed
Google Scholar
Szabo P, Relkin N, Weksler ME. Natural human antibodies to amyloid beta peptide. Autoimmun Rev. 2008;7:415–20. doi:10.1016/j.autrev.2008.03.007.
Article
CAS
PubMed
Google Scholar
Britschgi M, Olin CE, Johns HT, Takeda-Uchimura Y, LeMieux MC, Rufibach K, et al. Neuroprotective natural antibodies to assemblies of amyloidogenic peptides decrease with normal aging and advancing Alzheimer’s disease. Proc Natl Acad Sci U S A. 2009;106:12145–50. doi:10.1073/pnas.0904866106.
Article
PubMed Central
CAS
PubMed
Google Scholar
Dodel R, Balakrishnan K, Keyvani K, Deuster O, Neff F, Andrei-Selmer LC, et al. Naturally occurring autoantibodies against beta-amyloid: investigating their role in transgenic animal and in vitro models of Alzheimer’s disease. J Neurosci. 2011;31:5847–54. doi:10.1523/JNEUROSCI.4401-10.2011.
Article
CAS
PubMed
Google Scholar
Mengel D, Roskam S, Neff F, Balakrishnan K, Deuster O, Gold M, et al. Naturally occurring autoantibodies interfere with beta-amyloid metabolism and improve cognition in a transgenic mouse model of Alzheimer's disease 24 h after single treatment. Transl Psychiatry. 2013;3:e236. doi:10.1038/tp.2012.151.
Article
PubMed Central
CAS
PubMed
Google Scholar
Itagaki S, McGeer PL, Akiyama H. Presence of T-cytotoxic suppressor and leucocyte common antigen positive cells in Alzheimer’s disease brain tissue. Neurosci Lett. 1988;91:259–64.
Article
CAS
PubMed
Google Scholar
McGeer PL, Akiyama H, Itagaki S, McGeer EG. Immune system response in Alzheimer's disease. Can J Neurol Sci. 1989;16:516–27.
CAS
PubMed
Google Scholar
Parachikova A, Agadjanyan MG, Cribbs DH, Blurton-Jones M, Perreau V, Rogers J, et al. Inflammatory changes parallel the early stages of Alzheimer disease. Neurobiol Aging. 2007;28:1821–33. doi:10.1016/j.neurobiolaging.2006.08.014.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pirttila T, Mattinen S, Frey H. The decrease of CD8-positive lymphocytes in Alzheimer's disease. J Neurol Sci. 1992;107:160–5.
Article
CAS
PubMed
Google Scholar
Rogers J, Rovigatti U. Immunologic and tissue culture approaches to the neurobiology of aging. Neurobiol Aging. 1988;9:759–62.
Article
CAS
PubMed
Google Scholar
Togo T, Akiyama H, Iseki E, Kondo H, Ikeda K, Kato M, et al. Occurrence of T cells in the brain of Alzheimer’s disease and other neurological diseases. J Neuroimmunol. 2002;124:83–92.
Article
CAS
PubMed
Google Scholar
Monsonego A, Zota V, Karni A, Krieger JI, Bar-Or A, Bitan G, et al. Increased T cell reactivity to amyloid beta protein in older humans and patients with Alzheimer disease. J Clin Invest. 2003;112:415–22. doi:10.1172/JCI18104.
Article
PubMed Central
CAS
PubMed
Google Scholar
Richartz-Salzburger E, Batra A, Stransky E, Laske C, Kohler N, Bartels M, et al. Altered lymphocyte distribution in Alzheimer’s disease. J Psychiatr Res. 2007;41:174–8. doi:10.1016/j.jpsychires.2006.01.010.
Article
PubMed
Google Scholar
Jozwik A, Landowski J, Bidzan L, Fulop T, Bryl E, Witkowski JM. Beta-amyloid peptides enhance the proliferative response of activated CD4CD28 lymphocytes from Alzheimer disease patients and from healthy elderly. PLoS One. 2012;7:e33276. doi:10.1371/journal.pone.0033276.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lueg G, Gross CC, Lohmann H, Johnen A, Kemmling A, Deppe M, et al. Clinical relevance of specific T-cell activation in the blood and cerebrospinal fluid of patients with mild Alzheimer's disease. Neurobiol Aging. 2015;36:81–9. doi:10.1016/j.neurobiolaging.2014.08.008.
Article
CAS
PubMed
Google Scholar
Pellicano M, Larbi A, Goldeck D, Colonna-Romano G, Buffa S, Bulati M, et al. Immune profiling of Alzheimer patients. J Neuroimmunol. 2012;242:52–9. doi:10.1016/j.jneuroim.2011.11.005.
Article
CAS
PubMed
Google Scholar
Speciale L, Calabrese E, Saresella M, Tinelli C, Mariani C, Sanvito L, et al. Lymphocyte subset patterns and cytokine production in Alzheimer’s disease patients. Neurobiol Aging. 2007;28:1163–9. doi:10.1016/j.neurobiolaging.2006.05.020.
Article
CAS
PubMed
Google Scholar
Jankowsky JL, Fadale DJ, Anderson J, Xu GM, Gonzales V, Jenkins NA, et al. Mutant presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo: evidence for augmentation of a 42-specific gamma secretase. Hum Mol Genet. 2004;13:159–70. doi:10.1093/hmg/ddh019.
Article
CAS
PubMed
Google Scholar
Shinkai Y, Rathbun G, Lam KP, Oltz EM, Stewart V, Mendelsohn M, et al. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell. 1992;68:855–67.
Article
CAS
PubMed
Google Scholar
Jankowsky JL, Melnikova T, Fadale DJ, Xu GM, Slunt HH, Gonzales V, et al. Environmental enrichment mitigates cognitive deficits in a mouse model of Alzheimer’s disease. J Neurosci. 2005;25:5217–24. doi:10.1523/JNEUROSCI.5080-04.2005.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. J Pharmacol Pharmacother. 2010;1:94–9. doi:10.4103/0976-500X.72351.
Article
PubMed Central
PubMed
Google Scholar
Kulic L, McAfoose J, Welt T, Tackenberg C, Spani C, Wirth F, et al. Early accumulation of intracellular fibrillar oligomers and late congophilic amyloid angiopathy in mice expressing the Osaka intra-Abeta APP mutation. Transl Psychiatry. 2012;2:e183. doi:10.1038/tp.2012.109.
Article
PubMed Central
CAS
PubMed
Google Scholar
Paxinos G, Franklin KBJ (2012) The Mouse Brain in Stereotaxic Coordinates (4th Edition). Academic Press, City
Knobloch M, Konietzko U, Krebs DC, Nitsch RM. Intracellular Abeta and cognitive deficits precede beta-amyloid deposition in transgenic arcAbeta mice. Neurobiol Aging. 2007;28:1297–306. doi:10.1016/j.neurobiolaging.2006.06.019.
Article
CAS
PubMed
Google Scholar
Chakrabarty P, Li A, Ceballos-Diaz C, Eddy JA, Funk CC, Moore B, et al. IL-10 alters immunoproteostasis in APP mice, increasing plaque burden and worsening cognitive behavior. Neuron. 2015;85:519–33. doi:10.1016/j.neuron.2014.11.020.
Article
CAS
PubMed
Google Scholar
Simen BB, Duman CH, Simen AA, Duman RS. TNFalpha signaling in depression and anxiety: behavioral consequences of individual receptor targeting. Biol Psychiatry. 2006;59:775–85. doi:10.1016/j.biopsych.2005.10.013.
Article
CAS
PubMed
Google Scholar
Tang YP, Wang H, Feng R, Kyin M, Tsien JZ. Differential effects of enrichment on learning and memory function in NR2B transgenic mice. Neuropharmacology. 2001;41:779–90.
Article
CAS
PubMed
Google Scholar
Holcomb L, Gordon MN, McGowan E, Yu X, Benkovic S, Jantzen P, et al. Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nat Med. 1998;4:97–100.
Article
CAS
PubMed
Google Scholar
Holcomb LA, Gordon MN, Jantzen P, Hsiao K, Duff K, Morgan D. Behavioral changes in transgenic mice expressing both amyloid precursor protein and presenilin-1 mutations: lack of association with amyloid deposits. Behav Genet. 1999;29:177–85.
Article
CAS
PubMed
Google Scholar
Brynskikh A, Warren T, Zhu J, Kipnis J. Adaptive immunity affects learning behavior in mice. Brain Behav Immun. 2008;22:861–9. doi:10.1016/j.bbi.2007.12.008.
Article
CAS
PubMed
Google Scholar
Kipnis J, Cohen H, Cardon M, Ziv Y, Schwartz M. T cell deficiency leads to cognitive dysfunction: implications for therapeutic vaccination for schizophrenia and other psychiatric conditions. Proc Natl Acad Sci U S A. 2004;101:8180–5. doi:10.1073/pnas.0402268101.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wolf SA, Steiner B, Akpinarli A, Kammertoens T, Nassenstein C, Braun A, et al. CD4-positive T lymphocytes provide a neuroimmunological link in the control of adult hippocampal neurogenesis. J Immunol. 2009;182:3979–84. doi:10.4049/jimmunol.0801218.
Article
CAS
PubMed
Google Scholar
Martorana A, Bulati M, Buffa S, Pellicano M, Caruso C, Candore G, et al. Immunosenescence, inflammation and Alzheimer's disease. Longev Healthspan. 2012;1:8. doi:10.1186/2046-2395-1-8.
Article
PubMed Central
PubMed
Google Scholar
Richartz-Salzburger E, Stransky E, Laske C, Kohler N. Premature immunosenescence: a pathogenetic factor in Alzheimer’s disease? Nervenarzt. 2010;81:837–43. doi:10.1007/s00115-009-2918-7.
Article
CAS
PubMed
Google Scholar
Zhu Y, Obregon D, Hou H, Giunta B, Ehrhart J, Fernandez F, et al. Mutant presenilin-1 deregulated peripheral immunity exacerbates Alzheimer-like pathology. J Cell Mol Med. 2011;15:327–38. doi:10.1111/j.1582-4934.2009.00962.x.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rogers J, Luber-Narod J, Styren SD, Civin WH. Expression of immune system-associated antigens by cells of the human central nervous system: relationship to the pathology of Alzheimer’s disease. Neurobiol Aging. 1988;9:339–49.
Article
CAS
PubMed
Google Scholar
Sohn JH, So JO, Kim H, Nam EJ, Ha HJ, Kim YH, et al. Reduced serum level of antibodies against amyloid beta peptide is associated with aging in Tg2576 mice. Biochem Biophys Res Commun. 2007;361:800–4. doi:10.1016/j.bbrc.2007.07.107.
Article
CAS
PubMed
Google Scholar
Monsonego A, Imitola J, Petrovic S, Zota V, Nemirovsky A, Baron R, et al. Abeta-induced meningoencephalitis is IFN-gamma-dependent and is associated with T cell-dependent clearance of Abeta in a mouse model of Alzheimer's disease. Proc Natl Acad Sci U S A. 2006;103:5048–53. doi:10.1073/pnas.0506209103.
Article
PubMed Central
CAS
PubMed
Google Scholar
Town T, Tan J, Flavell RA, Mullan M. T-cells in Alzheimer’s disease. Neuromolecular Med. 2005;7:255–64. doi:10.1385/NMM:7:3:255.
Article
CAS
PubMed
Google Scholar
Anderson KM, Olson KE, Estes KA, Flanagan K, Gendelman HE, Mosley RL. Dual destructive and protective roles of adaptive immunity in neurodegenerative disorders. Transl Neurodegener. 2014;3:25. doi:10.1186/2047-9158-3-25.
Article
PubMed Central
PubMed
Google Scholar
Browne TC, McQuillan K, McManus RM, O'Reilly JA, Mills KH, Lynch MA. IFN-gamma Production by amyloid beta-specific Th1 cells promotes microglial activation and increases plaque burden in a mouse model of Alzheimer’s disease. J Immunol. 2013;190:2241–51. doi:10.4049/jimmunol.1200947.
Article
CAS
PubMed
Google Scholar
Zhang J, Ke KF, Liu Z, Qiu YH, Peng YP. Th17 cell-mediated neuroinflammation is involved in neurodegeneration of abeta1-42-induced Alzheimer’s disease model rats. PLoS One. 2013;8:e75786. doi:10.1371/journal.pone.0075786.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fisher Y, Nemirovsky A, Baron R, Monsonego A. T cells specifically targeted to amyloid plaques enhance plaque clearance in a mouse model of Alzheimer’s disease. PLoS One. 2010;5:e10830. doi:10.1371/journal.pone.0010830.
Article
PubMed Central
PubMed
Google Scholar
Fisher Y, Strominger I, Biton S, Nemirovsky A, Baron R, Monsonego A. Th1 polarization of T cells injected into the cerebrospinal fluid induces brain immunosurveillance. J Immunol. 2014;192:92–102. doi:10.4049/jimmunol.1301707.
Article
CAS
PubMed
Google Scholar
Brochard V, Combadiere B, Prigent A, Laouar Y, Perrin A, Beray-Berthat V, et al. Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease. J Clin Invest. 2009;119:182–92. doi:10.1172/JCI36470.
PubMed Central
CAS
PubMed
Google Scholar
Beers DR, Henkel JS, Zhao W, Wang J, Appel SH. CD4+ T cells support glial neuroprotection, slow disease progression, and modify glial morphology in an animal model of inherited ALS. Proc Natl Acad Sci U S A. 2008;105:15558–63. doi:10.1073/pnas.0807419105.
Article
PubMed Central
CAS
PubMed
Google Scholar
Beers DR, Henkel JS, Zhao W, Wang J, Huang A, Wen S, et al. Endogenous regulatory T lymphocytes ameliorate amyotrophic lateral sclerosis in mice and correlate with disease progression in patients with amyotrophic lateral sclerosis. Brain. 2011;134:1293–314. doi:10.1093/brain/awr074.
Article
PubMed Central
PubMed
Google Scholar
Sakaguchi S. Naturally arising Foxp3-expressing CD25 + CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol. 2005;6:345–52. doi:10.1038/ni1178.
Article
CAS
PubMed
Google Scholar
Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell. 2008;133:775–87. doi:10.1016/j.cell.2008.05.009.
Article
CAS
PubMed
Google Scholar
Tiemessen MM, Jagger AL, Evans HG, van Herwijnen MJ, John S, Taams LS. CD4 + CD25 + Foxp3+ regulatory T cells induce alternative activation of human monocytes/macrophages. Proc Natl Acad Sci U S A. 2007;104:19446–51. doi:10.1073/pnas.0706832104.
Article
PubMed Central
CAS
PubMed
Google Scholar
Baruch K, Rosenzweig N, Kertser A, Deczkowska A, Sharif AM, Spinrad A, et al. Breaking immune tolerance by targeting Foxp3(+) regulatory T cells mitigates Alzheimer's disease pathology. Nat Commun. 2015;6:7967. doi:10.1038/ncomms8967.
Article
PubMed Central
CAS
PubMed
Google Scholar
Avidan H, Kipnis J, Butovsky O, Caspi RR, Schwartz M. Vaccination with autoantigen protects against aggregated beta-amyloid and glutamate toxicity by controlling microglia: effect of CD4 + CD25+ T cells. Eur J Immunol. 2004;34:3434–45. doi:10.1002/eji.200424883.
Article
CAS
PubMed
Google Scholar
Reynolds AD, Stone DK, Hutter JA, Benner EJ, Mosley RL, Gendelman HE. Regulatory T cells attenuate Th17 cell-mediated nigrostriatal dopaminergic neurodegeneration in a model of Parkinson's disease. J Immunol. 2010;184:2261–71. doi:10.4049/jimmunol.0901852.
Article
PubMed Central
CAS
PubMed
Google Scholar
Weekman EM, Sudduth TL, Abner EL, Popa GJ, Mendenhall MD, Brothers HM, et al. Transition from an M1 to a mixed neuroinflammatory phenotype increases amyloid deposition in APP/PS1 transgenic mice. J Neuroinflammation. 2014;11:127. doi:10.1186/1742-2094-11-127.
Article
PubMed Central
PubMed
Google Scholar
Wilcock DM. A changing perspective on the role of neuroinflammation in Alzheimer’s disease. Int J Alzheimers Dis. 2012;2012:495243. doi:10.1155/2012/495243.
PubMed Central
PubMed
Google Scholar