Arai T, Hasegawa M, Akiyama H, Ikeda K, Nonaka T, Mori H, Mann D, Tsuchiya K, Yoshida M, Hashizume Y, Oda T: TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun 2006, 351(3):602–611.
Article
CAS
PubMed
Google Scholar
Mackenzie IR, Neumann M, Bigio EH, Cairns NJ, Alafuzoff I, Kril J, Kovacs GG, Ghetti B, Halliday G, Holm IE, Ince PG, Kamphorst W, Revesz T, Rozemuller AJ, Kumar-Singh S, Akiyama H, Baborie A, Spina S, Dickson DW, Trojanowski JQ, Mann DM: Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update. Acta Neuropathol 2010, 119(1):1–4.
Article
PubMed
Google Scholar
Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, Bruce J, Schuck T, Grossman M, Clark CM, McCluskey LF, Miller BL, Masliah E, Mackenzie IR, Feldman H, Feiden W, Kretzschmar HA, Trojanowski JQ, Lee VM: Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 2006, 314(5796):130–133.
Article
CAS
PubMed
Google Scholar
Sreedharan J, Blair IP, Tripathi VB, Hu X, Vance C, Rogelj B, Ackerley S, Durnall JC, Williams KL, Buratti E, Baralle F, de Belleroche J, Mitchell JD, Leigh PN, Al-Chalabi A, Miller CC, Nicholson G, Shaw CE: TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 2008, 319(5870):1668–1672.
Article
CAS
PubMed
Google Scholar
Buratti E, Baralle FE: The molecular links between TDP-43 dysfunction and neurodegeneration. Adv Genet 2009, 66: 1–34.
Article
CAS
PubMed
Google Scholar
Dreyfuss G, Matunis MJ, Pinol-Roma S, Burd CG: hnRNP proteins and the biogenesis of mRNA. Annu Rev Biochem 1993, 62: 289–321.
Article
CAS
PubMed
Google Scholar
Geser F, Martinez-Lage M, Kwong LK, Lee VM, Trojanowski JQ: Amyotrophic lateral sclerosis, frontotemporal dementia and beyond: the TDP-43 diseases. J Neurol 2009, 256(8):1205–1214.
Article
PubMed
PubMed Central
Google Scholar
Amador-Ortiz C, Lin WL, Ahmed Z, Personett D, Davies P, Duara R, Graff-Radford NR, Hutton ML, Dickson DW: TDP-43 immunoreactivity in hippocampal sclerosis and Alzheimer’s disease. Ann Neurol 2007, 61(5):435–445.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kadokura A, Yamazaki T, Lemere CA, Takatama M, Okamoto K: Regional distribution of TDP-43 inclusions in Alzheimer disease (AD) brains: their relation to AD common pathology. Neuropathology 2009, 29(5):566–573.
Article
PubMed
Google Scholar
Uryu K, Nakashima-Yasuda H, Forman MS, Kwong LK, Clark CM, Grossman M, Miller BL, Kretzschmar HA, Lee VM, Trojanowski JQ, Neumann M: Concomitant TAR-DNA-binding protein 43 pathology is present in Alzheimer disease and corticobasal degeneration but not in other tauopathies. J Neuropathol Exp Neurol 2008, 67(6):555–564.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wilson AC, Dugger BN, Dickson DW, Wang DS: TDP-43 in aging and Alzheimer’s disease - a review. Int J Clin Exp Pathol 2011, 4(2):147–155.
CAS
PubMed
PubMed Central
Google Scholar
Youmans KL, Wolozin B: TDP-43: a new player on the AD field? Exp Neurol 2012, 237(1):90–95.
Article
PubMed
PubMed Central
Google Scholar
Duyckaerts C, Delatour B, Potier MC: Classification and basic pathology of Alzheimer disease. Acta Neuropathol 2009, 118(1):5–36.
Article
CAS
PubMed
Google Scholar
Herman AM, Khandelwal PJ, Rebeck GW, Moussa CE: Wild type TDP-43 induces neuro-inflammation and alters APP metabolism in lentiviral gene transfer models. Exp Neurol 2012, 235(1):297–305.
Article
CAS
PubMed
PubMed Central
Google Scholar
Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E: Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 1999, 56(3):303–308.
Article
CAS
PubMed
Google Scholar
Petersen RC, Doody R, Kurz A, Mohs RC, Morris JC, Rabins PV, Ritchie K, Rossor M, Thal L, Winblad B: Current concepts in mild cognitive impairment. Arch Neurol 2001, 58(12):1985–1992.
Article
CAS
PubMed
Google Scholar
Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, Gamst A, Holtzman DM, Jagust WJ, Petersen RC, Snyder PJ, Carrillo MC, Thies B, Phelps CH: The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011, 7(3):270–279.
Article
PubMed
PubMed Central
Google Scholar
Bennett DA, Schneider JA, Bienias JL, Evans DA, Wilson RS: Mild cognitive impairment is related to Alzheimer disease pathology and cerebral infarctions. Neurology 2005, 64(5):834–841.
Article
CAS
PubMed
Google Scholar
Markesbery WR: Neuropathologic alterations in mild cognitive impairment: a review. J Alzheimers Dis 2010, 19(1):221–228.
PubMed
PubMed Central
Google Scholar
Tremblay C, Pilote M, Phivilay A, Emond V, Bennett DA, Calon F: Biochemical characterization of Abeta and tau pathologies in mild cognitive impairment and Alzheimer’s disease. J Alzheimers Dis 2007, 12(4):377–390.
CAS
PubMed
Google Scholar
Tremblay C, St-Amour I, Schneider J, Bennett DA, Calon F: Accumulation of transactive response DNA binding protein 43 in mild cognitive impairment and Alzheimer disease. J Neuropathol Exp Neurol 2011, 70(9):788–798.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wilson RS, Yu L, Trojanowski JQ, Chen EY, Boyle PA, Bennett DA, Schneider JA: TDP-43 pathology, cognitive decline, and dementia in Old Age. JAMA Neurol 2013, 70(11):1418–1424.
Article
PubMed
Google Scholar
Swarup V, Phaneuf D, Dupre N, Petri S, Strong M, Kriz J, Julien JP: Deregulation of TDP-43 in amyotrophic lateral sclerosis triggers nuclear factor kappaB-mediated pathogenic pathways. J Exp Med 2011, 208(12):2429–2447.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ferrer I, Marti E, Lopez E, Tortosa A: NF-kB immunoreactivity is observed in association with beta A4 diffuse plaques in patients with Alzheimer’s disease. Neuropathol Appl Neurobiol 1998, 24(4):271–277.
Article
CAS
PubMed
Google Scholar
Bales KR, Du Y, Dodel RC, Yan GM, Hamilton-Byrd E, Paul SM: The NF-kappaB/Rel family of proteins mediates Abeta-induced neurotoxicity and glial activation. Brain Res Mol Brain Res 1998, 57(1):63–72.
Article
CAS
PubMed
Google Scholar
Kaltschmidt B, Uherek M, Volk B, Baeuerle PA, Kaltschmidt C: Transcription factor NF-kappaB is activated in primary neurons by amyloid beta peptides and in neurons surrounding early plaques from patients with Alzheimer disease. Proc Natl Acad Sci U S A 1997, 94(6):2642–2647.
Article
CAS
PubMed
PubMed Central
Google Scholar
Valerio A, Boroni F, Benarese M, Sarnico I, Ghisi V, Bresciani LG, Ferrario M, Borsani G, Spano P, Pizzi M: NF-kappaB pathway: a target for preventing beta-amyloid (Abeta)-induced neuronal damage and Abeta42 production. Eur J Neurosci 2006, 23(7):1711–1720.
Article
PubMed
Google Scholar
Bourne KZ, Ferrari DC, Lange-Dohna C, Rossner S, Wood TG, Perez-Polo JR: Differential regulation of BACE1 promoter activity by nuclear factor-kappaB in neurons and glia upon exposure to beta-amyloid peptides. J Neurosci Res 2007, 85(6):1194–1204.
Article
CAS
PubMed
Google Scholar
Buggia-Prevot V, Sevalle J, Rossner S, Checler F: NFkappaB-dependent control of BACE1 promoter transactivation by Abeta42. J Biol Chem 2008, 283(15):10037–10047.
Article
CAS
PubMed
Google Scholar
Bennett DA, Schneider JA, Buchman AS, Barnes LL, Boyle PA, Wilson RS: Overview and findings from the rush memory and aging project. Curr Alzheimer Res 2012, 9(6):646–663.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bennett DA, Schneider JA, Aggarwal NT, Arvanitakis Z, Shah RC, Kelly JF, Fox JH, Cochran EJ, Arends D, Treinkman AD, Wilson RS: Decision rules guiding the clinical diagnosis of Alzheimer’s disease in two community-based cohort studies compared to standard practice in a clinic-based cohort study. Neuroepidemiology 2006, 27(3):169–176.
Article
PubMed
Google Scholar
Bennett DA, Wilson RS, Schneider JA, Evans DA, Beckett LA, Aggarwal NT, Barnes LL, Fox JH, Bach J: Natural history of mild cognitive impairment in older persons. Neurology 2002, 59(2):198–205.
Article
CAS
PubMed
Google Scholar
Wilson RS, Leurgans SE, Boyle PA, Bennett DA: Cognitive decline in prodromal Alzheimer disease and mild cognitive impairment. Arch Neurol 2011, 68(3):351–356.
Article
PubMed
PubMed Central
Google Scholar
Wilson RS, Beckett LA, Barnes LL, Schneider JA, Bach J, Evans DA, Bennett DA: Individual differences in rates of change in cognitive abilities of older persons. Psychol Aging 2002, 17(2):179–193.
Article
PubMed
Google Scholar
Braak H, Braak E: Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 1991, 82(4):239–259.
Article
CAS
PubMed
Google Scholar
Morris JC, Heyman A, Mohs RC, Hughes JP, van Belle G, Fillenbaum G, Mellits ED, Clark C: The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part I. Clinical and neuropsychological assessment of Alzheimer’s disease. Neurology 1989, 39(9):1159–1165.
Article
CAS
PubMed
Google Scholar
The National Institute on Aging, and Reagan Institute Working Group on Diagnostic Criteria for the Neuropathological Assessment of Alzheimer’s Disease: Consensus recommendations for the postmortem diagnosis of Alzheimer’s disease. Neurobiol Aging 1997, 18(4 Suppl):S1–2.
Google Scholar
Bennett DA, Wilson RS, Schneider JA, Evans DA, Aggarwal NT, Arnold SE, Cochran EJ, Berry-Kravis E, Bienias JL: Apolipoprotein E epsilon4 allele, AD pathology, and the clinical expression of Alzheimer’s disease. Neurology 2003, 60(2):246–252.
Article
CAS
PubMed
Google Scholar
Schmitz ML, dos Santos Silva MA, Baeuerle PA: Transactivation domain 2 (TA2) of p65 NF-kappa B. Similarity to TA1 and phorbol ester-stimulated activity and phosphorylation in intact cells. J Biol Chem 1995, 270(26):15576–15584.
Article
CAS
PubMed
Google Scholar
Rohan Z, Matej R: Current concepts in the classification and diagnosis of frontotemporal lobar degenerations: a practical approach. Arch Pathol Lab Med 2014, 138(1):132–138.
Article
CAS
PubMed
Google Scholar
Sieben A, Van Langenhove T, Engelborghs S, Martin JJ, Boon P, Cras P, De Deyn PP, Santens P, Van Broeckhoven C, Cruts M: The genetics and neuropathology of frontotemporal lobar degeneration. Acta Neuropathol 2012, 124(3):353–372.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dormann D, Capell A, Carlson AM, Shankaran SS, Rodde R, Neumann M, Kremmer E, Matsuwaki T, Yamanouchi K, Nishihara M, Haass C: Proteolytic processing of TAR DNA binding protein-43 by caspases produces C-terminal fragments with disease defining properties independent of progranulin. J Neurochem 2009, 110(3):1082–1094.
Article
CAS
PubMed
Google Scholar
Igaz LM, Kwong LK, Chen-Plotkin A, Winton MJ, Unger TL, Xu Y, Neumann M, Trojanowski JQ, Lee VM: Expression of TDP-43C-terminal fragments in vitro recapitulates pathological features of TDP-43 proteinopathies. J Biol Chem 2009, 284(13):8516–8524.
Article
CAS
PubMed
PubMed Central
Google Scholar
Johnson BS, McCaffery JM, Lindquist S, Gitler AD: A yeast TDP-43 proteinopathy model: Exploring the molecular determinants of TDP-43 aggregation and cellular toxicity. Proc Natl Acad Sci U S A 2008, 105(17):6439–6444.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang YJ, Xu YF, Cook C, Gendron TF, Roettges P, Link CD, Lin WL, Tong J, Castanedes-Casey M, Ash P, Gass J, Rangachari V, Buratti E, Baralle F, Golde TE, Dickson DW, Petrucelli L: Aberrant cleavage of TDP-43 enhances aggregation and cellular toxicity. Proc Natl Acad Sci U S A 2009, 106(18):7607–7612.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stallings NR, Puttaparthi K, Luther CM, Burns DK, Elliott JL: Progressive motor weakness in transgenic mice expressing human TDP-43. Neurobiol Dis 2010, 40(2):404–414.
Article
CAS
PubMed
Google Scholar
Wegorzewska I, Bell S, Cairns NJ, Miller TM, Baloh RH: TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci U S A 2009, 106(44):18809–18814.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wils H, Kleinberger G, Janssens J, Pereson S, Joris G, Cuijt I, Smits V, Ceuterick-de Groote C, Van Broeckhoven C, Kumar-Singh S: TDP-43 transgenic mice develop spastic paralysis and neuronal inclusions characteristic of ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci U S A 2010, 107(8):3858–3863.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu YF, Gendron TF, Zhang YJ, Lin WL, D’Alton S, Sheng H, Casey MC, Tong J, Knight J, Yu X, Rademakers R, Boylan K, Hutton M, McGowan E, Dickson DW, Lewis J, Petrucelli L: Wild-type human TDP-43 expression causes TDP-43 phosphorylation, mitochondrial aggregation, motor deficits, and early mortality in transgenic mice. J Neurosci 2010, 30(32):10851–10859.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mann DM, McDonagh AM, Pickering-Brown SM, Kowa H, Iwatsubo T: Amyloid beta protein deposition in patients with frontotemporal lobar degeneration: relationship to age and apolipoprotein E genotype. Neurosci Lett 2001, 304(3):161–164.
Article
CAS
PubMed
Google Scholar
Foster NL, Wilhelmsen K, Sima AA, Jones MZ, D’Amato CJ, Gilman S: Frontotemporal dementia and parkinsonism linked to chromosome 17: a consensus conference. Conference participants. Ann Neurol 1997, 41(6):706–715.
Article
CAS
PubMed
Google Scholar
Mann DM: Dementia of frontal type and dementias with subcortical gliosis. Brain Pathol 1998, 8(2):325–338.
Article
CAS
PubMed
Google Scholar
Spillantini MG, Bird TD, Ghetti B: Frontotemporal dementia and Parkinsonism linked to chromosome 17: a new group of tauopathies. Brain Pathol 1998, 8(2):387–402.
Article
CAS
PubMed
Google Scholar
Baeuerle PA, Henkel T: Function and activation of NF-kappa B in the immune system. Annu Rev Immunol 1994, 12: 141–179.
Article
CAS
PubMed
Google Scholar
Schreck R, Albermann K, Baeuerle PA: Nuclear factor kappa B: an oxidative stress-responsive transcription factor of eukaryotic cells (a review). Free Radic Res Commun 1992, 17(4):221–237.
Article
CAS
PubMed
Google Scholar
Gerritsen ME, Williams AJ, Neish AS, Moore S, Shi Y, Collins T: CREB-binding protein/p300 are transcriptional coactivators of p65. Proc Natl Acad Sci U S A 1997, 94(7):2927–2932.
Article
CAS
PubMed
PubMed Central
Google Scholar
Perkins ND, Felzien LK, Betts JC, Leung K, Beach DH, Nabel GJ: Regulation of NF-kappaB by cyclin-dependent kinases associated with the p300 coactivator. Science 1997, 275(5299):523–527.
Article
CAS
PubMed
Google Scholar
Schmitz ML, Stelzer G, Altmann H, Meisterernst M, Baeuerle PA: Interaction of the COOH-terminal transactivation domain of p65 NF-kappa B with TATA-binding protein, transcription factor IIB, and coactivators. J Biol Chem 1995, 270(13):7219–7226.
Article
CAS
PubMed
Google Scholar
Bergmann M, Hart L, Lindsay M, Barnes PJ, Newton R: IkappaBalpha degradation and nuclear factor-kappaB DNA binding are insufficient for interleukin-1beta and tumor necrosis factor-alpha-induced kappaB-dependent transcription. Requirement for an additional activation pathway. J Biol Chem 1998, 273(12):6607–6610.
Article
CAS
PubMed
Google Scholar
Yoza BK, Hu JY, McCall CE: Protein-tyrosine kinase activation is required for lipopolysaccharide induction of interleukin 1beta and NFkappaB activation, but not NFkappaB nuclear translocation. J Biol Chem 1996, 271(31):18306–18309.
Article
CAS
PubMed
Google Scholar
Chen CH, Zhou W, Liu S, Deng Y, Cai F, Tone M, Tone Y, Tong Y, Song W: Increased NF-kappaB signalling up-regulates BACE1 expression and its therapeutic potential in Alzheimer’s disease. Int J Neuropsychopharmacol 2011, 1–14.
Google Scholar
Kitazawa M, Cheng D, Tsukamoto MR, Koike MA, Wes PD, Vasilevko V, Cribbs DH, LaFerla FM: Blocking IL-1 signaling rescues cognition, attenuates tau pathology, and restores neuronal beta-catenin pathway function in an Alzheimer’s disease model. J Immunol 2011, 187(12):6539–6549.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pandey NR, Sultan K, Twomey E, Sparks DL: Phospholipids block nuclear factor-kappa B and tau phosphorylation and inhibit amyloid-beta secretion in human neuroblastoma cells. Neuroscience 2009, 164(4):1744–1753.
Article
CAS
PubMed
Google Scholar
Paris D, Patel N, Quadros A, Linan M, Bakshi P, Ait-Ghezala G, Mullan M: Inhibition of Abeta production by NF-kappaB inhibitors. Neurosci Lett 2007, 415(1):11–16.
Article
CAS
PubMed
Google Scholar
Sung S, Yang H, Uryu K, Lee EB, Zhao L, Shineman D, Trojanowski JQ, Lee VM, Pratico D: Modulation of nuclear factor-kappa B activity by indomethacin influences A beta levels but not A beta precursor protein metabolism in a model of Alzheimer’s disease. Am J Pathol 2004, 165(6):2197–2206.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sakurai H, Chiba H, Miyoshi H, Sugita T, Toriumi W: IkappaB kinases phosphorylate NF-kappaB p65 subunit on serine 536 in the transactivation domain. J Biol Chem 1999, 274(43):30353–30356.
Article
CAS
PubMed
Google Scholar
Viatour P, Merville MP, Bours V, Chariot A: Phosphorylation of NF-kappaB and IkappaB proteins: implications in cancer and inflammation. Trends Biochem Sci 2005, 30(1):43–52.
Article
CAS
PubMed
Google Scholar
Okazaki T, Sakon S, Sasazuki T, Sakurai H, Doi T, Yagita H, Okumura K, Nakano H: Phosphorylation of serine 276 is essential for p65 NF-kappaB subunit-dependent cellular responses. Biochem Biophys Res Commun 2003, 300(4):807–812.
Article
CAS
PubMed
Google Scholar