D'Andrea MR, Cole GM, Ard MD: The microglial phagocytic role with specific plaque types in the Alzheimer disease brain. Neurobiol Aging 2004, 25: 675–683. 10.1016/j.neurobiolaging.2003.12.026
Article
PubMed
Google Scholar
Hayes A, Thaker U, Iwatsubo T, Pickering-Brown SM, Mann DM: Pathological relationships between microglial cell activity and tau and amyloid beta protein in patients with Alzheimer's disease. Neurosci Lett 2002, 331: 171–174. 10.1016/S0304-3940(02)00888-1
Article
CAS
PubMed
Google Scholar
Koenigsknecht-Talboo J, Landreth GE: Microglial phagocytosis induced by fibrillar beta-amyloid and IgGs are differentially regulated by proinflammatory cytokines. J Neurosci 2005, 25: 8240–8249. 10.1523/JNEUROSCI.1808-05.2005
Article
CAS
PubMed
Google Scholar
Kitazawa M, Yamasaki TR, LaFerla FM: Microglia as a potential bridge between the amyloid beta-peptide and tau. Ann N Y Acad Sci 2004, 1035: 85–103. 10.1196/annals.1332.006
Article
CAS
PubMed
Google Scholar
Beach TG, Sue LI, Walker DG, Lue LF, Connor DJ, Caviness JN, et al.: Marked microglial reaction in normal aging human substantia nigra: correlation with extraneuronal neuromelanin pigment deposits. Acta Neuropathol 2007, 114: 419–424. 10.1007/s00401-007-0250-5
Article
PubMed
Google Scholar
Zecca L, Zucca FA, Albertini A, Rizzio E, Fariello RG: A proposed dual role of neuromelanin in the pathogenesis of Parkinson's disease. Neurology 2006, 67: S8-S11. 10.1212/WNL.67.7_suppl_2.S8
Article
CAS
PubMed
Google Scholar
Park JY, Paik SR, Jou I, Park SM: Microglial phagocytosis is enhanced by monomeric alpha-synuclein, not aggregated alpha-synuclein: implications for Parkinson's disease. Glia 2008, 56: 1215–1223. 10.1002/glia.20691
Article
PubMed
Google Scholar
Knott C, Stern G, Kingsbury A, Welcher AA, Wilkin GP: Elevated glial brain-derived neurotrophic factor in Parkinson's diseased nigra. Parkinsonism Relat Disord 2002, 8: 329–341. 10.1016/S1353-8020(02)00008-1
Article
CAS
PubMed
Google Scholar
Lue LF, Kuo YM, Beach T, Walker DG: Microglia activation and anti-inflammatory regulation in Alzheimer's disease. Mol Neurobiol 2010, 41: 115–128. 10.1007/s12035-010-8106-8
Article
CAS
PubMed
PubMed Central
Google Scholar
Maccioni RB, Rojo LE, Fernandez JA, Kuljis RO: The role of neuroimmunomodulation in Alzheimer's disease. Ann N Y Acad Sci 2009, 1153: 240–246. 10.1111/j.1749-6632.2008.03972.x
Article
CAS
PubMed
Google Scholar
Farooqui T, Farooqui AA: Lipid-mediated oxidative stress and inflammation in the pathogenesis of Parkinson's disease. Parkinsons Dis 2011, 2011: 247467.
PubMed
PubMed Central
Google Scholar
Qian L, Flood PM: Microglial cells and Parkinson's disease. Immunol Res 2008, 41: 155–164. 10.1007/s12026-008-8018-0
Article
CAS
PubMed
Google Scholar
Johnston H, Boutin H, Allan SM: Assessing the contribution of inflammation in models of Alzheimer's disease. Biochem Soc Trans 2011, 39: 886–890. 10.1042/BST0390886
Article
CAS
PubMed
Google Scholar
Kettenmann H, Hanisch UK, Noda M, Verkhratsky A: Physiology of microglia. Physiol Rev 2011, 91: 461–553. 10.1152/physrev.00011.2010
Article
CAS
PubMed
Google Scholar
Mrak RE, Griffin WS: Interleukin-1, neuroinflammation, and Alzheimer's disease. Neurobiol Aging 2001, 22: 903–908. 10.1016/S0197-4580(01)00287-1
Article
CAS
PubMed
Google Scholar
Porcheray F, Viaud S, Rimaniol AC, Leone C, Samah B, Dereuddre-Bosquet N, et al.: Macrophage activation switching: an asset for the resolution of inflammation. Clin Exp Immunol 2005, 142: 481–489.
CAS
PubMed
PubMed Central
Google Scholar
Gordon S: Alternative activation of macrophages. Nat Rev Immunol 2003, 3: 23–35. 10.1038/nri978
Article
CAS
PubMed
Google Scholar
Colton CA, Mott RT, Sharpe H, Xu Q, Van Nostrand WE, Vitek MP: Expression profiles for macrophage alternative activation genes in AD and in mouse models of AD. J Neuroinflammation 2006, 3: 27. 10.1186/1742-2094-3-27
Article
PubMed
PubMed Central
Google Scholar
El Khoury J, Luster AD: Mechanisms of microglia accumulation in Alzheimer's disease: therapeutic implications. Trends Pharmacol Sci 2008, 29: 626–632. 10.1016/j.tips.2008.08.004
Article
CAS
PubMed
Google Scholar
Colton CA, Wilcock DM: Assessing activation states in microglia. CNS Neurol Disord Drug Targets 2010, 9: 174–191. 10.2174/187152710791012053
Article
CAS
PubMed
Google Scholar
Griffin WS: Inflammation and neurodegenerative diseases. Am J Clin Nutr 2006, 83: 470S-474S.
CAS
PubMed
Google Scholar
Hickman SE, Allison EK, El Khoury J: Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer's disease mice. J Neurosci 2008, 28: 8354–8360. 10.1523/JNEUROSCI.0616-08.2008
Article
CAS
PubMed
PubMed Central
Google Scholar
Saha RN, Ghosh A, Palencia CA, Fung YK, Dudek SM, Pahan K: TNF-alpha preconditioning protects neurons via neuron-specific up-regulation of CREB-binding protein. J Immunol 2009, 183: 2068–2078. 10.4049/jimmunol.0801892
Article
CAS
PubMed
PubMed Central
Google Scholar
Perry VH, Nicoll JA, Holmes C: Microglia in neurodegenerative disease. Nat Rev Neurol 2010, 6: 193–201. 10.1038/nrneurol.2010.17
Article
PubMed
Google Scholar
Fiala M, Liu QN, Sayre J, Pop V, Brahmandam V, Graves MC, et al.: Cyclooxygenase-2-positive macrophages infiltrate the Alzheimer's disease brain and damage the blood–brain barrier. Eur J Clin Invest 2002, 32: 360–371. 10.1046/j.1365-2362.2002.00994.x
Article
CAS
PubMed
Google Scholar
Gate D, Rezai-Zadeh K, Jodry D, Rentsendorj A, Town T: Macrophages in Alzheimer's disease: the blood-borne identity. J Neural Transm 2010, 117: 961–970. 10.1007/s00702-010-0422-7
Article
CAS
PubMed
PubMed Central
Google Scholar
Malm TM, Magga J, Kuh GF, Vatanen T, Koistinaho M, Koistinaho J: Minocycline reduces engraftment and activation of bone marrow-derived cells but sustains their phagocytic activity in a mouse model of Alzheimer's disease. Glia 2008, 56: 1767–1779. 10.1002/glia.20726
Article
PubMed
Google Scholar
Simard AR, Soulet D, Gowing G, Julien JP, Rivest S: Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer's disease. Neuron 2006, 49: 489–502. 10.1016/j.neuron.2006.01.022
Article
CAS
PubMed
Google Scholar
Hawkes CA, McLaurin J: Selective targeting of perivascular macrophages for clearance of beta-amyloid in cerebral amyloid angiopathy. Proc Natl Acad Sci U S A 2009, 106: 1261–1266. 10.1073/pnas.0805453106
Article
CAS
PubMed
PubMed Central
Google Scholar
Zaghi J, Goldenson B, Inayathullah M, Lossinsky AS, Masoumi A, Avagyan H, et al.: Alzheimer disease macrophages shuttle amyloid-beta from neurons to vessels, contributing to amyloid angiopathy. Acta Neuropathol 2009, 117: 111–124. 10.1007/s00401-008-0481-0
Article
CAS
PubMed
Google Scholar
Fabriek BO, Van Haastert ES, Galea I, Polfliet MM, Dopp ED, Van Den Heuvel MM, et al.: CD163-positive perivascular macrophages in the human CNS express molecules for antigen recognition and presentation. Glia 2005, 51: 297–305. 10.1002/glia.20208
Article
PubMed
Google Scholar
Graversen JH, Madsen M, Moestrup SK: CD163: a signal receptor scavenging haptoglobin-hemoglobin complexes from plasma. Int J Biochem Cell Biol 2002, 34: 309–314. 10.1016/S1357-2725(01)00144-3
Article
CAS
PubMed
Google Scholar
Kim WK, Alvarez X, Fisher J, Bronfin B, Westmoreland S, McLaurin J, et al.: CD163 identifies perivascular macrophages in normal and viral encephalitic brains and potential precursors to perivascular macrophages in blood. Am J Pathol 2006, 168: 822–834. 10.2353/ajpath.2006.050215
Article
CAS
PubMed
PubMed Central
Google Scholar
Lau SK, Chu PG, Weiss LM: CD163: a specific marker of macrophages in paraffin-embedded tissue samples. Am J Clin Pathol 2004, 122: 794–801. 10.1309/QHD6YFN81KQXUUH6
Article
PubMed
Google Scholar
Schaer DJ, Alayash AI, Buehler PW: Gating the radical hemoglobin to macrophages: the anti-inflammatory role of CD163, a scavenger receptor. Antioxid Redox Signal 2007, 9: 991–999. 10.1089/ars.2007.1576
Article
CAS
PubMed
Google Scholar
Fabriek BO, van Bruggen R, Deng DM, Ligtenberg AJ, Nazmi K, Schornagel K, et al.: The macrophage scavenger receptor CD163 functions as an innate immune sensor for bacteria. Blood 2009, 113: 887–892. 10.1182/blood-2008-07-167064
Article
CAS
PubMed
Google Scholar
Alafuzoff I, Arzberger T, Al-Sarraj S, Bodi I, Bogdanovic N, Braak H, et al.: Staging of neurofibrillary pathology in Alzheimer's disease: a study of the BrainNet Europe Consortium. Brain Pathol 2008, 18: 484–496.
PubMed
PubMed Central
Google Scholar
Alafuzoff I, Ince PG, Arzberger T, Al-Sarraj S, Bell J, Bodi I, et al.: Staging/typing of Lewy body related alpha-synuclein pathology: a study of the BrainNet Europe Consortium. Acta Neuropathol 2009, 117: 635–652. 10.1007/s00401-009-0523-2
Article
CAS
PubMed
Google Scholar
McKeith IG, Dickson DW, Lowe J, Emre M, O'Brien JT, Feldman H, et al.: Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology 2005, 65: 1863–1872. 10.1212/01.wnl.0000187889.17253.b1
Article
CAS
PubMed
Google Scholar
Borda JT, Alvarez X, Mohan M, Hasegawa A, Bernardino A, Jean S, et al.: CD163, a marker of perivascular macrophages, is up-regulated by microglia in simian immunodeficiency virus encephalitis after haptoglobin-hemoglobin complex stimulation and is suggestive of breakdown of the blood–brain barrier. Am J Pathol 2008, 172: 725–737. 10.2353/ajpath.2008.070848
Article
CAS
PubMed
PubMed Central
Google Scholar
Roberts ES, Masliah E, Fox HS: CD163 identifies a unique population of ramified microglia in HIV encephalitis (HIVE). J Neuropathol Exp Neurol 2004, 63: 1255–1264.
Article
PubMed
Google Scholar
Gentleman SM, Leclercq PD, Moyes L, Graham DI, Smith C, Griffin WS, et al.: Long-term intracerebral inflammatory response after traumatic brain injury. Forensic Sci Int 2004, 146: 97–104. 10.1016/j.forsciint.2004.06.027
Article
CAS
PubMed
Google Scholar
Fan R, Xu F, Previti ML, Davis J, Grande AM, Robinson JK, et al.: Minocycline reduces microglial activation and improves behavioral deficits in a transgenic model of cerebral microvascular amyloid. J Neurosci 2007, 27: 3057–3063. 10.1523/JNEUROSCI.4371-06.2007
Article
CAS
PubMed
Google Scholar
Lue LF, Walker DG, Rogers J: Modeling microglial activation in Alzheimer's disease with human postmortem microglial cultures. Neurobiol Aging 2001, 22: 945–956. 10.1016/S0197-4580(01)00311-6
Article
CAS
PubMed
Google Scholar
Croisier E, Moran LB, Dexter DT, Pearce RK, Graeber MB: Microglial inflammation in the parkinsonian substantia nigra: relationship to alpha-synuclein deposition. J Neuroinflammation 2005, 2: 14. 10.1186/1742-2094-2-14
Article
PubMed
PubMed Central
Google Scholar
Ouchi Y, Yagi S, Yokokura M, Sakamoto M: Neuroinflammation in the living brain of Parkinson's disease. Parkinsonism Relat Disord 2009, 15(Suppl 3):S200-S204.
Article
PubMed
Google Scholar
Walker DG, Dalsing-Hernandez JE, Campbell NA, Lue LF: Decreased expression of CD200 and CD200 receptor in Alzheimer's disease: a potential mechanism leading to chronic inflammation. Exp Neurol 2009, 215: 5–19. 10.1016/j.expneurol.2008.09.003
Article
CAS
PubMed
Google Scholar
Zotova E, Holmes C, Johnston D, Neal JW, Nicoll JA, Boche D: Microglial alterations in human Alzheimer's disease following Abeta42 immunization. Neuropathol Appl Neurobiol 2011, 37: 513–524. 10.1111/j.1365-2990.2010.01156.x
Article
CAS
PubMed
Google Scholar
Hogger P, Dreier J, Droste A, Buck F, Sorg C: Identification of the integral membrane protein RM3/1 on human monocytes as a glucocorticoid-inducible member of the scavenger receptor cysteine-rich family (CD163). J Immunol 1998, 161: 1883–1890.
CAS
PubMed
Google Scholar
Van den Heuvel MM, Tensen CP, van As JH, Van den Berg TK, Fluitsma DM, Dijkstra CD, et al.: Regulation of CD 163 on human macrophages: cross-linking of CD163 induces signaling and activation. J Leukoc Biol 1999, 66: 858–866.
CAS
PubMed
Google Scholar
Wenzel I, Roth J, Sorg C: Identification of a novel surface molecule, RM3/1, that contributes to the adhesion of glucocorticoid-induced human monocytes to endothelial cells. Eur J Immunol 1996, 26: 2758–2763. 10.1002/eji.1830261131
Article
CAS
PubMed
Google Scholar
Zwadlo-Klarwasser G, Bent S, Haubeck HD, Sorg C, Schmutzler W: Glucocorticoid-induced appearance of the macrophage subtype RM 3/1 in peripheral blood of man. Int Arch Allergy Appl Immunol 1990, 91: 175–180. 10.1159/000235111
Article
CAS
PubMed
Google Scholar
Ritter M, Buechler C, Langmann T, Schmitz G: Genomic organization and chromosomal localization of the human CD163 (M130) gene: a member of the scavenger receptor cysteine-rich superfamily. Biochem Biophys Res Commun 1999, 260: 466–474. 10.1006/bbrc.1999.0866
Article
CAS
PubMed
Google Scholar
Weaver LK, Pioli PA, Wardwell K, Vogel SN, Guyre PM: Up-regulation of human monocyte CD163 upon activation of cell-surface Toll-like receptors. J Leukoc Biol 2007, 81: 663–671.
Article
CAS
PubMed
Google Scholar
Buechler C, Ritter M, Orso E, Langmann T, Klucken J, Schmitz G: Regulation of scavenger receptor CD163 expression in human monocytes and macrophages by pro- and antiinflammatory stimuli. J Leukoc Biol 2000, 67: 97–103.
CAS
PubMed
Google Scholar
Pioli PA, Goonan KE, Wardwell K, Guyre PM: TGF-beta regulation of human macrophage scavenger receptor CD163 is Smad3-dependent. J Leukoc Biol 2004, 76: 500–508. 10.1189/jlb.1203617
Article
CAS
PubMed
Google Scholar
Sulahian TH, Hogger P, Wahner AE, Wardwell K, Goulding NJ, Sorg C, et al.: Human monocytes express CD163, which is upregulated by IL-10 and identical to p155. Cytokine 2000, 12: 1312–1321. 10.1006/cyto.2000.0720
Article
CAS
PubMed
Google Scholar
Holmes C, Boche D, Wilkinson D, Yadegarfar G, Hopkins V, Bayer A, et al.: Long-term effects of Abeta42 immunisation in Alzheimer's disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet 2008, 372: 216–223. 10.1016/S0140-6736(08)61075-2
Article
CAS
PubMed
Google Scholar
Galea I, Palin K, Newman TA, Van Rooijen N, Perry VH, Boche D: Mannose receptor expression specifically reveals perivascular macrophages in normal, injured, and diseased mouse brain. Glia 2005, 49: 375–384. 10.1002/glia.20124
Article
PubMed
Google Scholar
Musiani S, Battelli MG: Mannose receptor determination by an ELISA-like method. J Biochem Biophys Methods 2003, 55: 121–125. 10.1016/S0165-022X(03)00019-8
Article
CAS
PubMed
Google Scholar
Eikelenboom P, Veerhuis R, Scheper W, Rozemuller AJ, van Gool WA, Hoozemans JJ: The significance of neuroinflammation in understanding Alzheimer's disease. J Neural Transm 2006, 113: 1685–1695. 10.1007/s00702-006-0575-6
Article
CAS
PubMed
Google Scholar
Ito D, Tanaka K, Suzuki S, Dembo T, Fukuuchi Y: Enhanced expression of Iba1, ionized calcium-binding adapter molecule 1, after transient focal cerebral ischemia in rat brain. Stroke 2001, 32: 1208–1215. 10.1161/01.STR.32.5.1208
Article
CAS
PubMed
Google Scholar
Kanazawa H, Ohsawa K, Sasaki Y, Kohsaka S, Imai Y: Macrophage/microglia-specific protein Iba1 enhances membrane ruffling and Rac activation via phospholipase C-gamma -dependent pathway. J Biol Chem 2002, 277: 20026–20032. 10.1074/jbc.M109218200
Article
CAS
PubMed
Google Scholar
Ahmed Z, Shaw G, Sharma VP, Yang C, McGowan E, Dickson DW: Actin-binding proteins coronin-1a and IBA-1 are effective microglial markers for immunohistochemistry. J Histochem Cytochem 2007, 55: 687–700. 10.1369/jhc.6A7156.2007
Article
CAS
PubMed
Google Scholar
Mendes-Jorge L, Ramos D, Luppo M, Llombart C, Alexandre-Pires G, Nacher V, et al.: Scavenger function of resident autofluorescent perivascular macrophages and their contribution to the maintenance of the blood-retinal barrier. Invest Ophthalmol Vis Sci 2009, 50: 5997–6005. 10.1167/iovs.09-3515
Article
PubMed
Google Scholar
Xu H, Chen M, Mayer EJ, Forrester JV, Dick AD: Turnover of resident retinal microglia in the normal adult mouse. Glia 2007, 55: 1189–1198. 10.1002/glia.20535
Article
PubMed
Google Scholar
Perry VH: The influence of systemic inflammation on inflammation in the brain: implications for chronic neurodegenerative disease. Brain Behav Immun 2004, 18: 407–413. 10.1016/j.bbi.2004.01.004
Article
CAS
PubMed
Google Scholar
Tansey MG, Goldberg MS: Neuroinflammation in Parkinson's disease: its role in neuronal death and implications for therapeutic intervention. Neurobiol Dis 2010, 37: 510–518. 10.1016/j.nbd.2009.11.004
Article
CAS
PubMed
Google Scholar
Whitton PS: Inflammation as a causative factor in the aetiology of Parkinson's disease. Br J Pharmacol 2007, 150: 963–976.
Article
CAS
PubMed
PubMed Central
Google Scholar