Hyder AA, Wunderlich CA, Puvanachandra P, Gururaj G, Kobusingye OC (2007) The impact of traumatic brain injuries: a global perspective. NeuroRehabilitation 22:341–353
Article
PubMed
Google Scholar
Wilson L, Stewart W, Dams-O’Connor K, Diaz-Arrastia R, Horton L, Menon DK et al (2017) The chronic and evolving neurological consequences of traumatic brain injury. Lancet Neurol. 16:813–825
Article
PubMed
PubMed Central
Google Scholar
Saatman KE, Duhaime AC, Bullock R, Maas AIR, Valadka A, Manley GT et al (2008) Classification of traumatic brain injury for targeted therapies. J Neurotrauma 25:719–738
Article
PubMed
PubMed Central
Google Scholar
Fork M, Bartels C, Ebert AD, Grubich C, Synowitz H, Wallesch CW (2005) Neuropsychological sequelae of diffuse traumatic brain injury. Brain Inj 19:101–108
Article
PubMed
Google Scholar
Graham NSN, Jolly A, Zimmerman K, Bourke NJ, Scott G, Cole JH et al (2020) Diffuse axonal injury predicts neurodegeneration after moderate-severe traumatic brain injury. Brain 143:3685–3698
Article
PubMed
Google Scholar
Stoodley CJ, Schmahmann JD (2010) Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex 46:831–844
Article
PubMed
PubMed Central
Google Scholar
Özen I, Arkan S, Clausen F, Ruscher K, Marklund N (2022) Diffuse traumatic injury in the mouse disrupts axon-myelin integrity in the cerebellum. J Neurotrauma United States 39:411–422
Article
Google Scholar
Gale SD, Baxter L, Roundy N, Johnson SC (2005) Traumatic brain injury and grey matter concentration: a preliminary voxel based morphometry study. J Neurol Neurosurg Psychiatry 76:984–988
Article
CAS
PubMed
PubMed Central
Google Scholar
Spanos GK, Wilde EA, Bigler ED, Cleavinger HB, Fearing MA, Levin HS et al (2007) Cerebellar atrophy after moderate-to-severe pediatric traumatic brain injury. Am J Neuroradiol 28:537–542
CAS
PubMed
PubMed Central
Google Scholar
Jang SH, Kwon HG. Injury of the cortico-ponto-cerebellar tract in a patient with mild traumatic brain injury. Medicine. 2017;96.
Harris TC, de Rooij R, Kuhl E (2019) The shrinking brain: cerebral atrophy following traumatic brain injury. Ann Biomed Eng 47:1941–1959
Article
PubMed
Google Scholar
Wang Z, Wu W, Liu Y, Wang T, Chen X, Zhang J et al (2016) Altered cerebellar white matter integrity in patients with mild traumatic brain injury in the acute stage. PLoS ONE 11:e0151489
Article
PubMed
PubMed Central
CAS
Google Scholar
Henschke JU, Pakan JMP (2020) Disynaptic cerebrocerebellar pathways originating from multiple functionally distinct cortical areas. Elife 9:1–27
Article
Google Scholar
Flygt J, Ruscher K, Norberg A, Mir A, Gram H, Clausen F et al (2018) Neutralization of interleukin-1β following diffuse traumatic brain injury in the mouse attenuates the loss of mature oligodendrocytes. J Neurotrauma 35:2837–2849
Article
PubMed
PubMed Central
Google Scholar
Cai R, Pan C, Ghasemigharagoz A, Todorov MI, Förstera B, Zhao S et al (2019) Panoptic imaging of transparent mice reveals whole-body neuronal projections and skull–meninges connections. Nat Neurosci 22:317–327
Article
CAS
PubMed
Google Scholar
Pan C, Cai R, Quacquarelli FP, Ghasemigharagoz A, Lourbopoulos A, Matryba P et al (2016) Shrinkage-mediated imaging of entire organs and organisms using uDISCO. Nat Methods 13:859–867
Article
CAS
PubMed
Google Scholar
Andersson JLR, Sotiropoulos SN (2016) An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. Neuroimage 125:1063–1078
Article
PubMed
Google Scholar
Avants BB, Tustison NJ, Song G, Cook PA, Klein A, Gee JC (2011) A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 54:2033–2044
Article
PubMed
Google Scholar
Yeh FC, Wedeen VJ, Tseng WYI (2010) Generalized q-sampling imaging. IEEE Trans Med Imaging 29:1626–1635
Article
PubMed
Google Scholar
Yeh FC, Zaydan IM, Suski VR, Lacomis D, Richardson RM, Maroon JC et al (2019) Differential tractography as a track-based biomarker for neuronal injury. Neuroimage 202:116131
Article
PubMed
Google Scholar
Schaar KL, Brenneman MM, Savitz SI (2010) Functional assessments in the rodent stroke model. Exp Transl Stroke Med 2:1–11
Article
Google Scholar
Fremeau RT, Troyer MD, Pahner I, Nygaard GO, Tran CH, Reimer RJ et al (2001) The expression of vesicular glutamate transporters defines two classes of excitatory synapse. Neuron 31:247–260
Article
CAS
PubMed
Google Scholar
Ichikawa R, Miyazaki T, Kano M, Hashikawa T, Tatsumi H, Sakimura K et al (2002) Distal extension of climbing fiber territory and multiple innervation caused by aberrant wiring to adjacent spiny branchlets in cerebellar purkinje cells lacking glutamate receptor δ2. J Neurosci 22:8487–8503
Article
CAS
PubMed
PubMed Central
Google Scholar
Khaliq ZM, Raman IM (2006) Relative contributions of axonal and somatic Na channels to action potential initiation in cerebellar purkinje neurons. J Neurosci 26:1935–1944
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuo SH, Tang G, Louis ED, Ma K, Babji R, Balatbat M et al (2013) Lingo-1 expression is increased in essential tremor cerebellum and is present in the basket cell pinceau. Acta Neuropathol 125:879–889
Article
CAS
PubMed
PubMed Central
Google Scholar
Igarashi T, Potts MB, Noble-Haeusslein LJ (2007) Injury severity determines Purkinje cell loss and microglial activation in the cerebellum after cortical contusion injury. Exp Neurol 203:258–268
Article
PubMed
Google Scholar
Mao H, Jin X, Zhang L, Yang KH, Igarashi T, Noble-Haeusslein LJ et al (2010) Finite element analysis of controlled cortical impact-induced cell loss. J Neurotrauma 27:877–888
Article
PubMed
PubMed Central
Google Scholar
Potts MB, Adwanikar H, Noble-Haeusslein LJ (2009) Models of traumatic cerebellar injury. Cerebellum 8:211–221
Article
PubMed
PubMed Central
Google Scholar
Mao H, Lu L, Bian K, Clausen F, Colgan N, Gilchrist M (2018) Biomechanical analysis of fluid percussion model of brain injury. J Biomech 77:228–232
Article
PubMed
Google Scholar
Gard A, Al-Husseini A, Kornaropoulos EN, De Maio A, Tegner Y, Björkman-Burtscher I, et al. (2022) Post-concussive vestibular dysfunction is related to injury to the inferior vestibular nerve. J Neurotrauma 39:829–840
Article
PubMed
Google Scholar
Meabon JS, Huber BR, Cross DJ, Richards TL, Minoshima S, Pagulayan KF et al (2016) Repetitive blast exposure in mice and combat veterans causes persistent cerebellar dysfunction. Sci Transl Med. 8:321ra6
Article
PubMed
CAS
Google Scholar
Davidsson J, Risling M (2011) A new model to produce sagittal plane rotational induced diffuse axonal injuries. Front Neurol 2:41
Article
PubMed
PubMed Central
Google Scholar
Pisano TJ, Dhanerawala ZM, Kislin M, Bakshinskaya D, Engel EA, Hansen EJ et al (2021) Homologous organization of cerebellar pathways to sensory, motor, and associative forebrain. Cell Rep 36:109721
Article
CAS
PubMed
PubMed Central
Google Scholar
Muzzu T, Mitolo S, Gava GP, Schultz SR (2018) Encoding of locomotion kinematics in the mouse cerebellum. PLoS ONE 13:e0203900
Article
PubMed
PubMed Central
CAS
Google Scholar
Ekmark-Lewén S, Flygt J, Kiwanuka O, Meyerson BJ, Lewén A, Hillered L et al (2013) Traumatic axonal injury in the mouse is accompanied by a dynamic inflammatory response, astroglial reactivity and complex behavioral changes. J Neuroinflamm 10:1–19
Article
CAS
Google Scholar
Fox GB, Fan L, Levasseur RA, Faden AI (1998) Sustained sensory/motor and cognitive deficits with neuronal apoptosis following controlled cortical impact brain injury in the mouse. J Neurotrauma 15:599–614
Article
CAS
PubMed
Google Scholar
Ozen I, Ruscher K, Nilsson R, Flygt J, Clausen F, Marklund N (2020) Interleukin-1 beta neutralization attenuates traumatic brain injury-induced microglia activation and neuronal changes in the globus pallidus. Int J Mol Sci. 21:387
Article
CAS
PubMed Central
Google Scholar
Lin CY, Louis ED, Faust PL, Koeppen AH, Vonsattel JPG, Kuo SH (2014) Abnormal climbing fibre-Purkinje cell synaptic connections in the essential tremor cerebellum. Brain 137:3149–3159
Article
PubMed
PubMed Central
Google Scholar
Louis ED, Babij R, Lee M, Cortés E, Vonsattel JPG (2013) Quantification of cerebellar hemispheric purkinje cell linear density: 32 ET cases versus 16 controls. Mov Disord 28:1854–1859
Article
PubMed
Google Scholar
Koeppen AH, Ramirez RL, Bjork ST, Bauer P, Feustel PJ (2013) The reciprocal cerebellar circuitry in human hereditary ataxia. Cerebellum 12:493–503
Article
CAS
PubMed
PubMed Central
Google Scholar
Vigneault É, Poirel O, Riad M, Prud’homme J, Dumas S, Turecki G et al (2015) Distribution of vesicular glutamate transporters in the human brain. Front Neuroanat. 9:23
Article
PubMed
PubMed Central
CAS
Google Scholar
Ai J, Baker A (2002) Presynaptic hyperexcitability at cerebellar synapses in traumatic injury rat. Neurosci Lett 332:155–158
Article
CAS
PubMed
Google Scholar
Yuan A, Nixon RA (2016) Specialized roles of neurofilament proteins in synapses: relevance to neuropsychiatric disorders. Brain Res Bull 126:334–346
Article
CAS
PubMed
PubMed Central
Google Scholar
Yuan A, Sershen H, Basavarajappa BS, Kumar A, Hashim A et al (2015) Neurofilament subunits are integral components of synapses and modulate neurotransmission and behavior in vivo. Mol Psychiatry. 20:986–994
Article
CAS
PubMed
PubMed Central
Google Scholar
Schirmer L, Antel JP, Brück W, Stadelmann C (2011) Axonal loss and neurofilament phosphorylation changes accompany lesion development and clinical progression in multiple sclerosis. Brain Pathol 21:428–440
Article
PubMed
PubMed Central
Google Scholar
Wang MS, Wu Y, Culver DG, Glass JD (2000) Pathogenesis of axonal degeneration: parallels between Wallerian degeneration and vincristine neuropathy. J Neuropathol Exp Neurol 59:599–606
Article
CAS
PubMed
Google Scholar
Park E, McKnight S, Ai J, Baker AJ (2006) Purkinje cell vulnerability to mild and severe forebrain head trauma. J Neuropathol Exp Neurol 65:226–234
Article
PubMed
Google Scholar
Mautes AEM, Fukuda K, Noble LJ (1996) Cellular response in the cerebellum after midline traumatic brain injury in the rat. Neurosci Lett 214:95–98
Article
CAS
PubMed
Google Scholar
Fukuda K, Aihara N, Sagar SM, Sharp FR, Pitts LH, Honkaniemi J et al (1996) Purkinje cell vulnerability to mild traumatic brain injury. J Neurotrauma 13:255–266
Article
CAS
PubMed
Google Scholar
Mann DMA, Stamp JE, Yates PO, Bannister CM (1980) The fine structure of the axonal torpedo in Purkinje cells of the human cerebellum. Neurol Res 1:369–378
Article
CAS
PubMed
Google Scholar
Marion CM, Radomski KL, Cramer NP, Galdzicki Z, Armstrong RC (2018) Experimental traumatic brain injury identifies distinct early and late phase axonal conduction deficits of white matter pathophysiology, and reveals intervening recovery. J Neurosci 38:8723–8736
Article
CAS
PubMed
PubMed Central
Google Scholar
Ziogas NK, Koliatsos VE (2018) Primary traumatic axonopathy in mice subjected to impact acceleration: a reappraisal of pathology and mechanisms with high-resolution anatomical methods. J Neurosci 38:4031–4047
Article
CAS
PubMed
PubMed Central
Google Scholar
Wilkins A, Kondo Y, Song J, Liu S, Compston A, Black JA et al (2010) Slowly progressive axonal degeneration in a rat model of chronic, nonimmune-mediated demyelination. J Neuropathol Exp Neurol 69:1256–1269
Article
CAS
PubMed
Google Scholar
Bakalkin G, Nosova O, Sarkisyan D, Hallberg M, Zhang M, Schouenborg J et al (2021) Unilateral traumatic brain injury of the left and right hemisphere produces the left hindlimb response in rats. Exp Brain Res 239:2221–2232
Article
PubMed
PubMed Central
Google Scholar
Ekmark-Lewén S, Flygt J, Fridgeirsdottir GA, Kiwanuka O, Hånell A, Meyerson BJ et al (2016) Diffuse traumatic axonal injury in mice induces complex behavioural alterations that are normalized by neutralization of interleukin-1β. Eur J Neurosci 43:1016–1033
Article
PubMed
Google Scholar