De Ancos JG, Avila J (1993) Differential distribution in white and grey matter of tau phosphoisoforms containing four tubulin-binding motifs. Biochem J 296:351–354
Article
Google Scholar
Aragão Gomes L, Uytterhoeven V, Lopez-Sanmartin D, Tomé SO, Tousseyn T, Vandenberghe R, Vandenbulcke M, von Arnim CAF, Verstreken P, Thal DR (2021) Maturation of neuronal AD-tau pathology involves site-specific phosphorylation of cytoplasmic and synaptic tau preceding conformational change and fibril formation. Acta Neuropathol 141:173–192. https://doi.org/10.1007/S00401-020-02251-6
Article
PubMed
Google Scholar
Arendt T, Stieler JT, Holzer M (2016) Tau and tauopathies. Brain Res Bull 126:238–292. https://doi.org/10.1016/J.BRAINRESBULL.2016.08.018
Article
CAS
PubMed
Google Scholar
Ayers JI, Giasson BI, Borchelt DR (2018) Prion-like Spreading in Tauopathies. Biol Psychiatry 83:337–346. https://doi.org/10.1016/J.BIOPSYCH.2017.04.003
Article
CAS
PubMed
Google Scholar
Baas PW, Rao AN, Matamoros AJ, Leo L (2016) Stability properties of neuronal microtubules. Cytoskeleton (Hoboken) 73:442. https://doi.org/10.1002/CM.21286
Article
CAS
Google Scholar
von Bergen M, Barghorn S, Jeganathan S, Mandelkow EM, Mandelkow E (2006) Spectroscopic approaches to the conformation of tau protein in solution and in paired helical filaments. Neurodegener Dis 3:197–206. https://doi.org/10.1159/000095257
Article
CAS
Google Scholar
Binder LI, Frankfurter A, Rebhun L (1985) The distribution of tau in the mammalian central nervous system. J Cell Biol 101:1371–1378. https://doi.org/10.1083/JCB.101.4.1371
Article
CAS
PubMed
Google Scholar
Binder LI, Frankfurter A, Rebhun LI (1986) Differential localization of MAP-2 and Tau in mammalian neurons in situ. Ann N Y Acad Sci 466:145–166. https://doi.org/10.1111/J.1749-6632.1986.TB38392.X
Article
CAS
PubMed
Google Scholar
Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Tredici K (2006) Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol 112:389–404. https://doi.org/10.1007/s00401-006-0127-z
Article
PubMed
PubMed Central
Google Scholar
Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259. https://doi.org/10.1007/BF00308809
Article
CAS
PubMed
Google Scholar
Braak H, Del Tredici K (2016) Potential pathways of abnormal Tau and α-synuclein dissemination in sporadic Alzheimer’s and Parkinson’s siseases. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/CSHPERSPECT.A023630
Article
PubMed
PubMed Central
Google Scholar
Buée L, Bussière T, Buée-Scherrer V, Delacourte A, Hof PR (2000) Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Rev 33:95–130. https://doi.org/10.1016/S0165-0173(00)00019-9
Article
PubMed
Google Scholar
Cáceres A, Banker GA, Binder L (1986) lmmunocytochemical localization of tubulin and microtubule-associated protein 2 during the development of hippocampal neurons in culture. J Neurosci 6:714–722
Article
Google Scholar
Clavaguera F, Akatsu H, Fraser G, Crowther RA, Frank S, Hench J, Probst A, Winkler DT, Reichwald J, Staufenbiel M, Ghetti B, Goedert M, Tolnay M (2013) Brain homogenates from human tauopathies induce tau inclusions in mouse brain. Proc Natl Acad Sci USA 110:9535–9540. https://doi.org/10.1073/PNAS.1301175110
Article
CAS
PubMed
PubMed Central
Google Scholar
Clavaguera F, Hench J, Goedert M, Tolnay M (2015) Invited review: Prion-like transmission and spreading of tau pathology. Neuropathol Appl Neurobiol 41:47–58
Article
CAS
Google Scholar
Clavaguera F, Tolnay M, Goedert M (2017) The prion-like behavior of assembled tau in transgenic mice. Cold Spring Harb Perspect Med 7:a024372. https://doi.org/10.1101/CSHPERSPECT.A024372
Article
PubMed
PubMed Central
Google Scholar
Cleveland DW, Hwo SY, Kirschner MW (1977) Purification of tau, a microtubule-associated protein that induces assembly of microtubules from purified tubulin. J Mol Biol 116:207–225. https://doi.org/10.1016/0022-2836(77)90213-3
Article
CAS
PubMed
Google Scholar
Cleveland DW, Hwo SY, Kirschner MW (1977) Physical and chemical properties of purified tau factor and the role of tau in microtubule assembly. J Mol Biol 116:227–247. https://doi.org/10.1016/0022-2836(77)90214-5
Article
CAS
PubMed
Google Scholar
Cope TE, Rittman T, Borchert RJ, Jones PS, Vatansever D, Allinson K, Passamonti L, Vazquez Rodriguez P, Bevan-Jones WR, O’Brien JT, Rowe JB (2018) Tau burden and the functional connectome in Alzheimer’s disease and progressive supranuclear palsy. Brain 141:550. https://doi.org/10.1093/BRAIN/AWX347
Article
PubMed
PubMed Central
Google Scholar
Crowther RA, Olesen OF, Smith MJ, Jakes R, Goedert M (1994) Assembly of Alzheimer-like filaments from full-length tau protein. FEBS Lett 337:135–138. https://doi.org/10.1016/0014-5793(94)80260-2
Article
CAS
PubMed
Google Scholar
Crowther T, Goedert M, Wischik CM (1989) The repeat region of microtubule-associated protein tau forms part of the core of the paired helical filament of Alzheimer’s disease. Ann Med 21:127–132. https://doi.org/10.3109/07853898909149199
Article
CAS
PubMed
Google Scholar
Dawson HN, Ferreira A, Eyster MV, Ghoshal N, Binder LI, Vitek MP (2001) Inhibition of neuronal maturation in primary hippocampal neurons from tau deficient mice. J Cell Sci 114:1179–1187. https://doi.org/10.1242/JCS.114.6.1179
Article
CAS
PubMed
Google Scholar
Delacourte A, Flament S, Dibe EM, Hublau P, Sablnnière P, Hémon B, Shérrer V, Défossez A (1990) Pathological proteins Tau 64 and 69 are specifically expressed in the somatodendritic domain of the degenerating cortical neurons during Alzheimer’s disease. Demonstration with a panel of antibodies against Tau proteins. Acta Neuropathol 80:111–117. https://doi.org/10.1007/BF00308912
Article
CAS
PubMed
Google Scholar
Deture MA, Dickson DW (2019) The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener 14(1):32. https://doi.org/10.1186/s13024-019-0333-5
Article
PubMed
PubMed Central
Google Scholar
Dotti CG, Banker GA, Binder LI (1987) The expression and distribution of the microtubule-associated proteins tau and microtubule-associated protein 2 in hippocampal neurons in the rat in situ and in cell culture. Neuroscience 23:121–130. https://doi.org/10.1016/0306-4522(87)90276-4
Article
CAS
PubMed
Google Scholar
Duff K, Knight H, Refolo LM, Sanders S, Yu X, Picciano M, Malester B, Hutton M, Adamson J, Goedert M, Burki K, Davies P (2000) Characterization of pathology in transgenic mice over-expressing human genomic and cDNA tau transgenes. Neurobiol Dis 7:87–98. https://doi.org/10.1006/NBDI.1999.0279
Article
CAS
PubMed
Google Scholar
Giasson BI, Forman MS, Higuchi M, Golbe LI, Graves CL, Kotzbauer PT, Trojanowski JQ, Lee VMY (2003) Initiation and synergistic fibrillization of tau and alpha-synuctein. Science 300:636–640. https://doi.org/10.1126/SCIENCE.1082324/SUPPL_FILE/GIASSONSOM.PDF
Article
CAS
PubMed
Google Scholar
Goedert M (1997) The neurofibrillary pathology of Alzheimer’s disease. Neuroscientist 3:131–141. https://doi.org/10.1177/107385849700300212
Article
CAS
Google Scholar
Goedert M (2015) Alzheimer’s and Parkinson’s diseases: the prion concept in relation to assembled Aβ, tau, and α-synuclein. Science 349:1255555. https://doi.org/10.1126/SCIENCE.1255555
Article
PubMed
Google Scholar
Goedert M, Eisenberg DS, Crowther RA (2017) Propagation of Tau aggregates and neurodegeneration. Annu Rev Neurosci 40:189–210. https://doi.org/10.1146/ANNUREV-NEURO-072116-031153
Article
CAS
PubMed
Google Scholar
Goedert M, Jakes R (1990) Expression of separate isoforms of human tau protein: Correlation with the tau pattern in brain and effects on tubulin polymerization. EMBO J 9:4225–4230
Article
CAS
Google Scholar
Goedert M, Spillantini MG, Jakes R, Crowtherp RA, Vanmechelen E, Probst A, Götz J, Bürki K, Cohen P (1995) Molecular dissection of the paired helical filament. Neurobiol Aging 16:325–334. https://doi.org/10.1016/0197-4580(95)00017-9
Article
CAS
PubMed
Google Scholar
Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther RA (1989) Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron 3:519–526. https://doi.org/10.1016/0896-6273(89)90210-9
Article
CAS
PubMed
Google Scholar
Goedert M, Wischik CM, Crowther RA, Walker JE, Klug A (1988) Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: identification as the microtubule-associated protein tau. Proc Natl Acad Sci USA 85:4051–4055. https://doi.org/10.1073/PNAS.85.11.4051
Article
CAS
PubMed
PubMed Central
Google Scholar
Gotz J, Probst A, Spillantini MG, Schafer T, Jakes R, Burki K, Goedert M (1995) Somatodendritic localization and hyperphosphorylation of tau protein in transgenic mice expressing the longest human brain tau isoform. EMBO J 14:1304–1313
Article
CAS
Google Scholar
Grundke-Iqbal I, Iqbal K, Quinlan M, Tung YC, Zaidi MS, Wisniewski HM (1986) Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J Biol Chem 261:6084–6089. https://doi.org/10.1016/S0021-9258(17)38495-8
Article
CAS
PubMed
Google Scholar
Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI (1986) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 83:4913–4917. https://doi.org/10.1073/PNAS.83.13.4913
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo JL, Lee VMY (2014) Cell-to-cell transmission of pathogenic proteins in neurodegenerative diseases. Nat Med 20:130–138. https://doi.org/10.1038/NM.3457
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo T, Noble W, Hanger DP (2017) Roles of tau protein in health and disease. Acta Neuropathol 133:665–704. https://doi.org/10.1007/S00401-017-1707-9
Article
CAS
PubMed
PubMed Central
Google Scholar
Gustke N, Trinczek B, Biernat J, Mandelkow EM, Mandelkow E (1994) Domains of tau protein and interactions with microtubules. Biochemistry 33:9511–9522. https://doi.org/10.1021/BI00198A017
Article
CAS
PubMed
Google Scholar
Hasegawa M, Morishima-Kawashima M, Takio K, Suzuki M, Titani K, Ihara Y (1992) Protein sequence and mass spectrometric analyses of tau in the Alzheimer’s disease brain. J Biol Chem 267:17047–17054. https://doi.org/10.1016/S0021-9258(18)41890-X
Article
CAS
PubMed
Google Scholar
Higuchi M, Lee VMY, Trojanowski JQ (2002) Tau and axonopathy in neurodegenerative disorders. NeuroMolecular Med 2:131–150. https://doi.org/10.1385/NMM:2:2:131
Article
CAS
PubMed
Google Scholar
Holmes BB, Diamond MI (2014) Prion-like properties of Tau protein: the importance of extracellular Tau as a therapeutic target. J Biol Chem 289:19855–19861. https://doi.org/10.1074/JBC.R114.549295
Article
CAS
PubMed
PubMed Central
Google Scholar
Jeganathan S, Von Bergen M, Mandelkow EEM, Mandelkow EEM (2008) The natively unfolded character of tau and its aggregation to Alzheimer-like paired helical filaments. Biochemistry 47:10526–10539. https://doi.org/10.1021/BI800783D
Article
CAS
PubMed
Google Scholar
Kellogg EH, Hejab NMA, Poepsel S, Downing KH, DiMaio F, Nogales E (2018) Near-atomic model of microtubule-tau interactions. Science 360:1242–1246. https://doi.org/10.1126/SCIENCE.AAT1780
Article
CAS
PubMed
PubMed Central
Google Scholar
Khatoon S, Grundke-Iqbal I, Iqbal K (1994) Levels of normal and abnormally phosphorylated tau in different cellular and regional compartments of Alzheimer disease and control brains. FEBS Lett 351:80–84. https://doi.org/10.1016/0014-5793(94)00829-9
Article
CAS
PubMed
Google Scholar
Kidd M (1963) (1963) Paired helical filaments in electron microscopy of Alzheimer’s disease. Nat 1974863(197):192–193. https://doi.org/10.1038/197192b0
Article
Google Scholar
Konzack S, Thies E, Marx A, Mandelkow EM, Mandelkow E (2007) Swimming against the tide: Mobility of the microtubule-associated protein tau in neurons. J Neurosci 27:9916–9927. https://doi.org/10.1523/JNEUROSCI.0927-07.2007
Article
CAS
PubMed
PubMed Central
Google Scholar
Kosik KS, Crandall JE, Mufson EJ, Neve RL (1989) Tau in situ hybridization in normal and Alzheimer brain: Localization in the somatodendritic compartment. Ann Neurol 26:352–361. https://doi.org/10.1002/ANA.410260308
Article
CAS
PubMed
Google Scholar
Kosik KS, Finch EA (1987) MAP2 and tau segregate into dendritic and axonal domains after the elaboration of morphologically distinct neurites: an immunocytochemical study of cultured rat cerebrum. J Neurosci 7:3142–3153. https://doi.org/10.1523/JNEUROSCI.07-10-03142.1987
Article
CAS
PubMed
PubMed Central
Google Scholar
Kosik KS, Joachim CL, Selkoe DJ (1986) Microtubule-associated protein tau (τ) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc Natl Acad Sci USA 83:4044–4048
Article
CAS
Google Scholar
Lee VMY, Balin BJ, Otvos L, Trojanowski JQ (1991) A68: a major subunit of paired helical filaments and derivatized forms of normal Tau. Science 251:675–678. https://doi.org/10.1126/SCIENCE.1899488
Article
CAS
PubMed
Google Scholar
Lee VMY, Goedert M, Trojanowski JQ (2001) Neurodegenerative tauopathies. Annu Rev Neurosci 24:1121–1159. https://doi.org/10.1146/ANNUREV.NEURO.24.1.1121
Article
CAS
PubMed
Google Scholar
Li X, Kumar Y, Zempel H, Mandelkow EEM, Biernat J, Mandelkow EEM (2011) Novel diffusion barrier for axonal retention of Tau in neurons and its failure in neurodegeneration. EMBO J 30:4825–4837. https://doi.org/10.1038/EMBOJ.2011.376
Article
CAS
PubMed
PubMed Central
Google Scholar
Mandelkow E-M, Mandelkow E (2012) Biochemistry and cell biology of Tau protein in neurofibrillary degeneration. Cold Spring Harb Perspect Med 2:1–25. https://doi.org/10.1101/CSHPERSPECT.A006247
Article
Google Scholar
Mandelkow EM, Schweers O, Drewes G, Biernat J, Gustke N, Trinczek B, Mandelkow E (1996) Structure, microtubule interactions, and phosphorylation of tau protein. Ann N Y Acad Sci 777:96–106. https://doi.org/10.1111/J.1749-6632.1996.TB34407.X
Article
CAS
PubMed
Google Scholar
Matsuo ES, Shin RW, Billingsley ML, Van deVoorde A, O’Connor M, Trojanowski JQ, Lee VMY (1994) Biopsy-derived adult human brain tau is phosphorylated at many of the same sites as Alzheimer’s disease paired helical filament tau. Neuron 13:989–1002. https://doi.org/10.1016/0896-6273(94)90264-X
Article
CAS
PubMed
Google Scholar
McMillan P, Korvatska E, Poorkaj P, Evstafjeva Z, Robinson L, Greenup L, Leverenz J, Schellenberg GD, D’Souza I (2008) Tau isoform regulation is region and cell-specific in mouse brain. J Comp Neurol 511:788. https://doi.org/10.1002/CNE.21867
Article
CAS
PubMed
PubMed Central
Google Scholar
Mudher A, Colin M, Dujardin S, Medina M, Dewachter I, Naini MA, Mandelkow E-M, Mandelkow E, Buée L, Goedert M, Brion J-P (2017) What is the evidence that tau pathology spreads through prion-like propagation? Acta Neuropathol Commun 5:99. https://doi.org/10.1186/s40478-017-0488-7
Article
CAS
PubMed
PubMed Central
Google Scholar
Otvos L, Feiner L, Lang E, Szendrei GI, Goedert M, Lee VM (1994) Monoclonal antibody PHF-1 recognizes Tau protein phosphorylated at serine residue 396 and 404. J Neurosci Res 39:669–673. https://doi.org/10.1002/JNR.490390607
Article
CAS
PubMed
Google Scholar
Papasozomenos SC, Binder LI (1987) Phosphorylation determines two distinct species of Tau in the central nervous system. Cell Motil Cytoskeleton 8:210–226. https://doi.org/10.1002/CM.970080303
Article
CAS
PubMed
Google Scholar
Peng C, Trojanowski JQ, Lee VM-Y (2020) Protein transmission in neurodegenerative disease. Nat Rev Neurol 16:199–212. https://doi.org/10.1038/s41582-020-0333-7
Article
CAS
PubMed
Google Scholar
Peng I, Binder LI, Black MM (1986) Biochemical and immunological analyses of cytoskeletal domains of neurons. J Cell Biol 102:252–262. https://doi.org/10.1083/JCB.102.1.252
Article
CAS
PubMed
Google Scholar
Petry FR, Pelletier J, Bretteville A, Morin F, Calon F, H́ebert SS, Whittington RA, Planel E, (2014) Specificity of anti-Tau antibodies when analyzing mice models of Alzheimer’s disease: problems and solutions. PLoS ONE 9:e94251. https://doi.org/10.1371/JOURNAL.PONE.0094251
Article
PubMed
PubMed Central
Google Scholar
Porzig R, Singer D, Hoffmann R (2007) Epitope mapping of mAbs AT8 and Tau5 directed against hyperphosphorylated regions of the human tau protein. Biochem Biophys Res Commun 358:644–649. https://doi.org/10.1016/J.BBRC.2007.04.187
Article
CAS
PubMed
Google Scholar
Rutherford NJ, Brooks M, Giasson BI (2016) Novel antibodies to phosphorylated α-synuclein serine 129 and NFL serine 473 demonstrate the close molecular homology of these epitopes. Acta Neuropathol Commun 4:80
Article
Google Scholar
Strang KH, Golde TE, Giasson BI (2019) MAPT mutations, tauopathy, and mechanisms of neurodegeneration. Lab Invest 99:912. https://doi.org/10.1038/S41374-019-0197-X
Article
PubMed
PubMed Central
Google Scholar
Strang KH, Goodwin MS, Riffe C, Moore BD, Chakrabarty P, Levites Y, Golde TE, Giasson BI (2017) Generation and characterization of new monoclonal antibodies targeting the PHF1 and AT8 epitopes on human tau. Acta Neuropathol Commun 5:58. https://doi.org/10.1186/s40478-017-0458-0
Article
CAS
PubMed
PubMed Central
Google Scholar
Szendrei GI, Lee VM, Otvos L (1993) Recognition of the minimal epitope of monoclonal antibody Tau-1 depends upon the presence of a phosphate group but not its location. J Neurosci Res 34:243–249. https://doi.org/10.1002/JNR.490340212
Article
CAS
PubMed
Google Scholar
Tashiro K, Hasegawa M, Ihara Y, Iwatsubo T (1997) Somatodendritic localization of phosphorylated tau in neonatal and adult rat cerebral cortex. NeuroReport 8(12):2797–2801
Article
CAS
Google Scholar
Thies E, Mandelkow EM (2007) Missorting of tau in neurons causes degeneration of synapses that can be rescued by the kinase MARK2/Par-1. J Neurosci 27:2896–2907. https://doi.org/10.1523/JNEUROSCI.4674-06.2007
Article
CAS
PubMed
PubMed Central
Google Scholar
Trojanowski JQ, Schuck T, Schmidt ML, Lee VMY (1989) Distribution of tau proteins in the normal human central and peripheral nervous system. J Histochem Cytochem 37:209–215. https://doi.org/10.1177/37.2.2492045
Article
CAS
PubMed
Google Scholar
Viereck C, Tucker RP, Binder LI, Matus A (1988) Phylogenetic conservation of brain microtubule-associated proteins MAP2 and tau. Neuroscience 26:893–904. https://doi.org/10.1016/0306-4522(88)90107-8
Article
CAS
PubMed
Google Scholar
Wang Y (2015) Mandelkow E (2015) Tau in physiology and pathology. Nat Rev Neurosci 171(17):22–35. https://doi.org/10.1038/nrn.2015.1
Article
CAS
PubMed
Google Scholar
Waxman EA, Giasson BI (2011) Induction of intracellular tau aggregation is promoted by α-synuclein seeds and provides novel insights into the hyperphosphorylation of tau. J Neurosci 31:7604–7618. https://doi.org/10.1523/JNEUROSCI.0297-11.2011
Article
CAS
PubMed
PubMed Central
Google Scholar
Weingarten M, Lockwood A, Hwo S, Kirschner M (1975) A protein factor essential for microtubule assembly. Proc Natl Acad Sci USA 72:1858–1862. https://doi.org/10.1073/PNAS.72.5.1858
Article
CAS
PubMed
PubMed Central
Google Scholar
Wesseling H, Mair W, Kumar M, Schlaffner CN, Tang S, Beerepoot P, Fatou B, Guise AJ, Cheng L, Takeda S, Muntel J, Rotunno MS, Dujardin S, Davies P, Kosik KS, Miller BL, Berretta S, Hedreen JC, Grinberg LT, Seeley WW, Hyman BT, Steen H, Steen JA (2020) Tau PTM profiles identify patient heterogeneity and stages of Alzheimer’s disease. Cell 183:1699–1713.e13. https://doi.org/10.1016/J.CELL.2020.10.029
Article
CAS
PubMed
PubMed Central
Google Scholar
Wischik CM, Schelter BO, Wischik DJ, Storey JMD, Harrington CR (2018) Modeling prion-like processing of Tau protein in Alzheimer’s disease for pharmaceutical development. J Alzheimers Dis 62:1287–1303. https://doi.org/10.3233/JAD-170727
Article
CAS
PubMed
PubMed Central
Google Scholar
Witman GB, Cleveland DW, Weingarten MD, Kirschner MW (1976) Tubulin requires tau for growth onto microtubule initiating sites. Proc Natl Acad Sci USA 73:4070–4074. https://doi.org/10.1073/PNAS.73.11.4070
Article
CAS
PubMed
PubMed Central
Google Scholar
Wolozin BL, Pruchnicki A, Dickson DW, Davies P (1986) A neuronal antigen in the brains of Alzheimer patients. Science 232:648–650. https://doi.org/10.1126/SCIENCE.3083509
Article
CAS
PubMed
Google Scholar
Xia Y, Bell BM, Giasson BI (2021) Tau K321/K353 pseudoacetylation within KXGS motifs regulates tau–microtubule interactions and inhibits aggregation. Sci Rep 11:17069. https://doi.org/10.1038/S41598-021-96627-7
Article
CAS
PubMed
PubMed Central
Google Scholar
Xia Y, Lloyd GM, Giasson BI (2021) Targeted proteolytic products of τ and α-synuclein in neurodegeneration. Essays Biochem 65:905–912. https://doi.org/10.1042/EBC20210028
Article
CAS
PubMed
PubMed Central
Google Scholar
Xia Y, Prokop S, Giasson BI (2021) “Don’t Phos Over Tau”: recent developments in clinical biomarkers and therapies targeting tau phosphorylation in Alzheimer’s disease and other tauopathies. Mol Neurodegener 16:37. https://doi.org/10.1186/S13024-021-00460-5
Article
CAS
PubMed
PubMed Central
Google Scholar
Yoshiyama Y, Higuchi M, Zhang B, Huang SM, Iwata N, Saido TCC, Maeda J, Suhara T, Trojanowski JQ, Lee VMY (2007) Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 53:337–351. https://doi.org/10.1016/J.NEURON.2007.01.010
Article
CAS
PubMed
Google Scholar
Zempel H, Dennissen FJA, Kumar Y, Luedtke J, Biernat J, Mandelkow E-M, Mandelkow E (2017) Axodendritic sorting and pathological missorting of Tau are isoform-specific and determined by axon initial segment architecture. J Biol Chem 292:12192–12207. https://doi.org/10.1074/JBC.M117.784702
Article
CAS
PubMed
PubMed Central
Google Scholar
Zempel H, Mandelkow E (2014) Lost after translation: missorting of Tau protein and consequences for Alzheimer disease. Trends Neurosci 37:721–732. https://doi.org/10.1016/J.TINS.2014.08.004
Article
CAS
PubMed
Google Scholar