Wisniewski T, Frangione B (1992) Apolipoprotein E: a pathological chaperone protein in patients with cerebral and systemic amyloid. Neurosci Lett 135(2):235–238
Article
CAS
PubMed
Google Scholar
Grundke-Iqbal I et al (1986) Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J Biol Chem 261(13):6084–9
Article
CAS
PubMed
Google Scholar
Cras P et al (1991) Senile plaque neurites in Alzheimer disease accumulate amyloid precursor protein. Proc Natl Acad Sci U S A 88(17):7552–7556
Article
CAS
PubMed
PubMed Central
Google Scholar
Pires G et al (2019) Secernin-1 is a novel phosphorylated tau binding protein that accumulates in Alzheimer’s disease and not in other tauopathies. Acta Neuropathol Commun 7(1):195
Article
CAS
PubMed
PubMed Central
Google Scholar
Wisniewski T, Drummond E (2020) APOE-amyloid interaction: therapeutic targets. Neurobiol Dis 138:104784
Article
CAS
PubMed
PubMed Central
Google Scholar
Hashimoto T et al (2020) Collagenous Alzheimer amyloid plaque component impacts on the compaction of amyloid-beta plaques. Acta Neuropathol Commun 8(1):212
Article
CAS
PubMed
PubMed Central
Google Scholar
DeMattos RB et al (2002) Clusterin promotes amyloid plaque formation and is critical for neuritic toxicity in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 99(16):10843–10848
Article
CAS
PubMed
PubMed Central
Google Scholar
Keren-Shaul H et al (2017) A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169(7):1276–1290
Article
CAS
PubMed
Google Scholar
Perez-Nievas BG, Serrano-Pozo A (2018) Deciphering the astrocyte reaction in Alzheimer’s disease. Front Aging Neurosci 10:114
Article
CAS
PubMed
PubMed Central
Google Scholar
Serrano-Pozo A et al (2011) Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 1(1):a006189
Article
CAS
PubMed
PubMed Central
Google Scholar
Drummond E et al (2017) Proteomic differences in amyloid plaques in rapidly progressive and sporadic Alzheimer’s disease. Acta Neuropathol 133(6):933–954
Article
CAS
PubMed
PubMed Central
Google Scholar
Drummond E et al (2020) Phosphorylated tau interactome in the human Alzheimer’s disease brain. Brain 143(9):2803–2817
Article
PubMed
PubMed Central
Google Scholar
Drummond ES et al (2015) Proteomic analysis of neurons microdissected from formalin-fixed, paraffin-embedded Alzheimer’s disease brain tissue. Sci Rep 5:15456
Article
CAS
PubMed
PubMed Central
Google Scholar
Cohen ML et al (2015) Rapidly progressive Alzheimer’s disease features distinct structures of amyloid-beta. Brain 138(Pt 4):1009–1022
Article
PubMed
PubMed Central
Google Scholar
Murray ME et al (2011) Neuropathologically defined subtypes of Alzheimer’s disease with distinct clinical characteristics: a retrospective study. Lancet Neurol 10(9):785–796
Article
PubMed
PubMed Central
Google Scholar
Emrani S et al (2020) APOE4 is associated with cognitive and pathological heterogeneity in patients with Alzheimer’s disease: a systematic review. Alzheimers Res Ther 12(1):141
Article
PubMed
PubMed Central
Google Scholar
Neff RA et al (2021) Molecular subtyping of Alzheimer’s disease using RNA sequencing data reveals novel mechanisms and targets. Sci Adv 7(2):eabb5398
Article
CAS
PubMed
PubMed Central
Google Scholar
Reitz C, Rogaeva E, Beecham GW (2020) Late-onset vs nonmendelian early-onset Alzheimer disease: a distinction without a difference? Neurol Genet 6(5):e512
Article
PubMed
PubMed Central
Google Scholar
Ballard C et al (2016) Dementia in Down’s syndrome. Lancet Neurol 15(6):622–636
Article
PubMed
Google Scholar
Teller JK et al (1996) Presence of soluble amyloid beta-peptide precedes amyloid plaque formation in Down’s syndrome. Nat Med 2(1):93–95
Article
CAS
PubMed
Google Scholar
Gyure KA et al (2001) Intraneuronal abeta-amyloid precedes development of amyloid plaques in Down syndrome. Arch Pathol Lab Med 125(4):489–492
Article
CAS
PubMed
Google Scholar
Mori C et al (2002) Intraneuronal Abeta42 accumulation in Down syndrome brain. Amyloid 9(2):88–102
Article
CAS
PubMed
Google Scholar
Lemere CA et al (1996) Sequence of deposition of heterogeneous amyloid beta-peptides and APO E in Down syndrome: implications for initial events in amyloid plaque formation. Neurobiol Dis 3(1):16–32
Article
CAS
PubMed
Google Scholar
Wisniewski KE, Wisniewski HM, Wen GY (1985) Occurrence of neuropathological changes and dementia of Alzheimer’s disease in Down’s syndrome. Ann Neurol 17(3):278–282
Article
CAS
PubMed
Google Scholar
Davidson YS et al (2018) The age of onset and evolution of Braak tangle stage and Thal amyloid pathology of Alzheimer’s disease in individuals with Down syndrome. Acta Neuropathol Commun 6(1):56
Article
CAS
PubMed
PubMed Central
Google Scholar
Cohen AD et al (2018) Early striatal amyloid deposition distinguishes Down syndrome and autosomal dominant Alzheimer’s disease from late-onset amyloid deposition. Alzheimers Dement 14(6):743–750
Article
PubMed
PubMed Central
Google Scholar
Mann DMA et al (2018) Patterns and severity of vascular amyloid in Alzheimer’s disease associated with duplications and missense mutations in APP gene, Down syndrome and sporadic Alzheimer’s disease. Acta Neuropathol 136(4):569–587
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumar S, Lemere CA, Walter J (2020) Phosphorylated Abeta peptides in human Down syndrome brain and different Alzheimer’s-like mouse models. Acta Neuropathol Commun 8(1):118
Article
CAS
PubMed
PubMed Central
Google Scholar
Frost JL et al (2013) Pyroglutamate-3 amyloid-beta deposition in the brains of humans, non-human primates, canines, and Alzheimer disease-like transgenic mouse models. Am J Pathol 183(2):369–381
Article
CAS
PubMed
PubMed Central
Google Scholar
Saido TC et al (1995) Dominant and differential deposition of distinct beta-amyloid peptide species, A beta N3(pE), in senile plaques. Neuron 14(2):457–466
Article
CAS
PubMed
Google Scholar
Iwatsubo T et al (1996) Full-length amyloid-beta (1–42(43)) and amino-terminally modified and truncated amyloid-beta 42(43) deposit in diffuse plaques. Am J Pathol 149(6):1823–1830
CAS
PubMed
PubMed Central
Google Scholar
Montine TJ et al (2012) National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease: a practical approach. Acta Neuropathol 123(1):1–11
Article
CAS
PubMed
Google Scholar
Miller DL et al (2011) High-affinity rabbit monoclonal antibodies specific for amyloid peptides amyloid-beta40 and amyloid-beta42. J Alzheimers Dis 23(2):293–305
Article
CAS
PubMed
Google Scholar
Mehta PD et al (2018) Generation and partial characterization of rabbit monoclonal antibody to pyroglutamate amyloid-beta3-42 (pE3-Abeta). J Alzheimers Dis 62(4):1635–1649
Article
CAS
PubMed
Google Scholar
Herline K et al (2018) Immunotherapy to improve cognition and reduce pathological species in an Alzheimer’s disease mouse model. Alzheimers Res Ther 10(1):54
Article
CAS
PubMed
PubMed Central
Google Scholar
Drummond E et al (2018) Isolation of amyloid plaques and neurofibrillary tangles from archived Alzheimer’s disease tissue using laser-capture microdissection for downstream proteomics. Methods Mol Biol 1723:319–334
Article
CAS
PubMed
PubMed Central
Google Scholar
Drummond E et al (2017) Isolation of amyloid plaques and neurofibrillary tangles from archived Alzheimer’s disease tissue using laser capture microdissection for downstream proteomics. Methods Mol Biol 1723:319–334
Article
CAS
Google Scholar
Cox J et al (2014) Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics 13(9):2513–2526
Article
CAS
PubMed
PubMed Central
Google Scholar
Cox J et al (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 10(4):1794–1805
Article
CAS
PubMed
Google Scholar
Tyanova S et al (2016) The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 13(9):731–740
Article
CAS
PubMed
Google Scholar
Seyfried NT et al (2017) A multi-network approach identifies protein-specific co-expression in asymptomatic and symptomatic Alzheimer’s disease. Cell Syst 4(1):60–72
Article
CAS
PubMed
Google Scholar
R Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna
Google Scholar
Szklarczyk D et al (2020) The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucl Acids Res 49(D1):D605–D612
Article
CAS
PubMed Central
Google Scholar
Xiong F, Ge W, Ma C (2019) Quantitative proteomics reveals distinct composition of amyloid plaques in Alzheimer’s disease. Alzheimers Dement 15:429–440
Article
PubMed
Google Scholar
Liao L et al (2004) Proteomic characterization of postmortem amyloid plaques isolated by laser capture microdissection. J Biol Chem 279(35):37061–37068
Article
CAS
PubMed
Google Scholar
Musunuri S et al (2014) Quantification of the brain proteome in Alzheimer’s disease using multiplexed mass spectrometry. J Proteome Res 13(4):2056–2068
Article
CAS
PubMed
Google Scholar
Andreev VP et al (2012) Label-free quantitative LC-MS proteomics of Alzheimer’s disease and normally aged human brains. J Proteome Res 11(6):3053–3067
Article
CAS
PubMed
PubMed Central
Google Scholar
Donovan LE et al (2012) Analysis of a membrane-enriched proteome from postmortem human brain tissue in Alzheimer’s disease. Proteomics Clin Appl 6(3–4):201–211
Article
CAS
PubMed
PubMed Central
Google Scholar
Manavalan A et al (2013) Brain site-specific proteome changes in aging-related dementia. Exp Mol Med 45:e39
Article
CAS
PubMed
PubMed Central
Google Scholar
Hondius DC et al (2016) Profiling the human hippocampal proteome at all pathologic stages of Alzheimer’s disease. Alzheimers Dement 12(6):654–668
Article
PubMed
Google Scholar
Ho Kim J et al (2015) Proteome-wide characterization of signalling interactions in the hippocampal CA4/DG subfield of patients with Alzheimer’s disease. Sci Rep 5:11138
Article
PubMed
PubMed Central
Google Scholar
Sweet RA et al (2016) Apolipoprotein E*4 (APOE*4) genotype is associated with altered levels of glutamate signaling proteins and synaptic coexpression networks in the prefrontal cortex in mild to moderate Alzheimer disease. Mol Cell Proteomics 15(7):2252–2262
Article
CAS
PubMed
PubMed Central
Google Scholar
Hales CM et al (2016) Changes in the detergent-insoluble brain proteome linked to amyloid and tau in Alzheimer’s disease progression. Proteomics 16(23):3042–3053
Article
CAS
PubMed
PubMed Central
Google Scholar
Johnson ECB et al (2018) Deep proteomic network analysis of Alzheimer’s disease brain reveals alterations in RNA binding proteins and RNA splicing associated with disease. Mol Neurodegener 13(1):52
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Q et al (2018) Integrated proteomics and network analysis identifies protein hubs and network alterations in Alzheimer’s disease. Acta Neuropathol Commun 6(1):19
Article
CAS
PubMed
PubMed Central
Google Scholar
Mendonca CF et al (2019) Proteomic signatures of brain regions affected by tau pathology in early and late stages of Alzheimer’s disease. Neurobiol Dis 130:104509
Article
CAS
PubMed
Google Scholar
Xu J et al (2019) Regional protein expression in human Alzheimer’s brain correlates with disease severity. Commun Biol 2:43
Article
PubMed
PubMed Central
Google Scholar
Muraoka S et al (2020) Proteomic and biological profiling of extracellular vesicles from Alzheimer’s disease human brain tissues. Alzheimers Dement 16:896–907
Article
PubMed
PubMed Central
Google Scholar
Johnson ECB et al (2020) Large-scale proteomic analysis of Alzheimer’s disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation. Nat Med 26(5):769–780
Article
CAS
PubMed
PubMed Central
Google Scholar
Bai B et al (2020) Deep multilayer brain proteomics identifies molecular networks in Alzheimer’s disease progression. Neuron 105:975–991
Article
CAS
PubMed
PubMed Central
Google Scholar
Haytural H et al (2020) The proteome of the dentate terminal zone of the perforant path indicates presynaptic impairment in Alzheimer disease. Mol Cell Proteomics 19(1):128–141
Article
CAS
PubMed
Google Scholar
Higginbotham L et al (2020) Integrated proteomics reveals brain-based cerebrospinal fluid biomarkers in asymptomatic and symptomatic Alzheimer’s disease. Sci Adv 6(43):eaaz9360
Article
CAS
PubMed
PubMed Central
Google Scholar
Stepler KE et al (2020) Inclusion of African American/Black adults in a pilot brain proteomics study of Alzheimer’s disease. Neurobiol Dis 146:105129
Article
CAS
PubMed
PubMed Central
Google Scholar
Ping L et al (2020) Global quantitative analysis of the human brain proteome and phosphoproteome in Alzheimer’s disease. Sci Data 7(1):315
Article
CAS
PubMed
PubMed Central
Google Scholar
Sathe G et al (2020) Quantitative proteomic analysis of the frontal cortex in Alzheimer’s disease. J Neurochem 156:988
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Z et al (2020) 27-plex tandem mass tag mass spectrometry for profiling brain proteome in Alzheimer’s disease. Anal Chem 92(10):7162–7170
Article
CAS
PubMed
PubMed Central
Google Scholar
Li X et al (2021) Sequence of proteome profiles in preclinical and symptomatic Alzheimer’s disease. Alzheimers Dement 17:946–958
Article
CAS
PubMed
Google Scholar
Hondius DC et al (2021) The proteome of granulovacuolar degeneration and neurofibrillary tangles in Alzheimer’s disease. Acta Neuropathol 141:341–358
Article
CAS
PubMed
PubMed Central
Google Scholar
Wingo AP et al (2020) Shared proteomic effects of cerebral atherosclerosis and Alzheimer’s disease on the human brain. Nat Neurosci 23(6):696–700
Article
CAS
PubMed
PubMed Central
Google Scholar
McKetney J et al (2019) Proteomic atlas of the human brain in Alzheimer’s disease. J Proteome Res 18(3):1380–1391
Article
CAS
PubMed
PubMed Central
Google Scholar
Pearson A et al (2020) Molecular abnormalities in autopsied brain tissue from the inferior horn of the lateral ventricles of nonagenarians and Alzheimer disease patients. BMC Neurol 20(1):317
Article
CAS
PubMed
PubMed Central
Google Scholar
Dai J et al (2018) Effects of APOE genotype on brain proteomic network and cell type changes in Alzheimer’s disease. Front Mol Neurosci 11:454
Article
CAS
PubMed
PubMed Central
Google Scholar
Carlyle BC et al (2021) Synaptic proteins associated with cognitive performance and neuropathology in older humans revealed by multiplexed fractionated proteomics. Neurobiol Aging 105:99–114
Article
CAS
PubMed
PubMed Central
Google Scholar
Hashimoto T et al (2002) CLAC: a novel Alzheimer amyloid plaque component derived from a transmembrane precursor. CLAC-P/collagen type XXV EMBO J 21(7):1524–1534
CAS
PubMed
Google Scholar
Tong Y et al (2010) COL25A1 triggers and promotes Alzheimer’s disease-like pathology in vivo. Neurogenetics 11(1):41–52
Article
CAS
PubMed
Google Scholar
Spilman PR et al (2016) Netrin-1 interrupts amyloid-beta amplification, increases sAbetaPPalpha in vitro and in vivo, and improves cognition in a mouse model of Alzheimer’s disease. J Alzheimers Dis 52(1):223–242
Article
CAS
PubMed
Google Scholar
Yasuhara O et al (1993) Midkine, a novel neurotrophic factor, is present in senile plaques of Alzheimer disease. Biochem Biophys Res Commun 192(1):246–251
Article
CAS
PubMed
Google Scholar
Muramatsu H et al (2011) Midkine as a factor to counteract the deposition of amyloid beta-peptide plaques: in vitro analysis and examination in knockout mice. Int Arch Med 4(1):1
Article
CAS
PubMed
PubMed Central
Google Scholar
Hondius DC et al (2018) Proteomics analysis identifies new markers associated with capillary cerebral amyloid angiopathy in Alzheimer’s disease. Acta Neuropathol Commun 6(1):46
Article
CAS
PubMed
PubMed Central
Google Scholar
Grau S et al (2005) Implications of the serine protease HtrA1 in amyloid precursor protein processing. Proc Natl Acad Sci U S A 102(17):6021–6026
Article
CAS
PubMed
PubMed Central
Google Scholar
Namba Y et al (1991) Apolipoprotein E immunoreactivity in cerebral amyloid deposits and neurofibrillary tangles in Alzheimer’s disease and kuru plaque amyloid in Creutzfeldt-Jakob disease. Brain Res 541(1):163–166
Article
CAS
PubMed
Google Scholar
Bales KR et al (1997) Lack of apolipoprotein E dramatically reduces amyloid beta-peptide deposition. Nat Genet 17(3):263–264
Article
CAS
PubMed
Google Scholar
Holtzman DM et al (2000) Apolipoprotein E isoform-dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 97(6):2892–2897
Article
CAS
PubMed
PubMed Central
Google Scholar
Huttenrauch M et al (2018) Glycoprotein NMB: a novel Alzheimer’s disease associated marker expressed in a subset of activated microglia. Acta Neuropathol Commun 6(1):108
Article
CAS
PubMed
PubMed Central
Google Scholar
Eikelenboom P, Stam FC (1984) An immunohistochemical study on cerebral vascular and senile plaque amyloid in Alzheimer’s dementia. Virchows Arch B Cell Pathol Incl Mol Pathol 47(1):17–25
Article
CAS
PubMed
Google Scholar
van Horssen J et al (2001) Heparan sulfate proteoglycan expression in cerebrovascular amyloid beta deposits in Alzheimer’s disease and hereditary cerebral hemorrhage with amyloidosis (Dutch) brains. Acta Neuropathol 102(6):604–614
Article
CAS
PubMed
Google Scholar
Watanabe N et al (2004) Glypican-1 as an Abeta binding HSPG in the human brain: its localization in DIG domains and possible roles in the pathogenesis of Alzheimer’s disease. FASEB J 18(9):1013–1015
Article
CAS
PubMed
Google Scholar
McGeer EG et al (2001) The pentraxins: possible role in Alzheimer’s disease and other innate inflammatory diseases. Neurobiol Aging 22(6):843–848
Article
CAS
PubMed
Google Scholar
Tennent GA, Lovat LB, Pepys MB (1995) Serum amyloid P component prevents proteolysis of the amyloid fibrils of Alzheimer disease and systemic amyloidosis. Proc Natl Acad Sci U S A 92(10):4299–4303
Article
CAS
PubMed
PubMed Central
Google Scholar
Siegel DA et al (2006) Tomoregulin-2 is found extensively in plaques in Alzheimer’s disease brain. J Neurochem 98(1):34–44
Article
CAS
PubMed
Google Scholar
Hong HS et al (2015) Tomoregulin (TMEFF2) binds Alzheimer’s disease amyloid-beta (Abeta) oligomer and AbetaPP and protects neurons from abeta-induced toxicity. J Alzheimers Dis 48(3):731–743
Article
CAS
PubMed
PubMed Central
Google Scholar
Eikelenboom P, Stam FC (1982) Immunoglobulins and complement factors in senile plaques: an immunoperoxidase study. Acta Neuropathol 57(2–3):239–242
Article
CAS
PubMed
Google Scholar
Fonseca MI et al (2004) Absence of C1q leads to less neuropathology in transgenic mouse models of Alzheimer’s disease. J Neurosci 24(29):6457–6465
Article
CAS
PubMed
PubMed Central
Google Scholar
Hong S et al (2016) Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 352(6286):712–716
Article
CAS
PubMed
PubMed Central
Google Scholar
Choi-Miura NH et al (1992) SP-40,40 is a constituent of Alzheimer’s amyloid. Acta Neuropathol 83(3):260–264
Article
CAS
PubMed
Google Scholar
Oh SB et al (2019) Clusterin contributes to early stage of Alzheimer’s disease pathogenesis. Brain Pathol 29(2):217–231
Article
CAS
PubMed
Google Scholar
Glenner GG, Wong CW (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120(3):885–890
Article
CAS
PubMed
Google Scholar
Drummond E, Wisniewski T (2017) Alzheimer’s disease: experimental models and reality. Acta Neuropathol 133(2):155–175
Article
CAS
PubMed
Google Scholar
Shi Q et al (2017) Complement C3 deficiency protects against neurodegeneration in aged plaque-rich APP/PS1 mice. Sci Transl Med 9(392)
Wu T et al (2019) Complement C3 is activated in human AD brain and is required for neurodegeneration in mouse models of amyloidosis and tauopathy. Cell Rep 28(8):2111–2123
Article
CAS
PubMed
Google Scholar
Kanekiyo T et al (2007) Lipocalin-type prostaglandin D synthase/beta-trace is a major amyloid beta-chaperone in human cerebrospinal fluid. Proc Natl Acad Sci U S A 104(15):6412–6417
Article
CAS
PubMed
PubMed Central
Google Scholar
Rayaprolu S et al (2020) Flow-cytometric microglial sorting coupled with quantitative proteomics identifies moesin as a highly-abundant microglial protein with relevance to Alzheimer’s disease. Mol Neurodegener 15(1):28
Article
CAS
PubMed
PubMed Central
Google Scholar
Darmellah A et al (2012) Ezrin/radixin/moesin are required for the purinergic P2X7 receptor (P2X7R)-dependent processing of the amyloid precursor protein. J Biol Chem 287(41):34583–34595
Article
CAS
PubMed
PubMed Central
Google Scholar
Rosenblatt DE, Geula C, Mesulam MM (1989) Protease nexin I immunostaining in Alzheimer’s disease. Ann Neurol 26(5):628–634
Article
CAS
PubMed
Google Scholar
Jacobsen JS et al (2008) Enhanced clearance of Abeta in brain by sustaining the plasmin proteolysis cascade. Proc Natl Acad Sci U S A 105(25):8754–8759
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu RM et al (2011) Knockout of plasminogen activator inhibitor 1 gene reduces amyloid beta peptide burden in a mouse model of Alzheimer’s disease. Neurobiol Aging 32(6):1079–1089
Article
CAS
PubMed
Google Scholar
Bruggink KA et al (2015) Dickkopf-related protein 3 is a potential Abeta-associated protein in Alzheimer’s disease. J Neurochem 134(6):1152–1162
Article
CAS
PubMed
Google Scholar
Zhang L et al (2017) Dickkopf 3 (Dkk3) Improves amyloid-beta pathology, cognitive dysfunction, and cerebral glucose metabolism in a transgenic mouse model of Alzheimer’s disease. J Alzheimers Dis 60(2):733–746
Article
CAS
PubMed
Google Scholar
Satoh J et al (2014) PLD3 is accumulated on neuritic plaques in Alzheimer’s disease brains. Alzheimers Res Ther 6(9):70
Article
CAS
PubMed
PubMed Central
Google Scholar
Mukadam AS, Breusegem SY, Seaman MNJ (2018) Analysis of novel endosome-to-Golgi retrieval genes reveals a role for PLD3 in regulating endosomal protein sorting and amyloid precursor protein processing. Cell Mol Life Sci 75(14):2613–2625
Article
CAS
PubMed
PubMed Central
Google Scholar
Demirev AV et al (2019) V232M substitution restricts a distinct O-glycosylation of PLD3 and its neuroprotective function. Neurobiol Dis 129:182–194
Article
CAS
PubMed
Google Scholar
Donahue JE et al (1999) Agrin in Alzheimer’s disease: altered solubility and abnormal distribution within microvasculature and brain parenchyma. Proc Natl Acad Sci U S A 96(11):6468–6472
Article
CAS
PubMed
PubMed Central
Google Scholar
Rauch SM et al (2011) Changes in brain beta-amyloid deposition and aquaporin 4 levels in response to altered agrin expression in mice. J Neuropathol Exp Neurol 70(12):1124–1137
Article
CAS
PubMed
Google Scholar
Rebeck GW et al (1995) Multiple, diverse senile plaque-associated proteins are ligands of an apolipoprotein E receptor, the alpha 2-macroglobulin receptor/low-density-lipoprotein receptor-related protein. Ann Neurol 37(2):211–217
Article
CAS
PubMed
Google Scholar
Shinohara M et al (2017) Role of LRP1 in the pathogenesis of Alzheimer’s disease: evidence from clinical and preclinical studies. J Lipid Res 58(7):1267–1281
Article
CAS
PubMed
PubMed Central
Google Scholar
Yamada T et al (1992) Vimentin immunoreactivity in normal and pathological human brain tissue. Acta Neuropathol 84(2):157–162
Article
CAS
PubMed
Google Scholar
Kamphuis W et al (2015) GFAP and vimentin deficiency alters gene expression in astrocytes and microglia in wild-type mice and changes the transcriptional response of reactive glia in mouse model for Alzheimer’s disease. Glia 63(6):1036–1056
Article
PubMed
Google Scholar
Pla V et al (2013) Secretory sorting receptors carboxypeptidase E and secretogranin III in amyloid beta-associated neural degeneration in Alzheimer’s disease. Brain Pathol 23(3):274–284
Article
CAS
PubMed
Google Scholar
Cummings DM et al (2017) Neuronal and peripheral pentraxins modify glutamate release and may interact in blood-brain barrier failure. Cereb Cortex 27(6):3437–3448
Article
PubMed
Google Scholar
Abad MA et al (2006) Neuronal pentraxin 1 contributes to the neuronal damage evoked by amyloid-beta and is overexpressed in dystrophic neurites in Alzheimer’s brain. J Neurosci 26(49):12735–12747
Article
CAS
PubMed
PubMed Central
Google Scholar
Hafez DM et al (2012) F-spondin gene transfer improves memory performance and reduces amyloid-beta levels in mice. Neuroscience 223:465–472
Article
CAS
PubMed
Google Scholar
Park SY et al (2020) SPON1 can reduce amyloid beta and reverse cognitive impairment and memory dysfunction in Alzheimer’s disease mouse model. Cells 9(5):1275
Article
CAS
PubMed Central
Google Scholar
Gotoh N et al (2020) Amyloidogenic processing of amyloid beta protein precursor (APP) is enhanced in the brains of alcadein alpha-deficient mice. J Biol Chem 295(28):9650–9662
Article
CAS
PubMed
PubMed Central
Google Scholar
Griffin EF et al (2018) Distinct functional roles of Vps41-mediated neuroprotection in Alzheimer’s and Parkinson’s disease models of neurodegeneration. Hum Mol Genet 27(24):4176–4193
CAS
PubMed
PubMed Central
Google Scholar
Teranishi Y et al (2015) Proton myo-inositol cotransporter is a novel gamma-secretase associated protein that regulates Abeta production without affecting Notch cleavage. FEBS J 282(17):3438–3451
Article
CAS
PubMed
Google Scholar
Novarino G et al (2004) Involvement of the intracellular ion channel CLIC1 in microglia-mediated beta-amyloid-induced neurotoxicity. J Neurosci 24(23):5322–5330
Article
CAS
PubMed
PubMed Central
Google Scholar
Sole-Domenech S et al (2018) Lysosomal enzyme tripeptidyl peptidase 1 destabilizes fibrillar Abeta by multiple endoproteolytic cleavages within the beta-sheet domain. Proc Natl Acad Sci U S A 115(7):1493–1498
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang H et al (2020) Integrated analysis of ultra-deep proteomes in cortex, cerebrospinal fluid and serum reveals a mitochondrial signature in Alzheimer’s disease. Mol Neurodegener 15(1):43
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen G et al (2021) Netrin-1 receptor UNC5C cleavage by active delta-secretase enhances neurodegeneration, promoting Alzheimer's disease pathologies. Sci Adv 7(16)
Allen Institute for Brain Science (2019) Allen cell types database-multiple cortical areas smart-seq. https://celltypes.brain-map.org/rnaseq/human_ctx_smart-seq
Montgomery MK et al (2020) SMOC1 is a glucose-responsive hepatokine and therapeutic target for glycemic control. Sci Transl Med 12(559):eaaz8048
Article
CAS
PubMed
Google Scholar
Awwad K et al (2015) Role of secreted modular calcium-binding protein 1 (SMOC1) in transforming growth factor beta signalling and angiogenesis. Cardiovasc Res 106(2):284–294
Article
CAS
PubMed
Google Scholar
Okada I et al (2011) SMOC1 is essential for ocular and limb development in humans and mice. Am J Hum Genet 88(1):30–41
Article
CAS
PubMed
PubMed Central
Google Scholar
Rijal Upadhaya A et al (2014) Biochemical stages of amyloid-beta peptide aggregation and accumulation in the human brain and their association with symptomatic and pathologically preclinical Alzheimer’s disease. Brain 137(Pt 3):887–903
Article
PubMed
Google Scholar
Gouras GK et al (2000) Intraneuronal Abeta42 accumulation in human brain. Am J Pathol 156(1):15–20
Article
CAS
PubMed
PubMed Central
Google Scholar
Takahashi RH et al (2002) Intraneuronal Alzheimer abeta42 accumulates in multivesicular bodies and is associated with synaptic pathology. Am J Pathol 161(5):1869–1879
Article
CAS
PubMed
PubMed Central
Google Scholar
Gouras GK et al (2010) Intraneuronal beta-amyloid accumulation and synapse pathology in Alzheimer’s disease. Acta Neuropathol 119(5):523–541
Article
CAS
PubMed
PubMed Central
Google Scholar
Gouras GK, Willen K, Faideau M (2014) The inside-out amyloid hypothesis and synapse pathology in Alzheimer’s disease. Neurodegener Dis 13(2–3):142–146
CAS
PubMed
Google Scholar
D’Andrea MR et al (2001) Evidence that neurones accumulating amyloid can undergo lysis to form amyloid plaques in Alzheimer’s disease. Histopathology 38(2):120–134
Article
CAS
PubMed
Google Scholar
Pensalfini A et al (2014) Intracellular amyloid and the neuronal origin of Alzheimer neuritic plaques. Neurobiol Dis 71:53–61
Article
CAS
PubMed
Google Scholar
Knopman DS et al (2021) Alzheimer disease. Nat Rev Dis Primers 7(1):33
Article
PubMed
PubMed Central
Google Scholar
Rosa-Ferreira C, Munro S (2011) Arl8 and SKIP act together to link lysosomes to kinesin-1. Dev Cell 21(6):1171–1178
Article
CAS
PubMed
PubMed Central
Google Scholar
Farias GG et al (2017) BORC/kinesin-1 ensemble drives polarized transport of lysosomes into the axon. Proc Natl Acad Sci U S A 114(14):E2955–E2964
Article
CAS
PubMed
PubMed Central
Google Scholar
Roney JC et al (2021) Lipid-mediated motor-adaptor sequestration impairs axonal lysosome delivery leading to autophagic stress and dystrophy in Niemann-Pick type C. Dev Cell 56(10):1452–1468
Article
CAS
PubMed
Google Scholar
Cataldo AM, Hamilton DJ, Nixon RA (1994) Lysosomal abnormalities in degenerating neurons link neuronal compromise to senile plaque development in Alzheimer disease. Brain Res 640(1–2):68–80
Article
CAS
PubMed
Google Scholar
Cataldo AM et al (1990) Lysosomal proteinase antigens are prominently localized within senile plaques of Alzheimer’s disease: evidence for a neuronal origin. Brain Res 513(2):181–192
Article
CAS
PubMed
Google Scholar
Hassiotis S et al (2018) Lysosomal LAMP1 immunoreactivity exists in both diffuse and neuritic amyloid plaques in the human hippocampus. Eur J Neurosci 47(9):1043–1053
Article
PubMed
Google Scholar
Kowa H et al (2004) Mostly separate distributions of CLAC- versus Abeta40- or thioflavin S-reactivities in senile plaques reveal two distinct subpopulations of beta-amyloid deposits. Am J Pathol 165(1):273–281
Article
CAS
PubMed
PubMed Central
Google Scholar