Holm-Yildiz S, Witting N, Dahlqvist J, de Stricker BJ, Solheim T, Fornander F et al (2020) Permanent muscle weakness in hypokalemic periodic paralysis. Neurology 95:e342–e352. https://doi.org/10.1212/WNL.0000000000009828
Article
CAS
PubMed
Google Scholar
Miller TM, Dias da Silva MR, Miller HA, Kwiecinski H, Mendell JR, Tawil R et al (2004) Correlating phenotype and genotype in the periodic paralyses. Neurology 63:1647–1655. https://doi.org/10.1212/01.wnl.0000143383.91137.00
Article
CAS
PubMed
Google Scholar
Holm-Yildiz S, Krag T, Witting N, Duno M, Soerensen T, Vissing J (2020) Vacuoles, often containing glycogen, are a consistent finding in hypokalemic periodic paralysis. J Neuropathol Exp Neurol 79:1127–1129. https://doi.org/10.1093/jnen/nlaa063
Article
PubMed
Google Scholar
Biczyskowa W, Fidzianska A, Jedrzejowska H (1969) Light and electron microscopic study of the muscles in hypokalemic periodic paralysis. Acta Neuropathol 12:329–338. https://doi.org/10.1007/bf00809129
Article
CAS
PubMed
Google Scholar
Engel AG (1970) Evolution and content of vacuoles in primary hypokalemic periodic paralysis. Mayo Clin Proc 45:774–814
CAS
PubMed
Google Scholar
Macdonald RD, Rewcastle NB, Humphrey JG (1969) Myopathy of hypokalemic periodic paralysis An electron microscopic study. Arch Neurol 20:565–585. https://doi.org/10.1001/archneur.1969.00480120011001
Article
CAS
PubMed
Google Scholar
Bootman MD, Chehab T, Bultynck G, Parys JB, Rietdorf K (2018) The regulation of autophagy by calcium signals: do we have a consensus? Cell Calcium 70:32–46. https://doi.org/10.1016/j.ceca.2017.08.005
Article
CAS
PubMed
Google Scholar
Wu F, Mi W, Cannon SC (2013) Beneficial effects of bumetanide in a CaV1.1-R528H mouse model of hypokalaemic periodic paralysis. Brain 136:3766–3774. https://doi.org/10.1093/brain/awt280
Article
PubMed
PubMed Central
Google Scholar
Medina DL, Ballabio A (2015) Lysosomal calcium regulates autophagy. Autophagy 11:970–971. https://doi.org/10.1080/15548627.2015.1047130
Article
CAS
PubMed
PubMed Central
Google Scholar
Medina DL, Di PS, Peluso I, Armani A, De SD, Venditti R et al (2015) Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nat Cell Biol 17:288–299. https://doi.org/10.1038/ncb3114
Article
CAS
PubMed
PubMed Central
Google Scholar
Palmieri M, Impey S, Kang H, di RA, Pelz C, Sardiello M, et al (2011) Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum Mol Genet 20:3852–3866. https://doi.org/10.1093/hmg/ddr306
Article
CAS
PubMed
Google Scholar
Sardiello M, di Palmieri MRA, Medina DL, Valenza M, Gennarino VA et al (2009) A gene network regulating lysosomal biogenesis and function. Science 325:473–477. https://doi.org/10.1126/science.1174447
Article
CAS
PubMed
Google Scholar
Krag TO, Pinos T, Nielsen TL, Brull A, Andreu AL, Vissing J (2016) Differential muscle involvement in mice and humans affected by McArdle disease. J Neuropathol Exp Neurol 75:441–454. https://doi.org/10.1093/jnen/nlw018
Article
CAS
PubMed
Google Scholar
Hyttinen JM, Niittykoski M, Salminen A, Kaarniranta K (2013) Maturation of autophagosomes and endosomes: a key role for Rab7. Biochim Biophys Acta 1833:503–510. https://doi.org/10.1016/j.bbamcr.2012.11.018
Article
CAS
PubMed
Google Scholar
Puri R, Suzuki T, Yamakawa K, Ganesh S (2012) Dysfunctions in endosomal-lysosomal and autophagy pathways underlie neuropathology in a mouse model for Lafora disease. Hum Mol Genet 21:175–184. https://doi.org/10.1093/hmg/ddr452
Article
CAS
PubMed
Google Scholar
Itakura E, Mizushima N (2011) p62 Targeting to the autophagosome formation site requires self-oligomerization but not LC3 binding. J Cell Biol 192:17–27. https://doi.org/10.1083/jcb.201009067
Article
CAS
PubMed
PubMed Central
Google Scholar
Castets P, Frank S, Sinnreich M, Ruegg MA (2016) “Get the Balance Right”: pathological significance of autophagy perturbation in neuromuscular disorders. J Neuromuscul Dis 3:127–155. https://doi.org/10.3233/JND-160153
Article
PubMed
PubMed Central
Google Scholar
Cenacchi G, Papa V, Pegoraro V, Marozzo R, Fanin M, Angelini C (2019) Review: Danon disease: Review of natural history and recent advances. Neuropathol Appl Neurobiol 46:303–322. https://doi.org/10.1111/nan.12587
Article
PubMed
Google Scholar
Chabrol B, Figarella-Branger D, Coquet M, Mancini J, Fontan D, Pedespan JM et al (2001) X-linked myopathy with excessive autophagy: a clinicopathological study of five new families. Neuromuscul Disord 11:376–388. https://doi.org/10.1016/s0960-8966(00)00209-1
Article
CAS
PubMed
Google Scholar
Dowling JJ, Moore SA, Kalimo H, Minassian BA (2015) X-linked myopathy with excessive autophagy: a failure of self-eating. Acta Neuropathol 129:383–390. https://doi.org/10.1007/s00401-015-1393-4
Article
PubMed
Google Scholar
Nishino I (2006) Autophagic vacuolar myopathy. Semin Pediatr Neurol 13:90–95. https://doi.org/10.1016/j.spen.2006.06.004
Article
PubMed
Google Scholar
Radke J, Koll R, Gill E, Wiese L, Schulz A, Kohlschutter A et al (2018) Autophagic vacuolar myopathy is a common feature of CLN3 disease. Ann Clin Transl Neurol 5:1385–1393. https://doi.org/10.1002/acn3.662
Article
CAS
PubMed
PubMed Central
Google Scholar
Fukuda T, Ewan L, Bauer M, Mattaliano RJ, Zaal K, Ralston E et al (2006) Dysfunction of endocytic and autophagic pathways in a lysosomal storage disease. Ann Neurol 59:700–708. https://doi.org/10.1002/ana.20807
Article
CAS
PubMed
Google Scholar
Raben N, Ralston E, Chien YH, Baum R, Schreiner C, Hwu WL et al (2010) Differences in the predominance of lysosomal and autophagic pathologies between infants and adults with Pompe disease: implications for therapy. Mol Genet Metab 101:324–331. https://doi.org/10.1016/j.ymgme.2010.08.001
Article
CAS
PubMed
PubMed Central
Google Scholar
Napolitano G, Esposito A, Choi H, Matarese M, Benedetti V, Di MC et al (2018) mTOR-dependent phosphorylation controls TFEB nuclear export. Nat Commun 9:3312. https://doi.org/10.1038/s41467-018-05862-6
Article
CAS
PubMed
PubMed Central
Google Scholar
Decuypere JP, Bultynck G, Parys JB (2011) A dual role for Ca(2+) in autophagy regulation. Cell Calcium 50:242–250. https://doi.org/10.1016/j.ceca.2011.04.001
Article
CAS
PubMed
Google Scholar
Louboutin JP, Villanova M, Ulrich G, De Clerck LS, Fardeau M, Sagniez M (1996) Elevated levels of complement components C5 and C9 and decreased antitrypsin activity in the serum of patients with X-linked vacuolated myopathy. Muscle Nerve 19:1144–1147. https://doi.org/10.1002/(SICI)1097-4598(199609)19:9%3c1144::AID-MUS10%3e3.0.CO;2-V
Article
CAS
PubMed
Google Scholar
Villanova M, Louboutin JP, Chateau D, Eymard B, Sagniez M, Tome FM et al (1995) X-linked vacuolated myopathy: complement membrane attack complex on surface membrane of injured muscle fibers. Ann Neurol 37:637–645. https://doi.org/10.1002/ana.410370514
Article
CAS
PubMed
Google Scholar
Spuler S, Engel AG (1998) Unexpected sarcolemmal complement membrane attack complex deposits on nonnecrotic muscle fibers in muscular dystrophies. Neurology 50:41–46. https://doi.org/10.1212/wnl.50.1.41
Article
CAS
PubMed
Google Scholar
Lariccia V, Fine M, Magi S, Lin MJ, Yaradanakul A, Llaguno MC et al (2011) Massive calcium-activated endocytosis without involvement of classical endocytic proteins. J Gen Physiol 137:111–132. https://doi.org/10.1085/jgp.201010468
Article
CAS
PubMed
PubMed Central
Google Scholar
Samie MA, Xu H (2014) Lysosomal exocytosis and lipid storage disorders. J Lipid Res 55:995–1009. https://doi.org/10.1194/jlr.R046896
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu WJ, Li ZH, Chen XC, Zhao XL, Zhong Z, Yang C et al (2017) Blockage of the lysosome-dependent autophagic pathway contributes to complement membrane attack complex-induced podocyte injury in idiopathic membranous nephropathy. Sci Rep 7:8643. https://doi.org/10.1038/s41598-017-07889-z
Article
CAS
PubMed
PubMed Central
Google Scholar
King BC, Kulak K, Colineau L, Blom AM (2020) Outside in: Roles of complement in autophagy. Br J Pharmacol, https://doi.org/10.1111/bph.15192
Reis GF, de la Motte G, Gooding R, Laing NG, Margeta M (2015) Complex sarcolemmal invaginations mimicking myotendinous junctions in a case of Laing early-onset distal myopathy. Neuropathology 35:575–581. https://doi.org/10.1111/neup.12220
Article
PubMed
Google Scholar
Zanoteli E, van d, V, Bonten EJ, Hu H, Mann L, Gomero EM, et al (2010) Muscle degeneration in neuraminidase 1-deficient mice results from infiltration of the muscle fibers by expanded connective tissue. Biochim Biophys Acta 1802:659–672. https://doi.org/10.1016/j.bbadis.2010.04.002
Article
CAS
PubMed
PubMed Central
Google Scholar
Pelkmans L, Burli T, Zerial M, Helenius A (2004) Caveolin-stabilized membrane domains as multifunctional transport and sorting devices in endocytic membrane traffic. Cell 118:767–780. https://doi.org/10.1016/j.cell.2004.09.003
Article
CAS
PubMed
Google Scholar
Martens S, McMahon HT (2008) Mechanisms of membrane fusion: disparate players and common principles. Nat Rev Mol Cell Biol 9:543–556. https://doi.org/10.1038/nrm2417
Article
CAS
PubMed
Google Scholar
Shi M, Zhang T, Sun L, Luo Y, Liu DH, Xie ST et al (2013) Calpain, Atg5 and Bak play important roles in the crosstalk between apoptosis and autophagy induced by influx of extracellular calcium. Apoptosis 18:435–451. https://doi.org/10.1007/s10495-012-0786-2
Article
CAS
PubMed
Google Scholar
Engedal N, Torgersen ML, Guldvik IJ, Barfeld SJ, Bakula D, Saetre F et al (2013) Modulation of intracellular calcium homeostasis blocks autophagosome formation. Autophagy 9:1475–1490. https://doi.org/10.4161/auto.25900
Article
CAS
PubMed
Google Scholar
Sun F, Xu X, Wang X, Zhang B (2016) Regulation of autophagy by Ca(2). Tumour Biol 37:15467–15476. https://doi.org/10.1007/s13277-016-5353-y
Article
CAS
PubMed Central
Google Scholar
Napolitano G, Ballabio A (2016) TFEB at a glance. J Cell Sci 129:2475–2481. https://doi.org/10.1242/jcs.146365
Article
CAS
PubMed
PubMed Central
Google Scholar
Spampanato C, Feeney E, Li L, Cardone M, Lim JA, Annunziata F et al (2013) Transcription factor EB (TFEB) is a new therapeutic target for Pompe disease. EMBO Mol Med 5:691–706. https://doi.org/10.1002/emmm.201202176
Article
CAS
PubMed
PubMed Central
Google Scholar
Chauhan S, Goodwin JG, Chauhan S, Manyam G, Wang J, Kamat AM et al (2013) ZKSCAN3 is a master transcriptional repressor of autophagy. Mol Cell 50:16–28. https://doi.org/10.1016/j.molcel.2013.01.024
Article
CAS
PubMed
PubMed Central
Google Scholar
Pan H, Yan Y, Liu C, Finkel T (2017) The role of ZKSCAN3 in the transcriptional regulation of autophagy. Autophagy 13:1235–1238. https://doi.org/10.1080/15548627.2017.1320635
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu H, He Z, von RT, Yousefi S, Hunger RE, Simon HU, (2013) Down-regulation of autophagy-related protein 5 (ATG5) contributes to the pathogenesis of early-stage cutaneous melanoma. Sci Transl Med 5:202ra123. https://doi.org/10.1126/scitranslmed.3005864
Article
CAS
PubMed
Google Scholar
Chi Y, Xu H, Wang F, Chen X, Shan Z, Sun Y et al (2018) ZKSCAN3 promotes breast cancer cell proliferation, migration and invasion. Biochem Biophys Res Commun 503:2583–2589. https://doi.org/10.1016/j.bbrc.2018.07.019
Article
CAS
PubMed
Google Scholar
Botti-Millet J, Nascimbeni AC, Dupont N, Morel E, Codogno P (2016) Fine-tuning autophagy: from transcriptional to posttranslational regulation. Am J Physiol Cell Physiol 311:C351–C362. https://doi.org/10.1152/ajpcell.00129.2016
Article
PubMed
Google Scholar
Scott RC, Juhasz G, Neufeld TP (2007) Direct induction of autophagy by Atg1 inhibits cell growth and induces apoptotic cell death. Curr Biol 17:1–11. https://doi.org/10.1016/j.cub.2006.10.053
Article
CAS
PubMed
PubMed Central
Google Scholar
Mao K, Chew LH, Inoue-Aono Y, Cheong H, Nair U, Popelka H et al (2013) Atg29 phosphorylation regulates coordination of the Atg17-Atg31-Atg29 complex with the Atg11 scaffold during autophagy initiation. Proc Natl Acad Sci USA 110:E2875–E2884. https://doi.org/10.1073/pnas.1300064110
Article
PubMed
Google Scholar
Li Y, Xu M, Ding X, Yan C, Song Z, Chen L et al (2016) Protein kinase C controls lysosome biogenesis independently of mTORC1. Nat Cell Biol 18:1065–1077. https://doi.org/10.1038/ncb3407
Article
CAS
PubMed
Google Scholar