Arora A, Bhagat N (2016) Insight into the molecular imaging of Alzheimer’s disease. Int J Biomed Imaging 2016:7462014. https://doi.org/10.1155/2016/7462014
Google Scholar
Baiguera C, Alghisi M, Pinna A, Bellucci A, De Luca MA, Frau L, Morelli M, Ingrassia R, Benarese M, Porrini V, Pellitteri M, Bertini G, Fabene PF, Sigala S, Spillantini MG, Liou HC, Spano PF, Pizzi M (2012) Late-onset Parkinsonism in NFkappaB/c-Rel-deficient mice. Brain 135:2750–2765. https://doi.org/10.1093/brain/aws193
Google Scholar
Batka RJ, Brown TJ, Mcmillan KP, Meadows RM, Jones KJ, Haulcomb MM (2014) The need for speed in rodent locomotion analyses. Anat Rec (Hoboken) 297:1839–1864. https://doi.org/10.1002/ar.22955
Google Scholar
Blandini F, Cosentino M, Mangiagalli A, Marino F, Samuele A, Rasini E, Fancellu R, Tassorelli C, Pacchetti C, Martignoni E, Riboldazzi G, Calandrella D, Lecchini S, Frigo G, Nappi G (2004) Modifications of apoptosis-related protein levels in lymphocytes of patients with Parkinson’s disease. The effect of dopaminergic treatment. J Neural Transm (Vienna) 111:1017–1030. https://doi.org/10.1007/s00702-004-0123-1
Google Scholar
Clark MR, Aminoff MJ, Chiu DT, Kuypers FA, Friend DS (1989) Red cell deformability and lipid composition in two forms of acanthocytosis: enrichment of acanthocytic populations by density gradient centrifugation. J Lab Clin Med 113:469–481
Google Scholar
Colacurcio DJ, Pensalfini A, Jiang Y, Nixon RA (2018) Dysfunction of autophagy and endosomal-lysosomal pathways: roles in pathogenesis of down syndrome and Alzheimer’s disease. Free Radic Biol Med 114:40–51. https://doi.org/10.1016/j.freeradbiomed.2017.10.001
Google Scholar
Critchley EM, Clark DB, Wikler A (1968) Acanthocytosis and neurological disorder without betalipoproteinemia. Arch Neurol 18:134–140
Google Scholar
Danek A, Bader B, Velayos-Baeza A, Walker RH (2012) Autosomal recessive transmission of chorea-acanthocytosis confirmed. Acta Neuropathol 123:905–906. https://doi.org/10.1007/s00401-012-0971-y
Google Scholar
De Franceschi L, Tomelleri C, Matte A, Brunati AM, Bovee-Geurts PH, Bertoldi M, Lasonder E, Tibaldi E, Danek A, Walker RH, Jung HH, Bader B, Siciliano A, Ferru E, Mohandas N, Bosman GJ (2011) Erythrocyte membrane changes of chorea-acanthocytosis are the result of altered Lyn kinase activity. Blood 118:5652–5663. https://doi.org/10.1182/blood-2011-05-355339
Google Scholar
Dobson-Stone C, Danek A, Rampoldi L, Hardie RJ, Chalmers RM, Wood NW, Bohlega S, Dotti MT, Federico A, Shizuka M, Tanaka M, Watanabe M, Ikeda Y, Brin M, Goldfarb LG, Karp BI, Mohiddin S, Fananapazir L, Storch A, Fryer AE, Maddison P, Sibon I, Trevisol-Bittencourt PC, Singer C, Caballero IR, Aasly JO, Schmierer K, Dengler R, Hiersemenzel LP, Zeviani M, Meiner V, Lossos A, Johnson S, Mercado FC, Sorrentino G, Dupre N, Rouleau GA, Volkmann J, Arpa J, Lees A, Geraud G, Chouinard S, Nemeth A, Monaco AP (2002) Mutational spectrum of the CHAC gene in patients with chorea-acanthocytosis. Eur J Hum Genet 10:773–781. https://doi.org/10.1038/sj.ejhg.5200866
Google Scholar
Duarte JM, Do KQ, Gruetter R (2014) Longitudinal neurochemical modifications in the aging mouse brain measured in vivo by 1H magnetic resonance spectroscopy. Neurobiol Aging 35:1660–1668. https://doi.org/10.1016/j.neurobiolaging.2014.01.135
Google Scholar
Elkouzi A, Vedam-Mai V, Eisinger RS, Okun MS (2019) Emerging therapies in Parkinson disease: repurposed drugs and new approaches. Nat Rev Neurol 15:204–223. https://doi.org/10.1038/s41582-019-0155-7
Google Scholar
Estevez-Fraga C, Lopez-Sendon Moreno JL, Martinez-Castrillo JC (2018) Phenomenology and disease progression of chorea-acanthocytosis patients in Spain. Parkinsonism Relat Disord 49:17–21. https://doi.org/10.1016/j.parkreldis.2017.10.016
Google Scholar
Gao M, Yang H (2018) VPS13: a lipid transfer protein making contacts at multiple cellular locations. J Cell Biol 217:3322–3324. https://doi.org/10.1083/jcb.201808151
Google Scholar
Gelders G, Baekelandt V, Van der Perren A (2018) Linking neuroinflammation and neurodegeneration in Parkinson’s disease. J Immunol Res 2018:4784268. https://doi.org/10.1155/2018/4784268
Google Scholar
Gibb SL, Jeanblanc J, Barak S, Yowell QV, Yaka R, Ron D (2011) Lyn kinase regulates mesolimbic dopamine release: implication for alcohol reward. J Neurosci 31:2180–2187. https://doi.org/10.1523/JNEUROSCI.5540-10.2011
Google Scholar
Gwon Y, Kim SH, Kim HT, Kam TI, Park J, Lim B, Cha H, Chang HJ, Hong YR, Jung YK (2019) Amelioration of amyloid beta-FcgammaRIIb neurotoxicity and tau pathologies by targeting LYN. FASEB J Off Publ Fed Am Soc Exp Biol 33:4300–4313. https://doi.org/10.1096/fj.201800926R
Google Scholar
Gwon Y, Kim SH, Kim HT, Kam TI, Park J, Lim B, Cha H, Chang HJ, Hong YR, Jung YK (2019) Amelioration of amyloid β-FcγRIIb neurotoxicity and tau pathologies by targeting LYN. FASEB J 33:4300–4313. https://doi.org/10.1096/fj.201800926R
Google Scholar
Hartmann A, Hunot S, Michel PP, Muriel MP, Vyas S, Faucheux BA, Mouatt-Prigent A, Turmel H, Srinivasan A, Ruberg M, Evan GI, Agid Y, Hirsch EC (2000) Caspase-3: a vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson’s disease. Proc Natl Acad Sci USA 97:2875–2880. https://doi.org/10.1073/pnas.040556597
Google Scholar
Hebron ML, Lonskaya I, Moussa CE (2013) Nilotinib reverses loss of dopamine neurons and improves motor behavior via autophagic degradation of alpha-synuclein in Parkinson’s disease models. Hum Mol Genet 22:3315–3328. https://doi.org/10.1093/hmg/ddt192
Google Scholar
Heffron TP (2016) Small molecule kinase inhibitors for the treatment of brain cancer. J Med Chem 59:10030–10066. https://doi.org/10.1021/acs.jmedchem.6b00618
Google Scholar
Hermann A, Walker RH (2015) Diagnosis and treatment of chorea syndromes. Curr Neurol Neurosci Rep 15:514. https://doi.org/10.1007/s11910-014-0514-0
Google Scholar
Hirsch EC, Hunot S (2009) Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol 8:382–397. https://doi.org/10.1016/s1474-4422(09)70062-6
Google Scholar
Houtman J, Freitag K, Gimber N, Schmoranzer J, Heppner FL, Jendrach M (2019) Beclin1-driven autophagy modulates the inflammatory response of microglia via NLRP3. EMBO J. https://doi.org/10.15252/embj.201899430
Google Scholar
Ingley E, McCarthy DJ, Pore JR, Sarna MK, Adenan AS, Wright MJ, Erber W, Tilbrook PA, Klinken SP (2005) Lyn deficiency reduces GATA-1, EKLF and STAT5, and induces extramedullary stress erythropoiesis. Oncogene 24:336–343. https://doi.org/10.1038/sj.onc.1208199
Google Scholar
Jung HH, Danek A, Walker RH (2011) Neuroacanthocytosis syndromes. Orphanet J Rare Dis 6:68. https://doi.org/10.1186/1750-1172-6-68
Google Scholar
Kalish BT, Matte A, Andolfo I, Iolascon A, Weinberg O, Ghigo A, Cimino J, Siciliano A, Hirsch E, Federti E, Puder M, Brugnara C, De Franceschi L (2015) Dietary ω-3 fatty acids protect against vasculopathy in a transgenic mouse model of sickle cell disease. Haematologica 100:870–880. https://doi.org/10.3324/haematol.2015.124586
Google Scholar
Karuppagounder SS, Brahmachari S, Lee Y, Dawson VL, Dawson TM, Ko HS (2014) The c-Abl inhibitor, nilotinib, protects dopaminergic neurons in a preclinical animal model of Parkinson’s disease. Sci Rep 4:4874. https://doi.org/10.1038/srep04874
Google Scholar
Karur VG, Lowell CA, Besmer P, Agosti V, Wojchowski DM (2006) Lyn kinase promotes erythroblast expansion and late-stage development. Blood 108:1524–1532. https://doi.org/10.1182/blood-2005-09-008243
Google Scholar
Kimura N, Yanagisawa K (2018) Traffic jam hypothesis: Relationship between endocytic dysfunction and Alzheimer’s disease. Neurochem Int 119:35–41. https://doi.org/10.1016/j.neuint.2017.07.002
Google Scholar
Kuhla A, Ruhlmann C, Lindner T, Polei S, Hadlich S, Krause BJ, Vollmar B, Teipel SJ (2017) APPswe/PS1dE9 mice with cortical amyloid pathology show a reduced NAA/Cr ratio without apparent brain atrophy: a MRS and MRI study. NeuroImage Clin 15:581–586. https://doi.org/10.1016/j.nicl.2017.06.009
Google Scholar
Kumar N, Leonzino M, Hancock-Cerutti W, Horenkamp FA, Li P, Lees JA, Wheeler H, Reinisch KM, De Camilli P (2018) VPS13A and VPS13C are lipid transport proteins differentially localized at ER contact sites. J Cell Biol 217:3625–3639. https://doi.org/10.1083/jcb.201807019
Google Scholar
Landrieu I, Smet-Nocca C, Amniai L, Louis JV, Wieruszeski JM, Goris J, Janssens V, Lippens G (2011) Molecular implication of PP2A and Pin1 in the Alzheimer’s disease specific hyperphosphorylation of Tau. PLoS ONE 6:e21521. https://doi.org/10.1371/journal.pone.0021521
Google Scholar
Lesage S, Drouet V, Majounie E, Deramecourt V, Jacoupy M, Nicolas A, Cormier-Dequaire F, Hassoun SM, Pujol C, Ciura S, Erpapazoglou Z, Usenko T, Maurage CA, Sahbatou M, Liebau S, Ding J, Bilgic B, Emre M, Erginel-Unaltuna N, Guven G, Tison F, Tranchant C, Vidailhet M, Corvol JC, Krack P, Leutenegger AL, Nalls MA, Hernandez DG, Heutink P, Gibbs JR, Hardy J, Wood NW, Gasser T, Durr A, Deleuze JF, Tazir M, Destee A, Lohmann E, Kabashi E, Singleton A, Corti O, Brice A (2016) Loss of VPS13C function in autosomal-recessive parkinsonism causes mitochondrial dysfunction and increases PINK1/Parkin-dependent mitophagy. Am J Hum Genet 98:500–513. https://doi.org/10.1016/j.ajhg.2016.01.014
Google Scholar
Levine IM, Estes JW, Looney JM (1968) Hereditary neurological disease with acanthocytosis. A new syndrome. Arch Neurol 19:403–409
Google Scholar
Li X, He S, Zhou X, Ye Y, Tan S, Zhang S, Li R, Yu M, Jundt MC, Hidebrand A, Wang Y, Li G, Huang C, Wu M (2016) Lyn delivers bacteria to lysosomes for eradication through TLR2-initiated autophagy related phagocytosis. PLoS Pathog 12:e1005363. https://doi.org/10.1371/journal.ppat.1005363
Google Scholar
Lichtenstein A, Minogue PJ, Beyer EC, Berthoud VM (2011) Autophagy: a pathway that contributes to connexin degradation. J Cell Sci 124:910–920. https://doi.org/10.1242/jcs.073072
Google Scholar
Liu J, Heinsen H, Grinberg LT, Alho E, Amaro E Jr, Pasqualucci CA, Rub U, den Dunnen W, Arzberger T, Schmitz C, Kiessling M, Bader B, Danek A (2018) Subcortical neurodegeneration in chorea: similarities and differences between chorea-acanthocytosis and Huntington’s disease. Parkinsonism Relat Disord 49:54–59. https://doi.org/10.1016/j.parkreldis.2018.01.009
Google Scholar
Liu J, Heinsen H, Grinberg LT, Alho E, Amaro E Jr, Pasqualucci CA, Rub U, Seidel K, den Dunnen W, Arzberger T, Schmitz C, Kiessling MC, Bader B, Danek A (2018) Pathoarchitectonics of the cerebral cortex in chorea-acanthocytosis and HD. Neuropathol Appl Neurobiol. https://doi.org/10.1111/nan.12495
Google Scholar
Lonskaya I, Hebron ML, Desforges NM, Franjie A, Moussa CE (2013) Tyrosine kinase inhibition increases functional parkin-Beclin-1 interaction and enhances amyloid clearance and cognitive performance. EMBO Mol Med 5:1247–1262. https://doi.org/10.1002/emmm.201302771
Google Scholar
Lu W, Fang W, Li J, Zhang B, Yang Q, Yan X, Peng L, Ai H, Wang JJ, Liu X, Luo J, Yang W (2015) Phosphorylation of tyrosine 1070 at the GluN2B subunit is regulated by synaptic activity and critical for surface expression of N-methyl-D-aspartate (NMDA) receptors. J Biol Chem 290:22945–22954. https://doi.org/10.1074/jbc.M115.663450
Google Scholar
Lupo F, Tibaldi E, Matte A, Sharma AK, Brunati AM, Alper SL, Zancanaro C, Benati D, Siciliano A, Bertoldi M, Zonta F, Storch A, Walker RH, Danek A, Bader B, Hermann A, De Franceschi L (2016) A new molecular link between defective autophagy and erythroid abnormalities in chorea-acanthocytosis. Blood 128:2976–2987. https://doi.org/10.1182/blood-2016-07-727321
Google Scholar
Matte A, Federti E, Winter M, Koerner A, Harmeier A, Mazer N, Tomka T, Di Paolo ML, De Falco L, Andolfo I, Beneduce E, Iolascon A, Macias-Garcia A, Chen JJ, Janin A, Lebouef C, Turrini F, Brugnara C, De Franceschi L (2019) Bitopertin, a selective oral GLYT1 inhibitor, improves anemia in a mouse model of β-thalassemia. JCI Insight. https://doi.org/10.1172/jci.insight.130111
Google Scholar
Matte A, Low PS, Turrini F, Bertoldi M, Campanella ME, Spano D, Pantaleo A, Siciliano A, De Franceschi L (2010) Peroxiredoxin-2 expression is increased in beta-thalassemic mouse red cells but is displaced from the membrane as a marker of oxidative stress. Free Radic Biol Med 49:457–466. https://doi.org/10.1016/j.freeradbiomed.2010.05.003
Google Scholar
McKnight NC, Zhong Y, Wold MS, Gong S, Phillips GR, Dou Z, Zhao Y, Heintz N, Zong WX, Yue Z (2014) Beclin 1 is required for neuron viability and regulates endosome pathways via the UVRAG-VPS34 complex. PLoS Genet 10:e1004626. https://doi.org/10.1371/journal.pgen.1004626
Google Scholar
Mo Y, Sun YY, Liu KY (2020) Autophagy and inflammation in ischemic stroke. Neural Regen Res 15:1388–1396. https://doi.org/10.4103/1673-5374.274331
Google Scholar
Ninkina N, Peters O, Millership S, Salem H, van der Putten H, Buchman VL (2009) Gamma-synucleinopathy: neurodegeneration associated with overexpression of the mouse protein. Hum Mol Genet 18:1779–1794. https://doi.org/10.1093/hmg/ddp090
Google Scholar
Oeckl P, Metzger F, Nagl M, von Arnim CA, Halbgebauer S, Steinacker P, Ludolph AC, Otto M (2016) Alpha-, beta-, and gamma-synuclein quantification in cerebrospinal fluid by multiple reaction monitoring reveals increased concentrations in Alzheimer’s and Creutzfeldt–Jakob disease but no alteration in synucleinopathies. Mol Cell Proteomics 15:3126–3138. https://doi.org/10.1074/mcp.M116.059915
Google Scholar
Pagan FL, Hebron ML, Wilmarth B, Torres-Yaghi Y, Lawler A, Mundel EE, Yusuf N, Starr NJ, Anjum M, Arellano J, Howard HH, Shi W, Mulki S, Kurd-Misto T, Matar S, Liu X, Ahn J, Moussa C (2019) Nilotinib effects on safety, tolerability, and potential biomarkers in Parkinson disease: a phase 2 randomized clinical trial. JAMA Neurol. https://doi.org/10.1001/jamaneurol.2019.4200
Google Scholar
Peikert K, Danek A, Hermann A (2017) Current state of knowledge in chorea-acanthocytosis as core neuroacanthocytosis syndrome. Eur J Med Genet. https://doi.org/10.1016/j.ejmg.2017.12.007
Google Scholar
Pellerin L, Magistretti PJ (2012) Sweet sixteen for ANLS. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 32:1152–1166. https://doi.org/10.1038/jcbfm.2011.149
Google Scholar
Peters OM, Shelkovnikova T, Highley JR, Cooper-Knock J, Hortobagyi T, Troakes C, Ninkina N, Buchman VL (2015) Gamma-synuclein pathology in amyotrophic lateral sclerosis. Ann Clin Transl Neurol 2:29–37. https://doi.org/10.1002/acn3.143
Google Scholar
Rampoldi L, Danek A, Monaco AP (2002) Clinical features and molecular bases of neuroacanthocytosis. J Mol Med (Berl) 80:475–491. https://doi.org/10.1007/s00109-002-0349-z
Google Scholar
Rampoldi L, Dobson-Stone C, Rubio JP, Danek A, Chalmers RM, Wood NW, Verellen C, Ferrer X, Malandrini A, Fabrizi GM, Brown R, Vance J, Pericak-Vance M, Rudolf G, Carrè S, Alonso E, Manfredi M, Németh AH, Monaco AP (2001) A conserved sorting-associated protein is mutant in chorea-acanthocytosis. Nat Genet 28:119. https://doi.org/10.1038/88821
Google Scholar
Ravikumar B, Imarisio S, Sarkar S, O’Kane CJ, Rubinsztein DC (2008) Rab5 modulates aggregation and toxicity of mutant huntingtin through macroautophagy in cell and fly models of Huntington disease. J Cell Sci 121:1649–1660. https://doi.org/10.1242/jcs.025726
Google Scholar
Russell RC, Tian Y, Yuan H, Park HW, Chang YY, Kim J, Kim H, Neufeld TP, Dillin A, Guan KL (2013) ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat Cell Biol 15:741–750. https://doi.org/10.1038/ncb2757
Google Scholar
Russell RC, Yuan HX, Guan KL (2014) Autophagy regulation by nutrient signaling. Cell Res 24:42–57. https://doi.org/10.1038/cr.2013.166
Google Scholar
Salminen A, Kaarniranta K, Kauppinen A, Ojala J, Haapasalo A, Soininen H, Hiltunen M (2013) Impaired autophagy and APP processing in Alzheimer’s disease: the potential role of Beclin 1 interactome. Prog Neurobiol 106–107:33–54. https://doi.org/10.1016/j.pneurobio.2013.06.002
Google Scholar
Salter MW, Kalia LV (2004) Src kinases: a hub for NMDA receptor regulation. Nat Rev Neurosci 5:317–328. https://doi.org/10.1038/nrn1368
Google Scholar
Schwenk BM, Hartmann H, Serdaroglu A, Schludi MH, Hornburg D, Meissner F, Orozco D, Colombo A, Tahirovic S, Michaelsen M, Schreiber F, Haupt S, Peitz M, Brustle O, Kupper C, Klopstock T, Otto M, Ludolph AC, Arzberger T, Kuhn PH, Edbauer D (2016) TDP-43 loss of function inhibits endosomal trafficking and alters trophic signaling in neurons. EMBO J 35:2350–2370. https://doi.org/10.15252/embj.201694221
Google Scholar
Shibata M, Lu T, Furuya T, Degterev A, Mizushima N, Yoshimori T, MacDonald M, Yankner B, Yuan J (2006) Regulation of intracellular accumulation of mutant Huntingtin by Beclin 1. J Biol Chem 281:14474–14485. https://doi.org/10.1074/jbc.M600364200
Google Scholar
Simuni T, Fiske B, Merchant K, Coffey CS, Klingner E, Caspell-Garcia C, Lafontant DE, Matthews H, Wyse RK, Brundin P, Simon DK, Schwarzschild M, Weiner D, Adams J, Venuto C, Dawson TM, Baker L, Kostrzebski M, Ward T, Rafaloff G, Parkinson Study Group N-PDI, Collaborators (2020) Efficacy of nilotinib in patients with moderately advanced Parkinson disease: a randomized clinical trial. JAMA Neurol. https://doi.org/10.1001/jamaneurol.2020.4725
Google Scholar
Spencer B, Potkar R, Trejo M, Rockenstein E, Patrick C, Gindi R, Adame A, Wyss-Coray T, Masliah E (2009) Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in alpha-synuclein models of Parkinson’s and Lewy body diseases. J Neurosci Off J Soc Neurosci 29:13578–13588. https://doi.org/10.1523/jneurosci.4390-09.2009
Google Scholar
Stanslowsky N, Reinhardt P, Glass H, Kalmbach N, Naujock M, Hensel N, Lubben V, Pal A, Venneri A, Lupo F, De Franceschi L, Claus P, Sterneckert J, Storch A, Hermann A, Wegner F (2016) Neuronal dysfunction in iPSC-derived medium spiny neurons from chorea-acanthocytosis patients is reversed by Src kinase inhibition and F-actin stabilization. J Neurosci 36:12027–12043. https://doi.org/10.1523/JNEUROSCI.0456-16.2016
Google Scholar
Stenmark H (2009) Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10:513–525. https://doi.org/10.1038/nrm2728
Google Scholar
Tomemori Y, Ichiba M, Kusumoto A, Mizuno E, Sato D, Muroya S, Nakamura M, Kawaguchi H, Yoshida H, Ueno S, Nakao K, Nakamura K, Aiba A, Katsuki M, Sano A (2005) A gene-targeted mouse model for chorea-acanthocytosis. J Neurochem 92:759–766. https://doi.org/10.1111/j.1471-4159.2004.02924.x
Google Scholar
Turner RS, Hebron ML, Lawler A, Mundel EE, Yusuf N, Starr JN, Anjum M, Pagan F, Torres-Yaghi Y, Shi W, Mulki S, Ferrante D, Matar S, Liu X, Esposito G, Berkowitz F, Jiang X, Ahn J, Moussa C (2020) Nilotinib effects on safety, tolerability, and biomarkers in Alzheimer’s disease. Ann Neurol 88:183–194. https://doi.org/10.1002/ana.25775
Google Scholar
Ueno S, Maruki Y, Nakamura M, Tomemori Y, Kamae K, Tanabe H, Yamashita Y, Matsuda S, Kaneko S, Sano A (2001) The gene encoding a newly discovered protein, chorein, is mutated in chorea-acanthocytosis. Nat Genet 28:121. https://doi.org/10.1038/88825
Google Scholar
Vandeputte C, Taymans JM, Casteels C, Coun F, Ni Y, Van Laere K, Baekelandt V (2010) Automated quantitative gait analysis in animal models of movement disorders. BMC Neurosci 11:92. https://doi.org/10.1186/1471-2202-11-92
Google Scholar
Velayos Baeza A, Dobson-Stone C, Rampoldi L, Bader B, Walker RH, Danek A, Monaco AP (1993) Chorea-acanthocytosis. In: Adam MP, Ardinger HH, Pagon RA et al (eds) GeneReviews. University of Washington, Seattle
Google Scholar
Walker RH (2015) Management of neuroacanthocytosis syndromes. Tremor Other Hyperkinetic Mov (New York, NY) 5:346. https://doi.org/10.7916/d8w66k48
Google Scholar
Wu Z, Chang PC, Yang JC, Chu CY, Wang LY, Chen NT, Ma AH, Desai SJ, Lo SH, Evans CP, Lam KS, Kung HJ (2010) Autophagy blockade sensitizes prostate cancer cells towards Src family kinase inhibitors. Genes Cancer 1:40–49. https://doi.org/10.1177/1947601909358324
Google Scholar
Yeatman TJ (2004) A renaissance for SRC. Nat Rev Cancer 4:470–480. https://doi.org/10.1038/nrc1366
Google Scholar
Yeshaw WM, van der Zwaag M, Pinto F, Lahaye LL, Faber AI, Gomez-Sanchez R, Dolga AM, Poland C, Monaco AP, van IJzendoorn SCD, Grzeschik NA, Velayos-Baeza A, Sibon OC (2019) Human VPS13A is associated with multiple organelles and influences mitochondrial morphology and lipid droplet motility. eLife. https://doi.org/10.7554/eLife.43561
Google Scholar
Zhu W, Smith JW, Huang CM (2010) Mass spectrometry-based label-free quantitative proteomics. J Biomed Biotechnol 2010:840518. https://doi.org/10.1155/2010/840518
Google Scholar