Abramov AY, Canevari L, Duchen MR (2003) Changes in intracellular calcium and glutathione in astrocytes as the primary mechanism of amyloid neurotoxicity. J Neurosci 23:5088–5095
Article
CAS
PubMed
PubMed Central
Google Scholar
Abramov AY, Ionov M, Pavlov E, Duchen MR (2011) Membrane cholesterol content plays a key role in the neurotoxicity of beta-amyloid: implications for Alzheimer’s disease. Aging Cell 10:595–603
Article
CAS
PubMed
Google Scholar
Alberdi E, Wyssenbach A, Alberdi M, Sanchez-Gomez MV, Cavaliere F, Rodriguez JJ, Verkhratsky A, Matute C (2013) Ca(2+)-dependent endoplasmic reticulum stress correlates with astrogliosis in oligomeric amyloid beta-treated astrocytes and in a model of Alzheimer’s disease. Aging Cell 12:292–302
Article
CAS
PubMed
Google Scholar
Allaman I, Gavillet M, Belanger M, Laroche T, Viertl D, Lashuel HA, Magistretti PJ (2010) Amyloid-beta aggregates cause alterations of astrocytic metabolic phenotype: impact on neuronal viability. J Neurosci 30:3326–3338
Article
CAS
PubMed
PubMed Central
Google Scholar
Araque A, Carmignoto G, Haydon PG, Oliet SH, Robitaille R, Volterra A (2014) Gliotransmitters travel in time and space. Neuron 81:728–739
Article
CAS
PubMed
PubMed Central
Google Scholar
Bazargani N, Attwell D (2015) Astrocyte calcium signaling: the third wave. Nat Neurosci 19:182–189
Article
CAS
Google Scholar
Brini M, Carafoli E (2009) Calcium pumps in health and disease. Physiol Rev 89:1341–1378
Article
CAS
PubMed
Google Scholar
Bruce JIE (2018) Metabolic regulation of the PMCA: role in cell death and survival. Cell Calcium 69:28–36. https://doi.org/10.1016/j.ceca.2017.06.001
Article
CAS
PubMed
PubMed Central
Google Scholar
Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, Xing Y, Lubischer JL, Krieg PA, Krupenko SA et al (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28:264–278
Article
CAS
PubMed
PubMed Central
Google Scholar
Camara H, De-Souza EA (2018) beta-amyloid accumulation slows earlier than expected in preclinical Alzheimer’s disease patients. J Neurosci 38:9123–9125. https://doi.org/10.1523/JNEUROSCI.1592-18.2018
Article
CAS
PubMed
PubMed Central
Google Scholar
Chow S-K, Yu D, MacDonald CL, Buibas M, Silva GA (2009) Amyloid-beta directly induces spontaenous calcium transient, delayed intercellular calcium waves, and gliosis in rat cortical astrocytes. ASN Neuro. https://doi.org/10.1042/AN20090035
Article
Google Scholar
Covelo A, Araque A (2018) Neuronal activity determines distinct gliotransmitter release from a single astrocyte. Elife 7:e32237
Article
PubMed
PubMed Central
Google Scholar
Dallerac G, Zapata J, Rouach N (2018) Versatile control of synaptic circuits by astrocytes: where, when and how? Nat Rev Neurosci 19:729–743. https://doi.org/10.1038/s41583-018-0080-6
Article
CAS
PubMed
Google Scholar
Daugirdas JT, Arrieta J, Ye M, Flores G, Battle DC (1995) Intracellular acidification associated with changes in free cytosolic calcium. Evidence for Ca2+/H+ exchange via a plasma membrane Ca(2+)-ATPase in vascular smooth muscle cells. J Clin Invest 95:1480–1489
Article
CAS
PubMed
PubMed Central
Google Scholar
De Vuyst E, Wang N, Decrock E, De Bock M, Vinken M, Van Moorhem M, Lai C, Culot M, Rogiers V, Cecchelli R et al (2009) Ca2+ regulation of connexin 43 hemichannels in C6 glioma and glial cells. Cell Calcium 46:176–187
Article
PubMed
CAS
Google Scholar
Dean WL, Chen D, Brandt PC, Vanaman TC (1997) Regulation of platelet plasma membrane Ca2+-ATPase by cAMP-dependent and tyrosine phosphorylation. J Biol Chem 272:15113–15119
Article
CAS
PubMed
Google Scholar
Delekate A, Fuchtemeier M, Schumacher T, Ulbrich C, Foddis M, Petzold GC (2014) Metabotropic P2Y1 receptor signalling mediates astrocytic hyperactivity in vivo in an Alzheimer’s disease mouse model. Nat Commun 5:5422
Article
PubMed
Google Scholar
Demuro A, Smith M, Parker I (2011) Single-channel Ca(2+) imaging implicates Abeta1-42 amyloid pores in Alzheimer’s disease pathology. J Cell Biol 195:515–524
Article
CAS
PubMed
PubMed Central
Google Scholar
Devaraju P, Sun MY, Myers TL, Lauderdale K, Fiacco TA (2013) Astrocytic group I mGluR-dependent potentiation of astrocytic glutamate and potassium uptake. J Neurophysiol 109:2404–2414
Article
CAS
PubMed
Google Scholar
Evans WH, Leybaert L (2007) Mimetic peptides as blockers of connexin channel-facilitated intercellular communication. Cell Commun Adhes 14:265–273
Article
CAS
PubMed
Google Scholar
Fan Y, He JJ (2016) HIV-1 tat promotes lysosomal exocytosis in astrocytes and contributes to astrocyte-mediated tat neurotoxicity. J Biol Chem 291:22830–22840. https://doi.org/10.1074/jbc.M116.731836
Article
CAS
PubMed
PubMed Central
Google Scholar
Ferdek PE, Gerasimenko JV, Peng S, Tepikin AV, Petersen OH, Gerasimenko OV (2012) A novel role for Bcl-2 in regulation of cellular calcium extrusion. Curr Biol 22:1241–1246
Article
CAS
PubMed
PubMed Central
Google Scholar
Fiacco TA, Agulhon C, McCarthy KD (2009) Sorting out astrocyte physiology from pharmacology. Annu Rev Pharmacol Toxicol 49:151–174
Article
CAS
PubMed
Google Scholar
Fiacco TA, McCarthy KD (2018) Multiple lines of evidence indicate that gliotransmission does not occur under physiological conditions. J Neurosci 38:3–13
Article
CAS
PubMed
PubMed Central
Google Scholar
Figueiredo M, Lane S, Stout RF Jr, Liu B, Parpura V, Teschemacher AG, Kasparov S (2014) Comparative analysis of optogenetic actuators in cultured astrocytes. Cell Calcium 56:208–214. https://doi.org/10.1016/j.ceca.2014.07.007
Article
CAS
PubMed
PubMed Central
Google Scholar
Fresu L, Dehpour A, Genazzani AA, Carafoli E, Guerini D (1999) Plasma membrane calcium ATPase isoforms in astrocytes. Glia 28:150–155
Article
CAS
PubMed
Google Scholar
Furman JL, Sama DM, Gant JC, Beckett TL, Murphy MP, Bachstetter AD, Van Eldik LJ, Norris CM (2012) Targeting astrocytes ameliorates neurologic changes in a mouse model of Alzheimer’s disease. J Neurosci 32:16129–16140
Article
CAS
PubMed
PubMed Central
Google Scholar
Giaume C, Leybaert L, Naus CC, Saez JC (2013) Connexin and pannexin hemichannels in brain glial cells: properties, pharmacology, and roles. Front Pharmacol 4:88
Article
CAS
PubMed
PubMed Central
Google Scholar
Gomez-Gonzalo M, Zehnder T, Requie LM, Bezzi P, Carmignoto G (2018) Insights into the release mechanism of astrocytic glutamate evoking in neurons NMDA receptor-mediated slow depolarizing inward currents. Glia 66:2188–2199. https://doi.org/10.1002/glia.23473
Article
PubMed
Google Scholar
Gout E, Rebeille F, Douce R, Bligny R (2014) Interplay of Mg2+, ADP, and ATP in the cytosol and mitochondria: unravelling the role of Mg2+ in cell respiration. Proc Natl Acad Sci USA 111:E4560-4567. https://doi.org/10.1073/pnas.1406251111
Article
CAS
PubMed
PubMed Central
Google Scholar
Grolla AA, Fakhfouri G, Balzaretti G, Marcello E, Gardoni F, Canonico PL, Diluca M, Genazzani AA, Lim D (2012) Abeta leads to Ca(2+) signaling alterations and transcriptional changes in glial cells. Neurobiol Aging 34:511–522
Article
PubMed
CAS
Google Scholar
Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, Jacobs AH, Wyss-Coray T, Vitorica J, Ransohoff RM et al (2015) Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14:388–405. https://doi.org/10.1016/S1474-4422(15)70016-5
Article
CAS
PubMed
PubMed Central
Google Scholar
Henstridge CM, Hyman BT, Spires-Jones TL (2019) Beyond the neuron-cellular interactions early in Alzheimer disease pathogenesis. Nat Rev Neurosci 20:94–108. https://doi.org/10.1038/s41583-018-0113-1
Article
CAS
PubMed
PubMed Central
Google Scholar
Herculano-Houzel S (2014) The glia/neuron ratio: how it varies uniformly across brain structures and species and what that means for brain physiology and evolution. Glia 62:1377–1391
Article
PubMed
Google Scholar
Honore P, Donnelly-Roberts D, Namovic MT, Hsieh G, Zhu CZ, Mikusa JP, Hernandez G, Zhong C, Gauvin DM, Chandran P et al (2006) A-740003 [N-(1-{[(cyanoimino)(5-quinolinylamino) methyl]amino}-2,2-dimethylpropyl)-2-(3,4-dimethoxyphenyl)acetamide], a novel and selective P2X7 receptor antagonist, dose-dependently reduces neuropathic pain in the rat. J Pharmacol Exp Ther 319:1376–1385. https://doi.org/10.1124/jpet.106.111559
Article
CAS
PubMed
Google Scholar
Iglesias R, Dahl G, Qiu F, Spray DC, Scemes E (2009) Pannexin 1: the molecular substrate of astrocyte “hemichannels.” J Neurosci 29:7092–7097. https://doi.org/10.1523/JNEUROSCI.6062-08.2009
Article
CAS
PubMed
PubMed Central
Google Scholar
Jacob CP, Koutsilieri E, Bartl J, Neuen-Jacob E, Arzberger T, Zander N, Ravid R, Roggendorf W, Riederer P, Grunblatt E (2007) Alterations in expression of glutamatergic transporters and receptors in sporadic Alzheimer’s disease. J Alzheimers Dis 11:97–116
Article
CAS
PubMed
Google Scholar
Jaiswal JK, Fix M, Takano T, Nedergaard M, Simon SM (2007) Resolving vesicle fusion from lysis to monitor calcium-triggered lysosomal exocytosis in astrocytes. Proc Natl Acad Sci USA 104:14151–14156
Article
CAS
PubMed
PubMed Central
Google Scholar
Jo S, Yarishkin O, Hwang YJ, Chun YE, Park M, Woo DH, Bae JY, Kim T, Lee J, Chun H et al (2014) GABA from reactive astrocytes impairs memory in mouse models of Alzheimer’s disease. Nat Med 20:886–896. https://doi.org/10.1038/nm.3639
Article
CAS
PubMed
PubMed Central
Google Scholar
Johansson JS, Nied LE, Haynes DH (1992) Cyclic AMP stimulates Ca(2+)-ATPase-mediated Ca2+ extrusion from human platelets. Biochim Biophys Acta 1105:19–28
Article
CAS
PubMed
Google Scholar
Kasuya G, Yamaura T, Ma XB, Nakamura R, Takemoto M, Nagumo H, Tanaka E, Dohmae N, Nakane T, Yu Y et al (2017) Structural insights into the competitive inhibition of the ATP-gated P2X receptor channel. Nat Commun 8:876. https://doi.org/10.1038/s41467-017-00887-9
Article
CAS
PubMed
PubMed Central
Google Scholar
Katsouri L, Birch AM, Renziehausen AWJ, Zach C, Aman Y, Steeds H, Bonsu A, Palmer EOC, Mirzaei N, Ries M et al (2019) Ablation of reactive astrocytes exacerbates disease pathology in a model of Alzheimer’s disease. Glia 68:1017–1030. https://doi.org/10.1002/glia.23759
Article
PubMed
PubMed Central
Google Scholar
Khakh BS, McCarthy KD (2015) Astrocyte calcium signaling: from observations to functions and the challenges therein. Cold Spring Harb Perspect Biol 7:a020404
Article
PubMed
PubMed Central
Google Scholar
Kimbrough IF, Robel S, Roberson ED, Sontheimer H (2015) Vascular amyloidosis impairs the gliovascular unit in a mouse model of Alzheimer’s disease. Brain 138:3716–3733. https://doi.org/10.1093/brain/awv327
Article
PubMed
PubMed Central
Google Scholar
Kneen M, Farinas J, Li Y, Verkman AS (1998) Green fluorescent protein as a noninvasive intracellular pH indicator. Biophys J 74:1591–1599. https://doi.org/10.1016/S0006-3495(98)77870-1
Article
CAS
PubMed
PubMed Central
Google Scholar
Kubo T, Nishimura S, Kumagae Y, Kaneko I (2002) In vivo conversion of racemized beta-amyloid ([D-Ser 26]A beta 1–40) to truncated and toxic fragments ([D-Ser 26]A beta 25–35/40) and fragment presence in the brains of Alzheimer’s patients. J Neurosci Res 70:474–483
Article
CAS
PubMed
Google Scholar
Kuchibhotla KV, Lattarulo CR, Hyman BT, Bacskai BJ (2009) Synchronous hyperactivity and intercellular calcium waves in astrocytes in Alzheimer mice. Science 323:1211–1215
Article
CAS
PubMed
PubMed Central
Google Scholar
Le Douce J, Maugard M, Veran J, Matos M, Jégo P, Vigneron PA, Faivre E, Toussay X, Vandenberghe M, Balbastre Y et al (2020) Impairment of glycolysis-derived l-serine production in astrocytes contributes to cognitive deficits in Alzheimer’s disease. Cell Metab 31:503-517 e508. https://doi.org/10.1016/j.cmet.2020.02.004
Article
CAS
PubMed
Google Scholar
Li D, Hérault K, Zylbersztejn K, Lauterbach M, Guillon M, Oheim M, Ropert N (2015) Astrocyte VAMP3 vesicles undergo Ca2+-independent cycling and modulate glutamate transporter trafficking. J Physiol 593:2807–2832
Article
CAS
PubMed
PubMed Central
Google Scholar
Li D, Ropert N, Koulakoff A, Giaume C, Oheim M (2008) Lysosomes are the major vesicular compartment undergoing Ca2+-regulated exocytosis from cortical astrocytes. J Neurosci 28:7648–7658
Article
CAS
PubMed
PubMed Central
Google Scholar
Marvin JS, Borghuis BG, Tian L, Cichon J, Harnett MT, Akerboom J, Gordus A, Renninger SL, Chen TW, Bargmann CI et al (2013) An optimized fluorescent probe for visualizing glutamate neurotransmission. Nat Methods 10:162–170
Article
CAS
PubMed
PubMed Central
Google Scholar
McCarthy KD, de Vellis J (1980) Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol 85:890–902
Article
CAS
PubMed
Google Scholar
Mederos S, Hernandez-Vivanco A, Ramirez-Franco J, Martin-Fernandez M, Navarrete M, Yang A, Boyden ES, Perea G (2019) Melanopsin for precise optogenetic activation of astrocyte-neuron networks. Glia 67:915–934. https://doi.org/10.1002/glia.23580
Article
PubMed
Google Scholar
Mehta A, Prabhakar M, Kumar P, Deshmukh R, Sharma PL (2013) Excitotoxicity: bridge to various triggers in neurodegenerative disorders. Eur J Pharmacol 698:6–18
Article
CAS
PubMed
Google Scholar
Mei X, Ezan P, Giaume C, Koulakoff A (2010) Astroglial connexin immunoreactivity is specifically altered at beta-amyloid plaques in beta-amyloid precursor protein/presenilin1 mice. Neuroscience 171:92–105
Article
CAS
PubMed
Google Scholar
Meme W, Ezan P, Venance L, Glowinski J, Giaume C (2004) ATP-induced inhibition of gap junctional communication is enhanced by interleukin-1 beta treatment in cultured astrocytes. Neuroscience 126:95–104
Article
CAS
PubMed
Google Scholar
Millucci L, Ghezzi L, Bernardini G, Santucci A (2010) Conformations and biological activities of amyloid beta peptide 25–35. Curr Protein Pept Sci 11:54–67
Article
CAS
PubMed
Google Scholar
Miyaji T, Echigo N, Hiasa M, Senoh S, Omote H, Moriyama Y (2008) Identification of a vesicular aspartate transporter. Proc Natl Acad Sci USA 105:11720–11724
Article
CAS
PubMed
PubMed Central
Google Scholar
Morgan J, Alves M, Conte G, Menéndez-Méndez A, de Diego-Garcia L, de Leo G, Beamer E, Smith J, Nicke A, Engel T (2020) Characterization of the expression of the ATP-gated P2X7 receptor following status epilepticus and during epilepsy using a P2X7-EGFP reporter mouse. Neurosci Bull. https://doi.org/10.1007/s12264-020-00573-9
Article
PubMed
PubMed Central
Google Scholar
Mucke L, Masliah E, Yu GQ, Mallory M, Rockenstein EM, Tatsuno G, Hu K, Kholodenko D, Johnson-Wood K, McConlogue L (2000) High-level neuronal expression of abeta 1–42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J Neurosci 20:4050–4058
Article
CAS
PubMed
PubMed Central
Google Scholar
Nadrigny F, Li D, Kemnitz K, Ropert N, Koulakoff A, Rudolph S, Vitali M, Giaume C, Kirchhoff F, Oheim M (2007) Systematic colocalization errors between acridine orange and EGFP in astrocyte vesicular organelles. Biophys J 93:969–980
Article
CAS
PubMed
PubMed Central
Google Scholar
Nedergaard M, Rodriguez JJ, Verkhratsky A (2010) Glial calcium and diseases of the nervous system. Cell Calcium 47:140–149
Article
CAS
PubMed
Google Scholar
Ong WY, Tanaka K, Dawe GS, Ittner LM, Farooqui AA (2013) Slow excitotoxicity in Alzheimer's disease. J Alzheimers Dis 35:643–668
Article
PubMed
CAS
Google Scholar
Orellana JA, Shoji KF, Abudara V, Ezan P, Amigou E, Saez PJ, Jiang JX, Naus CC, Saez JC, Giaume C (2011) Amyloid beta-induced death in neurons involves glial and neuronal hemichannels. J Neurosci 31:4962–4977
Article
CAS
PubMed
PubMed Central
Google Scholar
Pande J, Szewczyk MM, Grover AK (2011) Allosteric inhibitors of plasma membrane Ca pumps: invention and applications of caloxins. World J Biol Chem 2:39–47
Article
PubMed
PubMed Central
Google Scholar
Parekh AB, Putney JW Jr (2005) Store-operated calcium channels. Physiol Rev 85:757–810. https://doi.org/10.1152/physrev.00057.2003
Article
CAS
PubMed
Google Scholar
Park H, Oh SJ, Han KS, Woo DH, Mannaioni G, Traynelis SF, Lee CJ (2009) Bestrophin-1 encodes for the Ca2+-activated anion channel in hippocampal astrocytes. J Neurosci 29:13063–13073
Article
CAS
PubMed
PubMed Central
Google Scholar
Parsons CG, Stöffler A, Danysz W (2007) Memantine: a NMDA receptor antagonist that improves memory by restoration of homeostasis in the glutamatergic system—too little activation is bad, too much is even worse. Neuropharmacology 53:699–723
Article
CAS
PubMed
Google Scholar
Perez-Alvarez A, Navarrete M, Covelo A, Martin ED, Araque A (2014) Structural and functional plasticity of astrocyte processes and dendritic spine interactions. J Neurosci 34:12738–12744
Article
PubMed
PubMed Central
CAS
Google Scholar
Pham C, Moro DH, Mouffle C, Didienne S, Hepp R, Pfrieger FW, Mangin JM, Legendre P, Martin C, Luquet S et al (2020) Mapping astrocyte activity domains by light sheet imaging and spatio-temporal correlation screening. Neuroimage 220:117069. https://doi.org/10.1016/j.neuroimage.2020.117069
Article
CAS
PubMed
Google Scholar
Ponsioen B, Zhao J, Riedl J, Zwartkruis F, van der Krogt G, Zaccolo M, Moolenaar WH, Bos JL, Jalink K (2004) Detecting cAMP-induced Epac activation by fluorescence resonance energy transfer: Epac as a novel cAMP indicator. EMBO Rep 5:1176–1180
Article
CAS
PubMed
PubMed Central
Google Scholar
Putney JW (2010) Pharmacology of store-operated calcium channels. Mol Interv 10:209–218. https://doi.org/10.1124/mi.10.4.4
Article
CAS
PubMed
PubMed Central
Google Scholar
Reyes RC, Verkhratsky A, Parpura V (2012) Plasmalemmal Na+/Ca2+ exchanger modulates Ca2+-dependent exocytotic release of glutamate from rat cortical astrocytes. ASN Neuro 4:AN20110059
Article
CAS
Google Scholar
Ronco V, Grolla AA, Glasnov TN, Canonico PL, Verkhratsky A, Genazzani AA, Lim D (2014) Differential deregulation of astrocytic calcium signalling by amyloid-β, TNFα, IL-1β and LPS. Cell Calcium 55:219–229. https://doi.org/10.1016/j.ceca.2014.02.016
Article
CAS
PubMed
Google Scholar
Ropert N, Jalil A, Li D (2016) Expression and cellular function of vSNARE proteins in brain astrocytes. Neuroscience 323:76–83
Article
CAS
PubMed
Google Scholar
Rouach N, Koulakoff A, Abudara V, Willecke K, Giaume C (2008) Astroglial metabolic networks sustain hippocampal synaptic transmission. Science 322:1551–1555
Article
CAS
PubMed
Google Scholar
Saez JC, Contreras JE, Bukauskas FF, Retamal MA, Bennett MV (2003) Gap junction hemichannels in astrocytes of the CNS. Acta Physiol Scand 179:9–22. https://doi.org/10.1046/j.1365-201X.2003.01196.x
Article
CAS
PubMed
PubMed Central
Google Scholar
Savtchouk I, Volterra A (2018) Gliotransmission: beyond Black-and-White. J Neurosci 38:14–25
Article
CAS
PubMed
PubMed Central
Google Scholar
Shen W, Nikolic L, Meunier C, Pfrieger F, Audinat E (2017) An autocrine purinergic signaling controls astrocyte-induced neuronal excitation. Sci Rep 7:11280. https://doi.org/10.1038/s41598-017-11793-x
Article
CAS
PubMed
PubMed Central
Google Scholar
Shigetomi E, Kracun S, Sofroniew MV, Khakh BS (2010) A genetically targeted optical sensor to monitor calcium signals in astrocyte processes. Nat Neurosci 13:759–766
Article
CAS
PubMed
PubMed Central
Google Scholar
Shigetomi E, Tong X, Kwan KY, Corey DP, Khakh BS (2011) TRPA1 channels regulate astrocyte resting calcium and inhibitory synapse efficacy through GAT-3. Nat Neurosci 15:70–80
Article
PubMed
PubMed Central
CAS
Google Scholar
Shimizu H, Borin ML, Blaustein MP (1997) Use of La3+ to distinguish activity of the plasmalemmal Ca2+ pump from Na+/Ca2+ exchange in arterial myocytes. Cell Calcium 21:31–41
Article
CAS
PubMed
Google Scholar
Singaravelu K, Lohr C, Deitmer JW (2006) Regulation of store-operated calcium entry by calcium-independent phospholipase A2 in rat cerebellar astrocytes. J Neurosci 26:9579–9592. https://doi.org/10.1523/JNEUROSCI.2604-06.2006
Article
CAS
PubMed
PubMed Central
Google Scholar
Sreetama SC, Takano T, Nedergaard M, Simon SM, Jaiswal JK (2016) Injured astrocytes are repaired by Synaptotagmin XI-regulated lysosome exocytosis. Cell Death Differ 23:596–607. https://doi.org/10.1038/cdd.2015.124
Article
CAS
PubMed
Google Scholar
Stix B, Reiser G (1998) Beta-amyloid peptide 25–35 regulates basal and hormone-stimulated Ca2+ levels in cultured rat astrocytes. Neurosci Lett 243:121–124
Article
CAS
PubMed
Google Scholar
Takano T, Kang J, Jaiswal JK, Simon SM, Lin JH, Yu Y, Li Y, Yang J, Dienel G, Zielke HR et al (2005) Receptor-mediated glutamate release from volume sensitive channels in astrocytes. Proc Natl Acad Sci USA 102:16466–16471
Article
CAS
PubMed
PubMed Central
Google Scholar
van der Krogt GN, Ogink J, Ponsioen B, Jalink K (2008) A comparison of donor-acceptor pairs for genetically encoded FRET sensors: application to the Epac cAMP sensor as an example. PLoS ONE 3:e1916
Article
PubMed
PubMed Central
CAS
Google Scholar
Verdier Y, Zarandi M, Penke B (2004) Amyloid beta-peptide interactions with neuronal and glial cell plasma membrane: binding sites and implications for Alzheimer’s disease. J Pept Sci 10:229–248
Article
CAS
PubMed
Google Scholar
Verkhratsky A, Sofroniew MV, Messing A, deLanerolle NC, Rempe D, Rodriguez JJ, Nedergaard M (2012) Neurological diseases as primary gliopathies: a reassessment of neurocentrism. ASN Neuro 4:e00082. https://doi.org/10.1042/AN20120010
Article
PubMed
PubMed Central
Google Scholar
Walton HS, Dodd PR (2007) Glutamate-glutamine cycling in Alzheimer’s disease. Neurochem Int 50:1052–1066
Article
CAS
PubMed
Google Scholar
Wang F, Smith NA, Xu Q, Fujita T, Baba A, Matsuda T, Takano T, Bekar L, Nedergaard M (2012) Astrocytes modulate neural network activity by Ca(2)+-dependent uptake of extracellular K+. Sci Signal 5:ra26
PubMed
PubMed Central
Google Scholar
Wilson JE, Chin A (1991) Chelation of divalent cations by ATP, studied by titration calorimetry. Anal Biochem 193:16–19. https://doi.org/10.1016/0003-2697(91)90036-s
Article
CAS
PubMed
Google Scholar
Woo D, Han K-S, Shim J, Yoon B-E, Kim E, Bae J, Oh S, Hwang E, Marmorstein A, Bae Y et al (2012) TREK-1 and Best1 channels mediate fast and slow glutamate release in astrocytes upon GPCR activation. Cell 151:25–40
Article
CAS
PubMed
Google Scholar
Xiao Q, Hartzell HC, Yu K (2010) Bestrophins and retinopathies. Pflugers Arch 460:559–569
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiong Y, Teng S, Zheng L, Sun S, Li J, Guo N, Li M, Wang L, Zhu F, Wang C et al (2018) Stretch-induced Ca(2+) independent ATP release in hippocampal astrocytes. J Physiol 596:1931–1947. https://doi.org/10.1113/JP275805
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang J, Vitery MDC, Chen J, Osei-Owusu J, Chu J, Qiu Z (2019) Glutamate-releasing SWELL1 channel in astrocytes modulates synaptic transmission and promotes brain damage in stroke. Neuron. https://doi.org/10.1016/j.neuron.2019.03.029
Article
PubMed
PubMed Central
Google Scholar
Ye ZC, Wyeth MS, Baltan-Tekkok S, Ransom BR (2003) Functional hemichannels in astrocytes: a novel mechanism of glutamate release. J Neurosci 23:3588–3596
Article
CAS
PubMed
PubMed Central
Google Scholar
Yi C, Mei X, Ezan P, Mato S, Matias I, Giaume C, Koulakoff A (2016) Astroglial connexin43 contributes to neuronal suffering in a mouse model of Alzheimer’s disease. Cell Death Differ 23:1691–1701. https://doi.org/10.1038/cdd.2016.63
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu X, Taylor AMW, Nagai J, Golshani P, Evans CJ, Coppola G, Khakh BS (2018) Reducing astrocyte calcium signaling in vivo alters striatal microcircuits and causes repetitive behavior. Neuron 99(1170–1187):e1179. https://doi.org/10.1016/j.neuron.2018.08.015
Article
CAS
Google Scholar
Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L, Giffard RG, Barres BA (2012) Genomic analysis of reactive astrogliosis. J Neurosci 32:6391–6410
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Z, Chen G, Zhou W, Song A, Xu T, Luo Q, Wang W, Gu XS, Duan S (2007) Regulated ATP release from astrocytes through lysosome exocytosis. Nat Cell Biol 9:945–953
Article
CAS
PubMed
Google Scholar
Zhao Y, Araki S, Wu J, Teramoto T, Chang YF, Nakano M, Abdelfattah AS, Fujiwara M, Ishihara T, Nagai T et al (2011) An expanded palette of genetically encoded Ca(2)(+) indicators. Science 333:1888–1891
Article
CAS
PubMed
PubMed Central
Google Scholar