Araki K, Yagi N, Ikemoto Y, Yagi H, Choong C-J, Hayakawa H et al (2015) Synchrotron FTIR micro-spectroscopy for structural analysis of Lewy bodies in the brain of Parkinson’s disease patients. Sci Rep 5:17625. https://doi.org/10.1038/srep17625
Article
CAS
PubMed
PubMed Central
Google Scholar
Arends YM, Duyckaerts C, Rozemuller JM, Eikelenboom P, Hauw JJ (2000) Microglia, amyloid and dementia in Alzheimer disease: A correlative study. Neurobiol Aging 21:39–47. https://doi.org/10.1016/S0197-4580(00)00094-4
Article
CAS
PubMed
Google Scholar
Barth A (2007) Infrared spectroscopy of proteins. Biochim Biophys Acta Bioenerg 1767:1073–1101. https://doi.org/10.1016/j.bbabio.2007.06.004
Article
CAS
Google Scholar
Benseny-Cases N, Álvarez-Marimon E, Castillo-Michel H, Cotte M, Falcon C, Cladera J (2018) Synchrotron-based fourier transform infrared microspectroscopy (μFTIR) study on the effect of Alzheimer’s Aβ amorphous and fibrillar aggregates on PC12 cells. Anal Chem 90:2772–2779. https://doi.org/10.1021/acs.analchem.7b04818
Article
CAS
PubMed
Google Scholar
Benseny-Cases N, Cócera M, Cladera J (2007) Conversion of non-fibrillar β-sheet oligomers into amyloid fibrils in Alzheimer’s disease amyloid peptide aggregation. Biochem Biophys Res Commun 361:916–921. https://doi.org/10.1016/j.bbrc.2007.07.082
Article
CAS
PubMed
Google Scholar
Benseny-Cases N, Klementieva O, Cotte M, Ferrer I, Cladera J (2014) Microspectroscopy (μFTIR) reveals co-localization of lipid oxidation and amyloid plaques in human Alzheimer disease brains. Anal Chem 86:12047–12054. https://doi.org/10.1021/ac502667b
Article
CAS
PubMed
Google Scholar
Bugiani O, Giaccone G, Frangione B, Ghetti B, Tagliavini F (1989) Alzheimer patients: preamyloid deposits are more widely distributed than senile plaques throughout the central nervous system. Neurosci Lett 103:263–268. https://doi.org/10.1016/0304-3940(89)90110-9
Article
CAS
PubMed
Google Scholar
Cerf E, Sarroukh R, Tamamizu-Kato S, Breydo L, Derclayes S, Dufrênes YF et al (2009) Antiparallel β-sheet: A signature structure of the oligomeric amyloid β-peptide. Biochem J 421:415–423. https://doi.org/10.1042/BJ20090379
Article
CAS
PubMed
Google Scholar
Chirgadze YN, Nevskaya NA (1976a) Infrared spectra and resonance interaction of amide-I vibration of the parallel-chain pleated sheet. Biopolymers 15:627–636. https://doi.org/10.1002/bip.1976.360150403
Article
CAS
PubMed
Google Scholar
Chirgadze YN, Nevskaya NA (1976b) Infrared spectra and resonance interaction of amide-I vibration of the antiparallel-chain pleated sheet. Biopolymers 15:607–625. https://doi.org/10.1002/bip.1976.360150402
Article
CAS
PubMed
Google Scholar
Craver C (1982) The Coblentz Society desk book of infrared spectra, 2nd edn. The Coblentz Society, Kirkwood
Google Scholar
Cummings J, Lee G, Ritter A, Sabbagh M, Zhong K (2019) Alzheimer’s disease drug development pipeline: 2019. Alzheimer’s Dement Transl Res Clin Interv 5:272–293. https://doi.org/10.1016/j.trci.2019.05.008
Article
Google Scholar
D’Andrea MR (2016) Intracellular consequences of amyloid in Alzheimer’s disease. Elsevier, Wilmington
Google Scholar
D’Andrea MR, Cole GM, Ard MD (2004) The microglial phagocytic role with specific plaque types in the Alzheimer disease brain. Neurobiol Aging 25:675–683. https://doi.org/10.1016/j.neurobiolaging.2003.12.026
Article
CAS
PubMed
Google Scholar
D’Andrea MR, Nagele RG (2010) Morphologically distinct types of amyloid plaques point the way to a better understanding of Alzheimer’s disease pathogenesis. Biotech Histochem 85:133–147. https://doi.org/10.3109/10520290903389445
Article
PubMed
Google Scholar
Dickson DW (1997) The pathogenesis of senile plaques. J Neuropathol Exp Neurol 56:321–339. https://doi.org/10.1097/00005072-199704000-00001
Article
CAS
PubMed
Google Scholar
Dickson TC, Vickers JC (2001) The morphological phenotype of β-amyloid plaques and associated neuritic changes in Alzheimer’s disease. Neuroscience 105:99–107. https://doi.org/10.1016/S0306-4522(01)00169-5
Article
CAS
PubMed
Google Scholar
Dreissig I, Machill S, Salzer R, Krafft C (2009) Quantification of brain lipids by FTIR spectroscopy and partial least squares regression. Spectrochim Acta Part A Mol Biomol Spectrosc 71:2069–2075. https://doi.org/10.1016/j.saa.2008.08.008
Article
CAS
Google Scholar
Duyckaerts C, Delatour B, Potier M-C (2009) Classification and basic pathology of Alzheimer disease. Acta Neuropathol 118:5–36. https://doi.org/10.1007/s00401-009-0532-1
Article
CAS
PubMed
Google Scholar
Duyckaerts C, Dickson D (2011) Neuropathology of Alzheimer’s disease and its variants. In: Dickson DW, Weller RO (eds) Neurodegeneration: the molecular pathology of dementia and movement disorders. Wiley-Blackwell, Oxford, pp 62–91
Chapter
Google Scholar
El-Mashtoly SF, Petersen D, Yosef HK, Mosig A, Reinacher-Schick A, Kötting C et al (2014) Label-free imaging of drug distribution and metabolism in colon cancer cells by Raman microscopy. Analyst 139:1155. https://doi.org/10.1039/c3an01993d
Article
CAS
PubMed
Google Scholar
Fabian H, Choo LPI, Szendrei GI, Jackson M, Halliday WC, Otvos L et al (1993) Infrared spectroscopic characterization of Alzheimer plaques. Appl Spectrosc 47:1513–1518. https://doi.org/10.1366/0003702934067469
Article
CAS
Google Scholar
Findlay CR, Wiens R, Rak M, Sedlmair J, Hirschmugl CJ, Morrison J et al (2015) Rapid biodiagnostic ex vivo imaging at 1 μm pixel resolution with thermal source FTIR FPA. Analyst 140:2493–2503
Article
CAS
PubMed
Google Scholar
Fonseca EA, Lafetá L, Cunha R, Miranda H, Campos J, Medeiros HG et al (2019) A fingerprint of amyloid plaques in a bitransgenic animal model of Alzheimer’s disease obtained by statistical unmixing analysis of hyperspectral Raman data. Analyst 144:7049–7056. https://doi.org/10.1039/C9AN01631G
Article
CAS
PubMed
Google Scholar
Friedrich RP, Tepper K, Ronicke R, Soom M, Westermann M, Reymann K et al (2010) Mechanism of amyloid plaque formation suggests an intracellular basis of A pathogenicity. Proc Natl Acad Sci 107:1942–1947. https://doi.org/10.1073/pnas.0904532106
Article
PubMed
PubMed Central
Google Scholar
Garczarek F, Gerwert K (2006) Functional waters in intraprotein proton transfer monitored by FTIR difference spectroscopy. Nature 439:109–112. https://doi.org/10.1038/nature04231
Article
CAS
PubMed
Google Scholar
Goormaghtigh E, Cabiaux V, Ruysschaert JM (1994) Determination of soluble and membrane protein structure by Fourier transform infrared spectroscopy. II. Experimental aspects, side chain structure, and H/D exchange. Subcell Biochem 23:363–403. https://doi.org/10.1007/978-1-4615-1863-1_9
Article
CAS
PubMed
Google Scholar
Goormaghtigh E, Derenne A, Bénard A, Gasper R, Raussens V (2010) Data processing in FTIR imaging of cells: towards protein secondary structure imaging. Spectroscopy 24:51–54. https://doi.org/10.3233/SPE-2010-0403
Article
CAS
Google Scholar
Goormaghtigh E, Ruysschaert J-M, Raussens V (2006) Evaluation of the information content in infrared spectra for protein secondary structure determination. Biophys J 90:2946–2957. https://doi.org/10.1529/biophysj.105.072017
Article
CAS
PubMed
PubMed Central
Google Scholar
Großerueschkamp F, Bracht T, Diehl HC, Kuepper C, Ahrens M, Kallenbach-Thieltges A et al (2017) Spatial and molecular resolution of diffuse malignant mesothelioma heterogeneity by integrating label-free FTIR imaging, laser capture microdissection and proteomics. Sci Rep 7:44829. https://doi.org/10.1038/srep44829
Article
CAS
PubMed
PubMed Central
Google Scholar
Güldenhaupt J, Adigüzel Y, Kuhlmann J, Waldmann H, Kötting C, Gerwert K (2008) Secondary structure of lipidated Ras bound to a lipid bilayer. FEBS J 275:5910–5918. https://doi.org/10.1111/j.1742-4658.2008.06720.x
Article
CAS
PubMed
Google Scholar
Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat Rev Mol Cell Biol 8:101–112
Article
CAS
PubMed
Google Scholar
Head E, Garzon-Rodriguez W, Johnson JK, Lott IT, Cotman CW, Glabe C (2001) Oxidation of Aβ and plaque biogenesis in Alzheimer’s disease and Down syndrome. Neurobiol Dis 8:792–806. https://doi.org/10.1006/nbdi.2001.0431
Article
CAS
PubMed
Google Scholar
Ikeda S-I, Yanagisawa N, Allsop D, Glenner GG (1990) Early senile plaques in Alzheimer’s disease demonstrated by histochemistry, immunocytochemistry, and electron microscopy. Hum Pathol 21:1221–1226. https://doi.org/10.1016/S0046-8177(06)80034-1
Article
CAS
PubMed
Google Scholar
Ji M, Arbel M, Zhang L, Freudiger CW, Hou SS, Lin D et al (2018) Label-free imaging of amyloid plaques in Alzheimer’s disease with stimulated raman scattering microscopy. Sci Adv 4:1–9. https://doi.org/10.1126/sciadv.aat7715
Article
CAS
Google Scholar
Joshi P, Turola E, Ruiz A, Bergami A, Libera DD, Benussi L et al (2014) Microglia convert aggregated amyloid-β into neurotoxic forms through the shedding of microvesicles. Cell Death Differ 21:582–593. https://doi.org/10.1038/cdd.2013.180
Article
CAS
PubMed
Google Scholar
Kauffmann E, Austin R, Gerwert K (2001) Probing protein folding with time-resolved FTIR spectroscopy—novel techniques for the investigation of changes in protein conformation. BIF Future 16:152–158
Google Scholar
Kirschner DA, Inouye H, Duffy LK, Sinclair A, Lind M, Selkoe DJ (1987) Synthetic peptide homologous to beta protein from Alzheimer disease forms amyloid-like fibrils in vitro. Proc Natl Acad Sci USA 84:6953–6957. https://doi.org/10.1073/pnas.84.19.6953
Article
CAS
PubMed
PubMed Central
Google Scholar
Kiskis J, Fink H, Nyberg L, Thyr J, Li JY, Enejder A (2015) Plaque-associated lipids in Alzheimer’s diseased brain tissue visualized by nonlinear microscopy. Sci Rep 5:1–9. https://doi.org/10.1038/srep13489
Article
CAS
Google Scholar
Klementieva O, Sandt C, Martinsson I, Kansiz M, Gouras GK, Borondics F (2020) Super-resolution infrared imaging of polymorphic amyloid aggregates directly in neurons. Adv Sci. https://doi.org/10.1002/advs.201903004
Article
Google Scholar
Klementieva O, Willén K, Martinsson I, Israelsson B, Engdahl A, Cladera J et al (2017) Pre-plaque conformational changes in Alzheimer’s disease-linked Aβ and APP. Nat Commun 8:14726. https://doi.org/10.1038/ncomms14726
Article
CAS
PubMed
PubMed Central
Google Scholar
Konevskikh T, Lukacs R, Kohler A (2018) An improved algorithm for fast resonant Mie scatter correction of infrared spectra of cells and tissues. J Biophotonics 11:1–10. https://doi.org/10.1002/jbio.201600307
Article
Google Scholar
Krafft C, Neudert L, Simat T, Salzer R (2005) Near infrared Raman spectra of human brain lipids. Spectrochim Acta Part A Mol Biomol Spectrosc 61:1529–1535. https://doi.org/10.1016/j.saa.2004.11.017
Article
CAS
Google Scholar
Lee Rodgers J, Nicewander WA (1988) thirteen ways to look at the correlation coefficient. Am Stat 42:59–66. https://doi.org/10.1080/00031305.1988.10475524
Article
Google Scholar
Leskovjan AC, Lanzirotti A, Miller LM (2009) Amyloid plaques in PSAPP mice bind less metal than plaques in human Alzheimer’s disease. Neuroimage 47:1215–1220. https://doi.org/10.1016/j.neuroimage.2009.05.063
Article
PubMed
Google Scholar
Liao CR, Rak M, Lund J, Unger M, Platt E, Albensi BC et al (2013) Synchrotron FTIR reveals lipid around and within amyloid plaques in transgenic mice and Alzheimer’s disease brain. Analyst 138:3991–3997. https://doi.org/10.1039/c3an00295k
Article
CAS
PubMed
Google Scholar
Lomont JP, Ostrander JS, Ho J-J, Petti MK, Zanni MT (2017) Not all β-sheets are the same: amyloid infrared spectra, transition dipole strengths, and couplings investigated by 2D IR spectroscopy. J Phys Chem B 121:8935–8945. https://doi.org/10.1021/acs.jpcb.7b06826
Article
CAS
PubMed
PubMed Central
Google Scholar
McGeer PL, Itagaki S, Tago H, McGeer EG (1987) Reactive microglia in patients with senile dementia of the Alzheimer type are positive for the histocompatibility glycoprotein HLA-DR. Neurosci Lett 79:195–200. https://doi.org/10.1016/0304-3940(87)90696-3
Article
CAS
PubMed
Google Scholar
Michael R, Lenferink A, Vrensen GFJM, Gelpi E, Barraquer RI, Otto C (2017) Hyperspectral Raman imaging of neuritic plaques and neurofibrillary tangles in brain tissue from Alzheimer’s disease patients. Sci Rep 7:1–11. https://doi.org/10.1038/s41598-017-16002-3
Article
CAS
Google Scholar
Michaels TCT, Šarić A, Curk S, Bernfur K, Arosio P, Meisl G et al (2020) Dynamics of oligomer populations formed during the aggregation of Alzheimer’s Aβ42 peptide. Nat Chem 12:445–451. https://doi.org/10.1038/s41557-020-0452-1
Article
CAS
PubMed
Google Scholar
Montine TJ, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Dickson DW et al (2012) National institute on aging-Alzheimer’s association guidelines for the neuropathologic assessment of Alzheimer’s disease: a practical approach. Acta Neuropathol 123:1–11. https://doi.org/10.1007/s00401-011-0910-3
Article
CAS
PubMed
Google Scholar
Moors TE, Maat CA, Niedieker D, Mona D, Petersen D, Timmermans-Huisman E, et al. (2018) Subcellular orchestration of alpha-synuclein variants in Parkinson’s disease brains revealed by 3D multicolor STED microscopy. bioRxiv 470476. https://doi.org/10.1101/470476
Morell P, Quarles R (1999) Characteristic composition of myelin. In: Siegel G, Agranoff R, Albers R (eds) Basic neurochemistry: molecular, cellular and medical aspects, 6th edn. Lippincott-Raven, Philadelphia
Google Scholar
Nabers A, Ollesch J, Schartner J, Kötting C, Genius J, Hafermann H et al (2016) Amyloid-β-secondary structure distribution in cerebrospinal fluid and blood measured by an immuno-infrared-sensor: a biomarker candidate for Alzheimer’s disease. Anal Chem 88:2755–2762. https://doi.org/10.1021/acs.analchem.5b04286
Article
CAS
PubMed
Google Scholar
Nelson PT, Alafuzoff I, Bigio EH, Bouras C, Braak H, Cairns NJ et al (2012) Correlation of alzheimer disease neuropathologic changes with cognitive status: a review of the literature. J Neuropathol Exp Neurol 71:362–381. https://doi.org/10.1097/NEN.0b013e31825018f7
Article
PubMed
Google Scholar
O’Brien JS, Sampson EL (1965) Lipid composition of the normal human brain: gray matter, white matter, and myelin. J Lipid Res 6:537–544
Article
PubMed
Google Scholar
Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9:62–66. https://doi.org/10.1109/TSMC.1979.4310076
Article
Google Scholar
Palombo F, Tamagnini F, Jeynes JCG, Mattana S, Swift I, Nallala J et al (2018) Detection of Aβ plaque-associated astrogliosis in Alzheimer’s disease brain by spectroscopic imaging and immunohistochemistry. Analyst 143:850–857. https://doi.org/10.1039/C7AN01747B
Article
CAS
PubMed
Google Scholar
Rak M, Del Bigio MR, Mai S, Westaway D, Gough KM (2007) Dense-core and diffuse Aβ plaques in TgCRND8 mice studied with synchrotron FTIR microspectroscopy. Biopolymers 87:207–217. https://doi.org/10.1002/bip.20820
Article
CAS
PubMed
Google Scholar
Rozemuller AJM, Jansen C, Carrano A, Van Haastert ES, Hondius D, Van Der Vies SM et al (2012) Neuroinflammation and common mechanism in Alzheimer’s disease and prion amyloidosis: Amyloid-associated proteins, neuroinflammation and neurofibrillary degeneration. Neurodegener Dis 10:301–304. https://doi.org/10.1159/000335380
Article
CAS
PubMed
Google Scholar
Rozemuller JM, Eikelenboom P, Stam FC (1986) Role of microglia in plaque formation in senile dementia of the Alzheimer type - An immunohistochemical study. Virchows Arch B Cell Pathol Incl Mol Pathol 51:247–254. https://doi.org/10.1007/BF02899034
Article
CAS
PubMed
Google Scholar
Rozemuller JM, Eikelenboom P, Stam FC, Beyreuther K, Masters CL (1989) A4 protein in Alzheimer’s disease: primary and secondary cellular events in extracellular amyloid deposition. J Neuropathol Exp Neurol 48:674–691. https://doi.org/10.1097/00005072-198911000-00009
Article
CAS
PubMed
Google Scholar
Sarroukh R, Cerf E, Derclaye S, Dufrêne YF, Goormaghtigh E, Ruysschaert JM et al (2011) Transformation of amyloid β(1–40) oligomers into fibrils is characterized by a major change in secondary structure. Cell Mol Life Sci 68:1429–1438. https://doi.org/10.1007/s00018-010-0529-x
Article
CAS
PubMed
Google Scholar
Sarroukh R, Goormaghtigh E, Ruysschaert JM, Raussens V (2013) ATR-FTIR: A “rejuvenated” tool to investigate amyloid proteins. Biochim Biophys Acta Biomembr 1828:2328–2338. https://doi.org/10.1016/j.bbamem.2013.04.012
Article
CAS
Google Scholar
Schmidt ML, Robinson KA, Lee VMY, Trojanowski JQ (1995) Chemical and immunological heterogeneity of fibrillar amyloid in plaques of Alzheimer’s disease and Down’s syndrome brains revealed by confocal microscopy. Am J Pathol 147:503–515
CAS
PubMed
PubMed Central
Google Scholar
Selkoe DJ (1989) Amyloid β protein precursor and the pathogenesis of Alzheimer’s disease. Cell 58:611–612. https://doi.org/10.1016/0092-8674(89)90093-7
Article
CAS
PubMed
Google Scholar
Sevigny J, Chiao P, Bussière T, Weinreb PH, Williams L, Maier M et al (2016) The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature 537:50–56. https://doi.org/10.1038/nature19323
Article
CAS
PubMed
Google Scholar
Shahmoradian SH, Lewis AJ, Genoud C, Hench J, Moors TE, Navarro PP et al (2019) Lewy pathology in Parkinson’s disease consists of crowded organelles and lipid membranes. Nat Neurosci 22:1099–1109. https://doi.org/10.1038/s41593-019-0423-2
Article
CAS
PubMed
Google Scholar
Sheng JG, Zhou XQ, Mrak RE, Griffin WST (1998) Progressive neuronal injury associated with amyloid plaque formation in Alzheimer disease. J Neuropathol Exp Neurol 57:714–717. https://doi.org/10.1097/00005072-199807000-00008
Article
CAS
PubMed
Google Scholar
Solheim JH, Gunko E, Petersen D, Großerüschkamp F, Gerwert K, Kohler A (2019) An open-source code for Mie extinction extended multiplicative signal correction for infrared microscopy spectra of cells and tissues. J Biophotonics. https://doi.org/10.1002/jbio.201800415
Article
PubMed
Google Scholar
Student (W.S. Gosset) (1908) The probable error of a mean. Biometrika 6:1. https://doi.org/10.2307/2331554
Article
Google Scholar
Summers KL, Fimognari N, Hollings A, Kiernan M, Lam V, Tidy RJ et al (2017) A multimodal spectroscopic imaging method to characterize the metal and macromolecular content of proteinaceous aggregates (“amyloid plaques”). Biochemistry 56:4107–4116. https://doi.org/10.1021/acs.biochem.7b00262
Article
CAS
PubMed
Google Scholar
Surowka AD, Pilling M, Henderson A, Boutin H, Christie L, Szczerbowska-Boruchowska M et al (2017) FTIR imaging of the molecular burden around Aβ deposits in an early-stage 3-Tg-APP-PSP1-TAU mouse model of Alzheimer’s disease. Analyst 142:156–168. https://doi.org/10.1039/c6an01797e
Article
CAS
Google Scholar
T. Griffin WS, Sheng JG, Roberts GW, Mrak RE (1995) Interleukin-1 expression in different plaque types in Alzheimerʼs disease. J Neuropathol Exp Neurol 54:276–281. https://doi.org/10.1097/00005072-199503000-00014
Article
Google Scholar
Tagliavini F, Giaccone G, Frangione B, Bugiani O (1988) Preamyloid deposits in the cerebral cortex of patients with Alzheimer’s disease and nondemented individuals. Neurosci Lett 93:191–196. https://doi.org/10.1016/0304-3940(88)90080-8
Article
CAS
PubMed
Google Scholar
Thal DR (2006) The development of amyloid beta protein deposits in the aged brain. Sci Aging Knowl Environ. https://doi.org/10.1126/sageke.2006.6.re1
Article
Google Scholar
Tolar M, Abushakra S, Hey JA, Porsteinsson A, Sabbagh M (2020) Aducanumab, gantenerumab, BAN2401, and ALZ-801—the first wave of amyloid-targeting drugs for Alzheimer’s disease with potential for near term approval. Alzheimer’s Res Ther 12:1–10. https://doi.org/10.1186/s13195-020-00663-w
Article
CAS
Google Scholar
Welch WRW, Kubelka J, Keiderling TA (2013) Infrared, vibrational circular dichroism, and raman spectral simulations for β-sheet structures with various isotopic labels, interstrand, and stacking arrangements using density functional theory. J Phys Chem B 117:10343–10358. https://doi.org/10.1021/jp4056126
Article
CAS
PubMed
Google Scholar
Xie H, Hou S, Jiang J, Sekutowicz M, Kelly J, Bacskai BJ (2013) Rapid cell death is preceded by amyloid plaque-mediated oxidative stress. Proc Natl Acad Sci U S A 110:7904–7909. https://doi.org/10.1073/pnas.1217938110
Article
PubMed
PubMed Central
Google Scholar
Yamaguchi H, Hirai S, Morimatsu M, Shoji M, Harigaya Y (1988) Diffuse type of senile plaques in the brains of Alzheimer-type dementia. Acta Neuropathol 77:113–119. https://doi.org/10.1007/BF00687420
Article
CAS
PubMed
Google Scholar
Yamaguchi KI, Takahashi S, Kawai T, Naiki H, Goto Y (2005) Seeding-dependent propagation and maturation of amyloid fibril conformation. J Mol Biol 352:952–960. https://doi.org/10.1016/j.jmb.2005.07.061
Article
CAS
PubMed
Google Scholar
Yuan P, Condello C, Keene CD, Wang Y, Bird TD, Paul SM et al (2016) TREM2 haplodeficiency in mice and humans impairs the microglia barrier function leading to decreased amyloid compaction and severe axonal dystrophy. Neuron 90:724–739. https://doi.org/10.1016/j.neuron.2016.05.003
Article
CAS
PubMed
PubMed Central
Google Scholar
Zandomeneghi G, Krebs MRH, McCammon MG, Fändrich M (2004) FTIR reveals structural differences between native beta-sheet proteins and amyloid fibrils. Protein Sci 13:3314–3321. https://doi.org/10.1110/ps.041024904
Article
CAS
PubMed
PubMed Central
Google Scholar