Barkovich AJ, Dobyns WB, Guerrini R (2015) Malformations of cortical development and epilepsy. Cold Spring Harb Perspect Med 5:a022392. https://doi.org/10.1101/cshperspect.a022392
Article
CAS
PubMed
PubMed Central
Google Scholar
Bellion A, Baudoin JP, Alvarez C, Bornens M, Metin C (2005) Nucleokinesis in tangentially migrating neurons comprises two alternating phases: forward migration of the Golgi/centrosome associated with centrosome splitting and myosin contraction at the rear. J Neurosci 25:5691–5699
Article
CAS
Google Scholar
Bertipaglia C, Gonçalves JC, Vallee RB (2018) Nuclear migration in mammalian brain development. Semin Cell Dev Biol 82: 57-66. doi: https://doi.org/10.1016/j.semcdb.2017.11.033
Bolhy S, Bouhlel I, Dultz E, Nayak T, Zuccolo M, Gatti X, Vallee R, Ellenberg J, Doye V (2011) A Nup133-dependent NPC-anchored network tethers centrosomes to the nuclear envelope in prophase. J Cell Biol 192:855–871. https://doi.org/10.1083/jcb.201007118
Article
CAS
PubMed
PubMed Central
Google Scholar
Burakov A, Nadezhdina E, Slepchenko B, Rodionov V (2003) Centrosome positioning in interphase cells. J Cell Biol 162:963–969
Article
CAS
Google Scholar
Bystron I, Blakemore C, Rakic P (2008) Development of the human cerebral cortex: Boulder committee revisited. Nat Rev Neurosci 9:110–122. https://doi.org/10.1038/nrn2252
Article
CAS
PubMed
Google Scholar
Chang C-H, Zanini M, Shirvani H, Cheng J-S, Yu H, Feng C-H, Mercier AL, Hung S-Y, Forget A, Wang C-H et al (2019) Atoh1 controls primary cilia formation to allow for SHH-triggered granule neuron progenitor proliferation. Developmental Cell 48:184–199.e185. https://doi.org/10.1016/j.devcel.2018.12.017
Article
CAS
PubMed
Google Scholar
Chen JL, Chang CH, Tsai JW (2019) Gli2 rescues delays in brain development induced by Kif3a dysfunction. Cerebral cortex (New York, NY : 1991) 29:751–764. https://doi.org/10.1093/cercor/bhx356
Article
Google Scholar
Chen YA, Lu IL, Tsai JW (2018) Contactin-1/F3 regulates neuronal migration and morphogenesis through modulating RhoA activity. Front Mol Neurosci 11:422. https://doi.org/10.3389/fnmol.2018.00422
Article
CAS
PubMed
PubMed Central
Google Scholar
Davidson PM, Battistella A, Dejardin T, Betz T, Plastino J, Borghi N, Cadot B, Sykes C (2020) Nesprin-2 accumulates at the front of the nucleus during confined cell migration. EMBO Rep:e49910. https://doi.org/10.15252/embr.201949910
Desikan RS, Barkovich AJ (2016) Malformations of cortical development. Ann Neurol 80:797–810. https://doi.org/10.1002/ana.24793
Article
PubMed
PubMed Central
Google Scholar
Dujardin DL, Barnhart LE, Stehman SA, Gomes ER, Gundersen GG, Vallee RB (2003) A role for cytoplasmic dynein and LIS1 in directed cell movement. J Cell Biol 163:1205–1211
Article
CAS
Google Scholar
Etienne-Manneville S, Hall A (2001) Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKCzeta. Cell 106:489–498
Article
CAS
Google Scholar
Gomes ER, Jani S, Gundersen GG (2005) Nuclear movement regulated by Cdc42, MRCK, myosin, and actin flow establishes MTOC polarization in migrating cells. Cell 121:451–463
Article
CAS
Google Scholar
Gonçalves JC, Quintremil S, Yi J, Vallee RB (2020) Nesprin-2 recruitment of BicD2 to the nuclear envelope controls dynein/kinesin-mediated neuronal migration in vivo. Curr Biol, in press. https://doi.org/10.1016/j.cub.2020.05.091
Guerrini R, Dobyns WB (2014) Malformations of cortical development: clinical features and genetic causes. Lancet Neurol 13:710–726. https://doi.org/10.1016/S1474-4422(14)70040-7
Article
PubMed
PubMed Central
Google Scholar
Gurtan AM, Lu V, Bhutkar A, Sharp PA (2012) In vivo structure-function analysis of human dicer reveals directional processing of precursor miRNAs. RNA (New York, NY) 18:1116–1122. https://doi.org/10.1261/rna.032680.112
Article
CAS
Google Scholar
Hoang HT, Schlager MA, Carter AP, Bullock SL (2017) DYNC1H1 mutations associated with neurological diseases compromise processivity of dynein-dynactin-cargo adaptor complexes. Proc Natl Acad Sci U S A 114:E1597–E1606. https://doi.org/10.1073/pnas.1620141114
Article
CAS
PubMed
PubMed Central
Google Scholar
Holland PM, Milne A, Garka K, Johnson RS, Willis C, Sims JE, Rauch CT, Bird TA, Virca GD (2002) Purification, cloning, and characterization of Nek8, a novel NIMA-related kinase, and its candidate substrate Bicd2. J Biol Chem 277:16229–16240. https://doi.org/10.1074/jbc.M108662200
Article
CAS
PubMed
Google Scholar
Hoogenraad CC, Akhmanova A, Howell SA, Dortland BR, De Zeeuw CI, Willemsen R, Visser P, Grosveld F, Galjart N (2001) Mammalian Golgi-associated Bicaudal-D2 functions in the dynein–dynactin pathway by interacting with these complexes. EMBO J 20:4041–4054. https://doi.org/10.1093/emboj/20.15.4041
Article
CAS
PubMed
PubMed Central
Google Scholar
Hsiao CJ, Chang CH, Ibrahim RB, Lin IH, Wang CH, Wang WJ, Tsai JW (2018) Gli2 modulates cell cycle re-entry through autophagy-mediated regulation of the length of primary cilia. J Cell Sci 131. https://doi.org/10.1242/jcs.221218
Hu DJ, Baffet AD, Nayak T, Akhmanova A, Doye V, Vallee RB (2013) Dynein recruitment to nuclear pores activates apical nuclear migration and mitotic entry in brain progenitor cells. Cell 154:1300–1313. https://doi.org/10.1016/j.cell.2013.08.024
Article
CAS
PubMed
Google Scholar
Huynh W, Vale RD (2017) Disease-associated mutations in human BICD2 hyperactivate motility of dynein-dynactin. J Cell Biol 216:3051–3060. https://doi.org/10.1083/jcb.201703201
Article
CAS
PubMed
PubMed Central
Google Scholar
Jaarsma D, van den Berg R, Wulf PS, van Erp S, Keijzer N, Schlager MA, de Graaff E, De Zeeuw CI, Pasterkamp RJ, Akhmanova A et al (2014) A role for Bicaudal-D2 in radial cerebellar granule cell migration. Nat Commun 5:3411. https://doi.org/10.1038/ncomms4411
Article
CAS
PubMed
Google Scholar
Jheng GW, Hur SS, Chang CM, Wu CC, Cheng JS, Lee HH, Chung BC, Wang YK, Lin KH, Del Alamo JC et al (2018) Lis1 dysfunction leads to traction force reduction and cytoskeletal disorganization during cell migration. Biochem Biophys Res Commun 497:869–875. https://doi.org/10.1016/j.bbrc.2018.02.151
Article
CAS
PubMed
Google Scholar
Lu IL, Chen C, Tung C-Y, Chen H-H, Pan J-P, Chang C-H, Cheng J-S, Chen Y-A, Wang C-H, Huang C-W et al (2018) Identification of genes associated with cortical malformation using a transposon-mediated somatic mutagenesis screen in mice. Nat Commun 9:2498. https://doi.org/10.1038/s41467-018-04880-8
Article
CAS
PubMed
PubMed Central
Google Scholar
Lykke-Andersen S, Jensen TH (2015) Nonsense-mediated mRNA decay: an intricate machinery that shapes transcriptomes. Nat Rev Mol Cell Biol 16:665–677. https://doi.org/10.1038/nrm4063
Article
CAS
PubMed
Google Scholar
Martinez-Carrera LA, Wirth B (2015) Dominant spinal muscular atrophy is caused by mutations in BICD2, an important golgin protein. Front Neurosci 9:401. https://doi.org/10.3389/fnins.2015.00401
Article
PubMed
PubMed Central
Google Scholar
Martinez Carrera LA, Gabriel E, Donohoe CD, Holker I, Mariappan A, Storbeck M, Uhlirova M, Gopalakrishnan J, Wirth B (2018) Novel insights into SMALED2: BICD2 mutations increase microtubule stability and cause defects in axonal and NMJ development. Hum Mol Genet 27:1772–1784. https://doi.org/10.1093/hmg/ddy086
Article
CAS
PubMed
Google Scholar
Morris NR, Xiang X, Beckwith SM (1995) Nuclear migration advances in fungi. Trends Cell Biol 5:278–282 S096289240089039X [pii]
Article
CAS
Google Scholar
Neveling K, Martinez-Carrera LA, Holker I, Heister A, Verrips A, Hosseini-Barkooie SM, Gilissen C, Vermeer S, Pennings M, Meijer Ret al (2013) Mutations in BICD2, which encodes a golgin and important motor adaptor, cause congenital autosomal-dominant spinal muscular atrophy. Am J Hum Genet 92: 946–954 doi https://doi.org/10.1016/j.ajhg.2013.04.011
Nian FS, Li LL, Cheng CY, Wu PC, Lin YT, Tang CY, Ren BS, Tai CY, Fann MJ, Kao LS et al (2019) Rab18 collaborates with Rab7 to modulate Lysosomal and autophagy activities in the nervous system: an overlapping mechanism for Warburg micro syndrome and Charcot-Marie-tooth neuropathy type 2B. Mol Neurobiol 56:6095–6105. https://doi.org/10.1007/s12035-019-1471-z
Article
CAS
PubMed
Google Scholar
Noctor SC, Flint AC, Weissman TA, Dammerman RS, Kriegstein AR (2001) Neurons derived from radial glial cells establish radial units in neocortex. Nature 409:714–720. https://doi.org/10.1038/35055553
Article
CAS
PubMed
Google Scholar
Oates EC, Rossor AM, Hafezparast M, Gonzalez M, Speziani F, MacArthur DG, Lek M, Cottenie E, Scoto M, Foley AR et al (2013) Mutations in BICD2 cause dominant congenital spinal muscular atrophy and hereditary spastic paraplegia. Am J Hum Genet 92:965–973. https://doi.org/10.1016/j.ajhg.2013.04.018
Article
CAS
PubMed
PubMed Central
Google Scholar
Peeters K, Litvinenko I, Asselbergh B, Almeida-Souza L, Chamova T, Geuens T, Ydens E, Zimon M, Irobi J, De Vriendt E et al (2013) Molecular defects in the motor adaptor BICD2 cause proximal spinal muscular atrophy with autosomal-dominant inheritance. Am J Hum Genet 92:955–964. https://doi.org/10.1016/j.ajhg.2013.04.013
Article
CAS
PubMed
PubMed Central
Google Scholar
Ravenscroft G, Di Donato N, Hahn G, Davis MR, Craven PD, Poke G, Neas KR, Neuhann TM, Dobyns WB, Laing NG (2016) Recurrent de novo BICD2 mutation associated with arthrogryposis multiplex congenita and bilateral perisylvian polymicrogyria. Neuromuscul Disord 26:744–748. https://doi.org/10.1016/j.nmd.2016.09.009
Article
PubMed
Google Scholar
Rossor AM, Sleigh JN, Groves M, Muntoni F, Reilly MM, Hoogenraad CC, Schiavo G (2020) Loss of BICD2 in muscle drives motor neuron loss in a developmental form of spinal muscular atrophy. Acta Neuropathologica Communications 8:34. https://doi.org/10.1186/s40478-020-00909-6
Article
CAS
PubMed
PubMed Central
Google Scholar
Saito T, Nakatsuji N (2001) Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. Dev Biol 240:237–246. https://doi.org/10.1006/dbio.2001.0439
Article
CAS
PubMed
Google Scholar
Schaar BT, McConnell SK (2005) Cytoskeletal coordination during neuronal migration. Proc Natl Acad Sci U S A 102:13652–13657
Article
CAS
Google Scholar
Solecki DJ, Model L, Gaetz J, Kapoor TM, Hatten ME (2004) Par6alpha signaling controls glial-guided neuronal migration. Nat Neurosci 7:1195–1203. https://doi.org/10.1038/nn1332
Article
PubMed
Google Scholar
Solecki DJ, Trivedi N, Govek EE, Kerekes RA, Gleason SS, Hatten ME (2009) Myosin II motors and F-actin dynamics drive the coordinated movement of the centrosome and soma during CNS glial-guided neuronal migration. Neuron 63:63–80. https://doi.org/10.1016/j.neuron.2009.05.028
Article
CAS
PubMed
PubMed Central
Google Scholar
Splinter D, Razafsky DS, Schlager MA, Serra-Marques A, Grigoriev I, Demmers J, Keijzer N, Jiang K, Poser I, Hyman AA et al (2012) BICD2, dynactin, and LIS1 cooperate in regulating dynein recruitment to cellular structures. Mol Biol Cell 23:4226–4241. https://doi.org/10.1091/mbc.E12-03-0210
Article
CAS
PubMed
PubMed Central
Google Scholar
Splinter D, Tanenbaum ME, Lindqvist A, Jaarsma D, Flotho A, Yu KL, Grigoriev I, Engelsma D, Haasdijk ED, Keijzer N et al (2010) Bicaudal D2, dynein, and kinesin-1 associate with nuclear pore complexes and regulate centrosome and nuclear positioning during mitotic entry. PLoS Biol 8:e1000350. https://doi.org/10.1371/journal.pbio.1000350
Article
CAS
PubMed
PubMed Central
Google Scholar
Storbeck M, Horsberg Eriksen B, Unger A, Holker I, Aukrust I, Martinez-Carrera LA, Linke WA, Ferbert A, Heller R, Vorgerd M et al (2017) Phenotypic extremes of BICD2-opathies: from lethal, congenital muscular atrophy with arthrogryposis to asymptomatic with subclinical features. Eur J Hum Genet 25:1040–1048. https://doi.org/10.1038/ejhg.2017.98
Article
CAS
PubMed
PubMed Central
Google Scholar
Tabata H, Nakajima K (2001) Efficient in utero gene transfer system to the developing mouse brain using electroporation: visualization of neuronal migration in the developing cortex. Neuroscience 103:865–872
Article
CAS
Google Scholar
Teuling E, van Dis V, Wulf PS, Haasdijk ED, Akhmanova A, Hoogenraad CC, Jaarsma D (2008) A novel mouse model with impaired dynein/dynactin function develops amyotrophic lateral sclerosis (ALS)-like features in motor neurons and improves lifespan in SOD1-ALS mice. Hum Mol Genet 17:2849–2862. https://doi.org/10.1093/hmg/ddn182
Article
CAS
PubMed
Google Scholar
Trimouille A, Obre É, Banneau G, Durr A, Stevanin G, Clot F, Pennamen P, Perez J-T, Bailly-Scappaticci C, Rouanet M et al (2018) An in-frame deletion in BICD2 associated with a non-progressive form of SMALED. Clin Neurol Neurosurg 166: 1-3 doi: https://doi.org/10.1016/j.clineuro.2018.01.013
Tsai JW, Bremner KH, Vallee RB (2007) Dual subcellular roles for LIS1 and dynein in radial neuronal migration in live brain tissue. Nat Neurosci 10:970–979. https://doi.org/10.1038/nn1934
Article
CAS
PubMed
Google Scholar
Tsai JW, Chen Y, Kriegstein AR, Vallee RB (2005) LIS1 RNA interference blocks neural stem cell division, morphogenesis, and motility at multiple stages. J Cell Biol 170:935–945. https://doi.org/10.1083/jcb.200505166
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsai JW, Lian WN, Kemal S, Kriegstein AR, Vallee RB (2010) Kinesin 3 and cytoplasmic dynein mediate interkinetic nuclear migration in neural stem cells. Nat Neurosci 13:1463–1471. https://doi.org/10.1038/nn.2665
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsai JW, Vallee RB (2011) Live microscopy of neural stem cell migration in brain slices. Methods Mol Biol 750:131–142. https://doi.org/10.1007/978-1-61779-145-1_9
Article
CAS
PubMed
Google Scholar
Tsai MH, Chan CK, Chang YC, Lin CH, Liou CW, Chang WN, Ng CC, Lim KS, Hwang DY (2018) Molecular genetic characterization of patients with focal epilepsy using a customized targeted Resequencing gene panel. Front Neurol 9:515. https://doi.org/10.3389/fneur.2018.00515
Article
PubMed
PubMed Central
Google Scholar
Tsai MH, Chan CK, Chang YC, Yu YT, Chuang ST, Fan WL, Li SC, Fu TY, Chang WN, Liou CW et al (2017) DEPDC5 mutations in familial and sporadic focal epilepsy. Clin Genet 92:397–404. https://doi.org/10.1111/cge.12992
Article
CAS
PubMed
Google Scholar
Vallee RB, Seale GE, Tsai JW (2009) Emerging roles for myosin II and cytoplasmic dynein in migrating neurons and growth cones. Trends Cell Biol 19:347–355. https://doi.org/10.1016/j.tcb.2009.03.009
Article
CAS
PubMed
PubMed Central
Google Scholar
Vaughan KT, Vallee RB (1995) Cytoplasmic dynein binds dynactin through a direct interaction between the intermediate chains and p150Glued. J Cell Biol 131:1507–1516. https://doi.org/10.1083/jcb.131.6.1507
Article
CAS
PubMed
Google Scholar
Will L, Portegies S, van Schelt J, van Luyk M, Jaarsma D, Hoogenraad CC (2019) Dynein activating adaptor BICD2 controls radial migration of upper-layer cortical neurons in vivo. Acta Neuropathologica Communications 7:162. https://doi.org/10.1186/s40478-019-0827-y
Article
CAS
PubMed
PubMed Central
Google Scholar
Wilson MH, Holzbaur EL (2015) Nesprins anchor kinesin-1 motors to the nucleus to drive nuclear distribution in muscle cells. Development (Cambridge, England) 142:218–228. https://doi.org/10.1242/dev.114769
Article
CAS
Google Scholar
Zhang X, Lei K, Yuan X, Wu X, Zhuang Y, Xu T, Xu R, Han M (2009) SUN1/2 and Syne/Nesprin-1/2 complexes connect centrosome to the nucleus during neurogenesis and neuronal migration in mice. Neuron 64:173–187. https://doi.org/10.1016/j.neuron.2009.08.018
Article
CAS
PubMed
PubMed Central
Google Scholar